Review

From last time:

Strategy A strictly dominates strategy B if the payoff from A is higher than the payoff of B, regardless of others' strategies

Review

From last time:

Strategy A strictly dominates strategy B if the payoff from A is higher than the payoff of B, regardless of others' strategies

Moral: you should never pick a dominated strategy

Review

From last time:

- Strategy A strictly dominates strategy B if the payoff from A is higher than the payoff of B, regardless of others' strategies
- Moral: you should never pick a dominated strategy
- Moral: If you don't have a dominated strategy, try to predict your opponents' choice

• Let $1, 2, \ldots, n$ denote players

- ▶ Let 1, 2, ..., *n* denote players
- Let s_i denote a particular strategy of player i

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ Let 1, 2, ..., *n* denote players
- Let s_i denote a particular strategy of player i
- ► Let S_i denote the set of all strategies of player i

- ▶ Let 1, 2, ..., *n* denote players
- Let s_i denote a particular strategy of player i
- ► Let S_i denote the set of all strategies of player i
- Let s_{-i} denote a choice of strategy for all players except player i

- ▶ Let 1, 2, ..., *n* denote players
- Let s_i denote a particular strategy of player i
- ► Let S_i denote the set of all strategies of player i
- Let s_{-i} denote a choice of strategy for all players except player i
- ▶ Let u_i(s_i, s_{-i}) denote the utility/payoff for player i if players choose strategies s_i/s_{-i}

- ▶ Let 1, 2, ..., *n* denote players
- Let s_i denote a particular strategy of player i
- ► Let S_i denote the set of all strategies of player i
- Let s_{-i} denote a choice of strategy for all players except player i
- Let u_i(s_i, s_{-i}) denote the utility/payoff for player i if players choose strategies s_i/s_{-i}
- So s_i strictly dominates s^{*}_i if u_i(s_i, s_{−i}) > u_i(s^{*}_i, s_{−i}) for all choices of s_{−i}

Hannibal wants to cross into Italy with two batallions

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Hannibal wants to cross into Italy with two batallions

There are two options:

Hannibal wants to cross into Italy with two batallions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- There are two options:
 - Easy path along the coast

Hannibal wants to cross into Italy with two batallions

- There are two options:
 - Easy path along the coast
 - Hard path through the Alps

- Hannibal wants to cross into Italy with two batallions
- There are two options:
 - Easy path along the coast
 - Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)

- Hannibal wants to cross into Italy with two batallions
- There are two options:
 - Easy path along the coast
 - Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If he meets the defending army, he loses one batallion

- Hannibal wants to cross into Italy with two batallions
- There are two options:
 - Easy path along the coast
 - Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)

- If he meets the defending army, he loses one batallion
- Is this a game?

- Hannibal wants to cross into Italy with two batallions
- There are two options:
 - Easy path along the coast
 - Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)
- If he meets the defending army, he loses one batallion
- Is this a game?
 - Need payoffs let's use # of batallions brought into country and # of batallions die

Hannibal wants to cross into Italy with two batallions

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Hannibal wants to cross into Italy with two batallions

There are two options:

Hannibal wants to cross into Italy with two batallions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- There are two options:
 - Easy path along the coast

Hannibal wants to cross into Italy with two batallions

- There are two options:
 - Easy path along the coast
 - Hard path through the Alps

- Hannibal wants to cross into Italy with two batallions
- There are two options:
 - Easy path along the coast
 - Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)

- Hannibal wants to cross into Italy with two batallions
- There are two options:
 - Easy path along the coast
 - Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If he meets the defending army, he loses one batallion

- Hannibal wants to cross into Italy with two batallions
- There are two options:
 - Easy path along the coast
 - Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)

- If he meets the defending army, he loses one batallion
- Is this a game?

- Hannibal wants to cross into Italy with two batallions
- There are two options:
 - Easy path along the coast
 - Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)
- If he meets the defending army, he loses one batallion
- Is this a game?
 - Need payoffs let's use # of batallions that die/are brought into Italy

・ロト ・ 戸 ・ モ ト ・ モ ・ うへぐ

The outcome matrix is:

You are Fabius Maximus. What should you do?

The outcome matrix is:

- > You are Fabius Maximus. What should you do?
 - Are there any dominant strategies?

