Review

We considered the game:

- There is a spectrum of 10 points on a certain political issue

Review

We considered the game:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates

Review

We considered the game:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position

Review

We considered the game:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views

Review

We considered the game:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views
- Candidates will split the vote of views that are the same distance to both candidates

Review

We considered the game:

- There is a spectrum of 10 points on a certain political issue
- There are two candidates
- 10% of the voters hold each position
- Voters will vote for the candidate who holds the closest views
- Candidates will split the vote of views that are the same distance to both candidates
- Each candidate wants to maximize their share of the vote

Political Spectrum

- Are there any dominated strategies?

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2
- 10 is weakly dominated by 9

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- 3 does not dominate 2

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- 3 does not dominate 2
but after we remove 1 it does

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- 3 does not dominate 2
but after we remove 1 it does
- If we iterate this, the candidates end up in the central positions

Political Spectrum

- Are there any dominated strategies?
- 1 is weakly dominated by 2
- 10 is weakly dominated by 9
- 3 does not dominate 2
but after we remove 1 it does
- If we iterate this, the candidates end up in the central positions
- This is The Median Voter Theorem
"Majority rule voting will select the median preference"

Median Voter Theorem

Problems?

Median Voter Theorem

Problems?

- Assumed distribution was constant

Median Voter Theorem

Problems?

- Assumed distribution was constant
- Assuming full voter turnout

Median Voter Theorem

Problems?

- Assumed distribution was constant
- Assuming full voter turnout
- Assuming that there are only two candidates

Median Voter Theorem

Problems?

- Assumed distribution was constant
- Assuming full voter turnout
- Assuming that there are only two candidates
- Assuming voters are rational

Median Voter Theorem

Problems?

- Assumed distribution was constant
- Assuming full voter turnout
- Assuming that there are only two candidates
- Assuming voters are rational
- Assuming that candidates are rational, and that they assume that there opponent is rational
Examples:

Median Voter Theorem

Problems?

- Assumed distribution was constant
- Assuming full voter turnout
- Assuming that there are only two candidates
- Assuming voters are rational
- Assuming that candidates are rational, and that they assume that there opponent is rational
Examples:
- Kennedy ('60)
- Nixon ('68)
- Clinton ('92)

Median Voter Theorem

Problems?

- Assumed distribution was constant
- Assuming full voter turnout
- Assuming that there are only two candidates
- Assuming voters are rational
- Assuming that candidates are rational, and that they assume that there opponent is rational
Examples:
- Kennedy ('60)
- Nixon ('68)
- Clinton ('92)
- Affordable Care Act

Median Voter Theorem

Problems?

- Assumed distribution was constant
- Assuming full voter turnout
- Assuming that there are only two candidates
- Assuming voters are rational
- Assuming that candidates are rational, and that they assume that there opponent is rational
Examples:
- Kennedy ('60)
- Nixon ('68)
- Clinton ('92)
- Affordable Care Act
- Gas station distribution

Camping

- Alex and Bob are going camping

Camping

- Alex and Bob are going camping
- Alex wants to camp at a high altitude

Camping

- Alex and Bob are going camping
- Alex wants to camp at a high altitude
- Bob wants to camp at a low altitude

Camping

- Alex and Bob are going camping
- Alex wants to camp at a high altitude
- Bob wants to camp at a low altitude

Camping

- Alex and Bob are going camping
- Alex wants to camp at a high altitude
- Bob wants to camp at a low altitude

Camping spots (with elevation in 1000s of feet):

7	2	5	1
2	2	3	4
5	3	4	4
3	2	1	6

Camping

- Alex and Bob are going camping
- Alex wants to camp at a high altitude
- Bob wants to camp at a low altitude

Camping spots (with elevation in 1000s of feet):

7	2	5	1
2	2	3	4
5	3	4	4
3	2	1	6

- Alex chooses east-west strip
- Bob chooses north-south strip

Camping

- Alex and Bob are going camping
- Alex wants to camp at a high altitude
- Bob wants to camp at a low altitude

Camping spots (with elevation in 1000s of feet):

7	2	5	1
2	2	3	4
5	3	4	4
3	2	1	6

- Alex chooses east-west strip
- Bob chooses north-south strip
- Says Alex's payoff is the elevation, and Bob's payoff is the opposite

Camping

- Can rule out dominated strategies:

Camping

- Can rule out dominated strategies:

- Problem: we're now stuck

Camping

- Can rule out dominated strategies:

- Problem: we're now stuck
- New idea: find points where no player regrets their choice

Camping

- Consider the following campsite:

7	2	5	1
2	2	3	4
5	3	4	4
3	2	1	6

Camping

- Consider the following campsite:

7	2	5	1
2	2	3	4
5	3	4	4
3	2	1	6

- If they chose this spot, would either Alex or Bob have regrets?

