Review

From last time:

- Strategy A strictly dominates strategy B if the payoff from A is higher than the payoff of B, regardless of others' strategies

Review

From last time:

- Strategy A strictly dominates strategy B if the payoff from A is higher than the payoff of B, regardless of others' strategies
- Moral: you should never pick a dominated strategy

Review

From last time:

- Strategy A strictly dominates strategy B if the payoff from A is higher than the payoff of B, regardless of others' strategies
- Moral: you should never pick a dominated strategy
- Moral: If you don't have a dominated strategy, try to predict your opponents' choice

Notation

- Let $1,2, \ldots, n$ denote players

Notation

- Let $1,2, \ldots, n$ denote players
- Let s_{i} denote a particular strategy of player i

Notation

- Let $1,2, \ldots, n$ denote players
- Let s_{i} denote a particular strategy of player i
- Let S_{i} denote the set of all strategies of player i

Notation

- Let $1,2, \ldots, n$ denote players
- Let s_{i} denote a particular strategy of player i
- Let S_{i} denote the set of all strategies of player i
- Let s_{-i} denote a choice of strategy for all players except player i

Notation

- Let $1,2, \ldots, n$ denote players
- Let s_{i} denote a particular strategy of player i
- Let S_{i} denote the set of all strategies of player i
- Let s_{-i} denote a choice of strategy for all players except player i
- Let $u_{i}\left(s_{i}, s_{-i}\right)$ denote the utility/payoff for player i if players choose strategies s_{i} / s_{-i}

Notation

- Let $1,2, \ldots, n$ denote players
- Let s_{i} denote a particular strategy of player i
- Let S_{i} denote the set of all strategies of player i
- Let s_{-i} denote a choice of strategy for all players except player i
- Let $u_{i}\left(s_{i}, s_{-i}\right)$ denote the utility/payoff for player i if players choose strategies s_{i} / s_{-i}
- So s_{i} strictly dominates s_{i}^{*} if $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{*}, s_{-i}\right)$ for all choices of s_{-i}

Sacking Rome

- Hannibal wants to cross into Italy with two batallions

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast
- Hard path through the Alps

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast
- Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast
- Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)
- If he meets the defending army, he loses one batallion

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast
- Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)
- If he meets the defending army, he loses one batallion
- Is this a game?

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast
- Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)
- If he meets the defending army, he loses one batallion
- Is this a game?
- Need payoffs - let's use \# of batallions brought into country and \# of batallions die

Sacking Rome

- Hannibal wants to cross into Italy with two batallions

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast
- Hard path through the Alps

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast
- Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast
- Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)
- If he meets the defending army, he loses one batallion

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast
- Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)
- If he meets the defending army, he loses one batallion
- Is this a game?

Sacking Rome

- Hannibal wants to cross into Italy with two batallions
- There are two options:
- Easy path along the coast
- Hard path through the Alps
- If he takes the hard path, he loses one batallion (just from crossing)
- If he meets the defending army, he loses one batallion
- Is this a game?
- Need payoffs - let's use \# of batallions that die/are brought into Italy

Sacking Rome

The outcome matrix is:

- You are Fabius Maximus. What should you do?

Sacking Rome

The outcome matrix is:

- You are Fabius Maximus. What should you do?
- Are there any dominant strategies?

Sacking Rome

The outcome matrix is:

- You are Fabius Maximus. What should you do?
- Are there any dominant strategies?
- No strictly dominat strategies

Sacking Rome

The outcome matrix is:

- You are Fabius Maximus. What should you do?
- Are there any dominant strategies?
- No strictly dominat strategies
- Hannibal has a weakly dominant strategy He'll probably choose to take the easy route

Sacking Rome

The outcome matrix is:

- You are Fabius Maximus. What should you do?
- Are there any dominant strategies?
- No strictly dominat strategies
- Hannibal has a weakly dominant strategy He'll probably choose to take the easy route
- s_{i} weakly dominates s_{i}^{*} if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{*}, s_{-i}\right)$ for all choices of s_{-i}

Sacking Rome

The outcome matrix is:

- You are Fabius Maximus. What should you do?
- Are there any dominant strategies?
- No strictly dominat strategies
- Hannibal has a weakly dominant strategy He'll probably choose to take the easy route
- s_{i} weakly dominates s_{i}^{*} if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{*}, s_{-i}\right)$ for all choices of s_{-i}
- What does this mean?