The outcome matrix is:

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

- > You are Fabius Maximus. What should you do?
 - Are there any dominant strategies?
 - No strictly dominat strategies

The outcome matrix is:

You are Fabius Maximus. What should you do?

- Are there any dominant strategies?
 - No strictly dominat strategies
 - Hannibal has a weakly dominant strategy He'll probably choose to take the easy route

The outcome matrix is:

You are Fabius Maximus. What should you do?

- Are there any dominant strategies?
 - No strictly dominat strategies
 - Hannibal has a weakly dominant strategy He'll probably choose to take the easy route

► s_i weakly dominates s^{*}_i if u_i(s_i, s_{-i}) ≥ u_i(s^{*}_i, s_{-i}) for all choices of s_{-i}

The outcome matrix is:

You are Fabius Maximus. What should you do?

- Are there any dominant strategies?
 - No strictly dominat strategies
 - Hannibal has a weakly dominant strategy He'll probably choose to take the easy route
- ► s_i weakly dominates s^{*}_i if u_i(s_i, s_{-i}) ≥ u_i(s^{*}_i, s_{-i}) for all choices of s_{-i}

What does this mean?

The outcome matrix is:

- You are Fabius Maximus. What should you do?
 - Are there any dominant strategies?
 - No strictly dominat strategies
 - Hannibal has a weakly dominant strategy He'll probably choose to take the easy route
- s_i weakly dominates s^{*}_i if u_i(s_i, s_{−i}) ≥ u_i(s^{*}_i, s_{−i}) for all choices of s_{−i}
- What does this mean?
 - Strategy s_i weakly dominates strategy s^{*}_i if the payoff from s_i is never worse than the payoff of s^{*}_i, regardless of others' strategies

The outcome matrix is:

- You are Fabius Maximus. What should you do?
 - Are there any dominant strategies?
 - No strictly dominat strategies
 - Hannibal has a weakly dominant strategy He'll probably choose to take the easy route
- ► s_i weakly dominates s^{*}_i if u_i(s_i, s_{-i}) ≥ u_i(s^{*}_i, s_{-i}) for all choices of s_{-i}
- What does this mean?
 - Strategy s_i weakly dominates strategy s^{*}_i if the payoff from s_i is never worse than the payoff of s^{*}_i, regardless of others' strategies
- **Moral**: you should probably never pick a weakly dominated

The Numbers Game

Review:

 Everyone in class wrote down their name and a number between 1 and 100

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Numbers Game

Review:

 Everyone in class wrote down their name and a number between 1 and 100

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ I took $\frac{2}{3}$ the average of everyones' numbers

The Numbers Game

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $(.01) \cdot (how far they are off)$

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $(.01) \cdot (how far they are off)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example:

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $(.01) \cdot (how far they are off)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Example:
 - Suppose that there are three people in class

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $(.01) \cdot (how far they are off)$

Example:

- Suppose that there are three people in class
- They choose 5, 30, 55

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $(.01) \cdot (how far they are off)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example:

Suppose that there are three people in class

• They choose 5, 30, 55
•
$$\frac{2}{3} \cdot \frac{5+30+55}{3} = 20$$

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $(.01) \cdot (how far they are off)$

Example:

Suppose that there are three people in class

They choose 5, 30, 55

$$\frac{2}{3} \cdot \frac{5+30+55}{3} = 20$$

30 wins \$4.90

• Why might someone choose \approx 33?

- Why might someone choose \approx 33?
 - \blacktriangleright If everyone else chooses randomly, the average will be ≈ 50

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Why might someone choose \approx 33?
 - \blacktriangleright If everyone else chooses randomly, the average will be ≈ 50

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Two thirds of the average will be pprox 33
- Any problems?

- Why might someone choose \approx 33?
 - \blacktriangleright If everyone else chooses randomly, the average will be ≈ 50
 - Two thirds of the average will be ≈ 33
- Any problems?
 - If most people think this way, the average will be \approx 33, and so two thirds of the average will be \approx 22

Assume:

Every player is completely rational

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume:

- Every player is completely rational
- Every player assumes every other player is completely rational

Assume:

- Every player is completely rational
- Every player assumes every other player is completely rational

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Are any strategies weakly dominated?