Camping

- Consider the following campsite:

7	2	5	1
2	2	3	4
5	3	4	4
3	2	1	6

- If they chose this spot, would either Alex or Bob have regrets?
- No

Camping

- Consider the following campsite:

7	2	5	1
2	2	3	4
5	3	4	4
3	2	1	6

- If they chose this spot, would either Alex or Bob have regrets?
- No
- Such an outcome is called a Nash equilibrium

Camping

- Consider the following campsite:

7	2	5	1
2	2	3	4
5	3	4	4
3	2	1	6

- If they chose this spot, would either Alex or Bob have regrets?
- No
- Such an outcome is called a Nash equilibrium
- More formally, a strategy profile s_{1}, \ldots, s_{n} is a Nash equilibrium if $u\left(s_{i}, s_{-i}\right) \geq u\left(s_{i}^{*}, s_{-i}\right)$ for each i

Camping

- Consider the following campsite:

7	2	5	1
2	2	3	4
5	3	4	4
3	2	1	6

- If they chose this spot, would either Alex or Bob have regrets?
- No
- Such an outcome is called a Nash equilibrium
- More formally, a strategy profile s_{1}, \ldots, s_{n} is a Nash equilibrium if $u\left(s_{i}, s_{-i}\right) \geq u\left(s_{i}^{*}, s_{-i}\right)$ for each i
- So, if all other players' fix their strategy, you can't do better

Camping

- How do we find Nash equilibria?

Camping

- How do we find Nash equilibria?
- For others' strategies, determine your best strategy
- See where these coincide for the players

Camping

- How do we find Nash equilibria?
- For others' strategies, determine your best strategy
- See where these coincide for the players

7	2	5	1
2	2	3	4
5	33	4	4
3	2	1	6

Nash Equilibria

- See handout \#5

Nash Equilibria

- See handout \#5
- Note:

Nash Equilibria

- See handout \#5
- Note:
- There can be more than one Nash equilibrium

Nash Equilibria

- See handout \#5
- Note:
- There can be more than one Nash equilibrium
- Nash equilibria are not always the best solutions

Nash Equilibria

- See handout \#5
- Note:
- There can be more than one Nash equilibrium
- Nash equilibria are not always the best solutions
- Nash equilibria never lie on strictly dominated strategies

Nash Equilibria

- See handout \#5
- Note:
- There can be more than one Nash equilibrium
- Nash equilibria are not always the best solutions
- Nash equilibria never lie on strictly dominated strategies
- They can lie on weakly dominated strategies

The Investment Game

- You have a choice:

The Investment Game

- You have a choice:
- You can invest \$20
- You can choose to not invest

The Investment Game

- You have a choice:
- You can invest \$20
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment

The Investment Game

- You have a choice:
- You can invest \$20
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment
- Otherwise, you lose your \$20

The Investment Game

- You have a choice:
- You can invest $\$ 20$
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment
- Otherwise, you lose your \$20
- Choose whether or not you want to invest

The Investment Game

- You have a choice:
- You can invest $\$ 20$
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment
- Otherwise, you lose your \$20
- Choose whether or not you want to invest
- What are the Nash equilibria?

The Investment Game

- You have a choice:
- You can invest $\$ 20$
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment
- Otherwise, you lose your \$20
- Choose whether or not you want to invest
- What are the Nash equilibria?
- We can find them by guessing and testing

The Investment Game

- You have a choice:
- You can invest $\$ 20$
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment
- Otherwise, you lose your \$20
- Choose whether or not you want to invest
- What are the Nash equilibria?
- We can find them by guessing and testing
- All invest, or none invest

The Investment Game

- Let's play the game again.

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?
- This is an example of a coordination game:

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?
- This is an example of a coordination game:
- There are multiple Nash equilibria

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?
- This is an example of a coordination game:
- There are multiple Nash equilibria
- Saying your strategy out loud is beneficial

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?
- This is an example of a coordination game:
- There are multiple Nash equilibria
- Saying your strategy out loud is beneficial
- Other players will have no reason to think that you're lying

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?
- This is an example of a coordination game:
- There are multiple Nash equilibria
- Saying your strategy out loud is beneficial
- Other players will have no reason to think that you're lying
- Other players will choose the corresponding equilibrium point