Sacking Rome

The outcome matrix is:

- You are Fabius Maximus. What should you do?
- Are there any dominant strategies?
- No strictly dominat strategies
- Hannibal has a weakly dominant strategy

He'll probably choose to take the easy route

- s_{i} weakly dominates s_{i}^{*} if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{*}, s_{-i}\right)$ for all choices of s_{-i}
- What does this mean?
- Strategy s_{i} weakly dominates strategy s_{i}^{*} if the payoff from s_{i} is never worse than the payoff of s_{i}^{*}, regardless of others' strategies

Sacking Rome

The outcome matrix is:

- You are Fabius Maximus. What should you do?
- Are there any dominant strategies?
- No strictly dominat strategies
- Hannibal has a weakly dominant strategy

He'll probably choose to take the easy route

- s_{i} weakly dominates s_{i}^{*} if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{*}, s_{-i}\right)$ for all choices of s_{-i}
- What does this mean?
- Strategy s_{i} weakly dominates strategy s_{i}^{*} if the payoff from s_{i} is never worse than the payoff of s_{i}^{*}, regardless of others' strategies
- Moral: you should probably never pick a weakly dominated

The Numbers Game

Review:

- Everyone in class wrote down their name and a number between 1 and 100

The Numbers Game

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers

The Numbers Game

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot($ how far they are off)

The Numbers Game

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot($ how far they are off)
- Example:

The Numbers Game

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot($ how far they are off)
- Example:
- Suppose that there are three people in class

The Numbers Game

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot($ how far they are off)
- Example:
- Suppose that there are three people in class
- They choose 5,30,55

The Numbers Game

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot($ how far they are off)
- Example:
- Suppose that there are three people in class
- They choose 5,30,55
- $\frac{2}{3} \cdot \frac{5+30+55}{3}=20$

The Numbers Game

Review:

- Everyone in class wrote down their name and a number between 1 and 100
- I took $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot($ how far they are off)
- Example:
- Suppose that there are three people in class
- They choose 5,30,55
- $\frac{2}{3} \cdot \frac{5+30+55}{3}=20$
- 30 wins $\$ 4.90$

The Numbers Game

- Why might someone choose ≈ 33 ?

The Numbers Game

- Why might someone choose ≈ 33 ?
- If everyone else chooses randomly, the average will be ≈ 50

The Numbers Game

- Why might someone choose ≈ 33 ?
- If everyone else chooses randomly, the average will be ≈ 50
- Two thirds of the average will be ≈ 33
- Any problems?

The Numbers Game

- Why might someone choose ≈ 33 ?
- If everyone else chooses randomly, the average will be ≈ 50
- Two thirds of the average will be ≈ 33
- Any problems?
- If most people think this way, the average will be ≈ 33, and so two thirds of the average will be ≈ 22

Iterative Deletion of Dominated Strategies

- Assume:
- Every player is completely rational

Iterative Deletion of Dominated Strategies

- Assume:
- Every player is completely rational
- Every player assumes every other player is completely rational

Iterative Deletion of Dominated Strategies

- Assume:
- Every player is completely rational
- Every player assumes every other player is completely rational
- Are any strategies weakly dominated?

Iterative Deletion of Dominated Strategies

- Assume:
- Every player is completely rational
- Every player assumes every other player is completely rational
- Are any strategies weakly dominated?
- 68 through 100

Iterative Deletion of Dominated Strategies

- Assume:
- Every player is completely rational
- Every player assumes every other player is completely rational
- Are any strategies weakly dominated?
- 68 through 100
- Cross these strategies out for everybody

Iterative Deletion of Dominated Strategies

- Assume:
- Every player is completely rational
- Every player assumes every other player is completely rational
- Are any strategies weakly dominated?
- 68 through 100
- Cross these strategies out for everybody
- After crossing these strategies, are any strategies weakly dominated?