Assume:

- Every player is completely rational
- Every player assumes every other player is completely rational

- Are any strategies weakly dominated?
 - 68 through 100

Assume:

- Every player is completely rational
- Every player assumes every other player is completely rational

- Are any strategies weakly dominated?
 - 68 through 100
 - Cross these strategies out for everybody

Assume:

- Every player is completely rational
- Every player assumes every other player is completely rational

- Are any strategies weakly dominated?
 - 68 through 100
 - Cross these strategies out for everybody
- After crossing these strategies, are any strategies weakly dominated?

Assume:

- Every player is completely rational
- Every player assumes every other player is completely rational

- Are any strategies weakly dominated?
 - 68 through 100
 - Cross these strategies out for everybody
- After crossing these strategies, are any strategies weakly dominated?
 - 46 through 67

Assume:

- Every player is completely rational
- Every player assumes every other player is completely rational
- Are any strategies weakly dominated?
 - 68 through 100
 - Cross these strategies out for everybody
- After crossing these strategies, are any strategies weakly dominated?
 - 46 through 67
- ▶ If we continue this process, everyone is left with choosing 1

The class' numbers were: 1, 1, 1, 2.14, 15, 15, 17.9, 18, 30, 32, 34, 34, 37, 45, 45, 48, 48, 53, 80, 89

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The class' numbers were: 1, 1, 1, 2.14, 15, 15, 17.9, 18, 30, 32, 34, 34, 37, 45, 45, 48, 48, 53, 80, 89

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two thirds of the average is 21.53

The class' numbers were: 1, 1, 1, 2.14, 15, 15, 17.9, 18, 30, 32, 34, 34, 37, 45, 45, 48, 48, 53, 80, 89

- Two thirds of the average is 21.53
- Congratulations Andre Serrano (\$4.80)

Let's play this game again

- Let's play this game again
- Write down a number between 1 and 100

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What changed?

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?
 - Strategies for the game became common knowledge:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?
 - Strategies for the game became common knowledge:

1. "Everyone knows the strategy"

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?
 - Strategies for the game became common knowledge:
 - 1. "Everyone knows the strategy"
 - 2. "Everyone knows that everyone knows the strategy"

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?
 - Strategies for the game became common knowledge:
 - 1. "Everyone knows the strategy"
 - 2. "Everyone knows that everyone knows the strategy"
 - "Everyone knows that everyone knows that everyone knows the strategy"

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?
 - Strategies for the game became common knowledge:
 - 1. "Everyone knows the strategy"
 - 2. "Everyone knows that everyone knows the strategy"
 - 3. "Everyone knows that everyone knows that everyone knows the strategy"

4. :

Assume:

▶ There is a spectrum of 10 points on a certain political issue

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume:

▶ There is a spectrum of 10 points on a certain political issue

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There are two candidates

Assume:

► There is a spectrum of 10 points on a certain political issue

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- There are two candidates
- ▶ 10% of the voters hold each position

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- ▶ 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- ▶ 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

If the candidates hold the same view, they'll split the vote

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- ▶ 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views

If the candidates hold the same view, they'll split the vote

Is this a game?

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- ▶ 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views

If the candidates hold the same view, they'll split the vote

Is this a game?

Have players (the candidates)

Assume:

- ► There is a spectrum of 10 points on a certain political issue
- There are two candidates
- ▶ 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views

If the candidates hold the same view, they'll split the vote

Is this a game?

- Have players (the candidates)
- ► Have strategies (1 − 10)

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- ▶ 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views
- If the candidates hold the same view, they'll split the vote

Is this a game?

- Have players (the candidates)
- ► Have strategies (1 − 10)
- Need payoffs: choose the % of the vote that they earn

Are there any dominated strategies?

Are there any dominated strategies?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1 is weakly dominated by 2

Are there any dominated strategies?

- 1 is weakly dominated by 2
- 10 is weakly dominated by 9

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Anything else?

Are there any dominated strategies?

- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- Anything else?
 - 3 does not dominate 2 but after we remove 1 it does (assuming common knowledge)

Are there any dominated strategies?

- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- Anything else?
 - 3 does not dominate 2 but after we remove 1 it does (assuming common knowledge)

If we iterate this, the candidates end up in the central positions

Are there any dominated strategies?

- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- Anything else?
 - 3 does not dominate 2 but after we remove 1 it does (assuming common knowledge)

- If we iterate this, the candidates end up in the central positions
- This is The Median Voter Theorem "Majority rule voting will select the median preference"