Iterative Deletion of Dominated Strategies

- Assume:
- Every player is completely rational
- Every player assumes every other player is completely rational
- Are any strategies weakly dominated?
- 68 through 100
- Cross these strategies out for everybody
- After crossing these strategies, are any strategies weakly dominated?
- 46 through 67

Iterative Deletion of Dominated Strategies

- Assume:
- Every player is completely rational
- Every player assumes every other player is completely rational
- Are any strategies weakly dominated?
- 68 through 100
- Cross these strategies out for everybody
- After crossing these strategies, are any strategies weakly dominated?
- 46 through 67
- If we continue this process, everyone is left with choosing 1

The Numbers Game

- The class' numbers were:
$1,1,1,2.14,15,15,17.9,18,30,32,34,34,37,45,45,48,48,53,80,89$

The Numbers Game

- The class' numbers were:
$1,1,1,2.14,15,15,17.9,18,30,32,34,34,37,45,45,48,48,53,80,89$
- Two thirds of the average is 21.53

The Numbers Game

- The class' numbers were:
$1,1,1,2.14,15,15,17.9,18,30,32,34,34,37,45,45,48,48,53,80,89$
- Two thirds of the average is 21.53
- Congratulations Andre Serrano (\$4.80)

The Numbers Game

- Let's play this game again

The Numbers Game

- Let's play this game again
- Write down a number between 1 and 100

The Numbers Game

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?

The Numbers Game

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?

The Numbers Game

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?
- Strategies for the game became common knowledge:

The Numbers Game

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?
- Strategies for the game became common knowledge:

1. "Everyone knows the strategy"

The Numbers Game

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?
- Strategies for the game became common knowledge:

1. "Everyone knows the strategy"
2. "Everyone knows that everyone knows the strategy"

The Numbers Game

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?
- Strategies for the game became common knowledge:

1. "Everyone knows the strategy"
2. "Everyone knows that everyone knows the strategy"
3. "Everyone knows that everyone knows that everyone knows the strategy"

The Numbers Game

- Let's play this game again
- Write down a number between 1 and 100
- Who wrote a lower number than last time?
- What changed?
- Strategies for the game became common knowledge:

1. "Everyone knows the strategy"
2. "Everyone knows that everyone knows the strategy"
3. "Everyone knows that everyone knows that everyone knows the strategy"
4.

Political Spectrum

Assume:

- There is a spectrum of 10 points on a certain political issue

Political Spectrum

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates

Political Spectrum

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position

Political Spectrum

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views

Political Spectrum

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views
- If the candidates hold the same view, they'll split the vote

Political Spectrum

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views
- If the candidates hold the same view, they'll split the vote

Is this a game?

Political Spectrum

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views
- If the candidates hold the same view, they'll split the vote Is this a game?
- Have players (the candidates)

Political Spectrum

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views
- If the candidates hold the same view, they'll split the vote Is this a game?
- Have players (the candidates)
- Have strategies (1-10)

Political Spectrum

Assume:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views
- If the candidates hold the same view, they'll split the vote Is this a game?
- Have players (the candidates)
- Have strategies $(1-10)$
- Need payoffs: choose the \% of the vote that they earn

Political Spectrum

- Are there any dominated strategies?

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- Anything else?

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- Anything else?
- 3 does not dominate 2 but after we remove 1 it does (assuming common knowledge)

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- Anything else?
- 3 does not dominate 2 but after we remove 1 it does (assuming common knowledge)
- If we iterate this, the candidates end up in the central positions

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- Anything else?
- 3 does not dominate 2 but after we remove 1 it does (assuming common knowledge)
- If we iterate this, the candidates end up in the central positions
- This is The Median Voter Theorem
"Majority rule voting will select the median preference"

