Review

Recall Nash equilibria:

- A strategy profile s_{1}, \ldots, s_{n} is a Nash equilibrium if $u\left(s_{i}, s_{-i}\right) \geq u\left(s_{i}^{*}, s_{-i}\right)$ for each i

Review

Recall Nash equilibria:

- A strategy profile s_{1}, \ldots, s_{n} is a Nash equilibrium if $u\left(s_{i}, s_{-i}\right) \geq u\left(s_{i}^{*}, s_{-i}\right)$ for each i
- If all other players' fix their strategies, the Nash equilibrium is the best you can do

Review

Recall Nash equilibria:

- A strategy profile s_{1}, \ldots, s_{n} is a Nash equilibrium if $u\left(s_{i}, s_{-i}\right) \geq u\left(s_{i}^{*}, s_{-i}\right)$ for each i
- If all other players' fix their strategies, the Nash equilibrium is the best you can do
- Same goes for the other players

Review

Recall Nash equilibria:

- A strategy profile s_{1}, \ldots, s_{n} is a Nash equilibrium if $u\left(s_{i}, s_{-i}\right) \geq u\left(s_{i}^{*}, s_{-i}\right)$ for each i
- If all other players' fix their strategies, the Nash equilibrium is the best you can do
- Same goes for the other players
- There may be other outcomes that are preferable

The Investment Game

- You have a choice:

The Investment Game

- You have a choice:
- You can invest \$20
- You can choose to not invest

The Investment Game

- You have a choice:
- You can invest \$20
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment

The Investment Game

- You have a choice:
- You can invest \$20
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment
- Otherwise, you lose your investment

The Investment Game

- You have a choice:
- You can invest $\$ 20$
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment
- Otherwise, you lose your investment
- Choose whether or not you want to invest

The Investment Game

- You have a choice:
- You can invest $\$ 20$
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment
- Otherwise, you lose your investment
- Choose whether or not you want to invest
- What are the Nash equilibria?

The Investment Game

- You have a choice:
- You can invest $\$ 20$
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment
- Otherwise, you lose your investment
- Choose whether or not you want to invest
- What are the Nash equilibria?
- We can find them by guessing and testing

The Investment Game

- You have a choice:
- You can invest $\$ 20$
- You can choose to not invest
- If more than 90% of the class chooses to invest, you earn $\$ 10$ on top of your original investment
- Otherwise, you lose your investment
- Choose whether or not you want to invest
- What are the Nash equilibria?
- We can find them by guessing and testing
- All invest, or none invest

The Investment Game

- Let's play the game again.

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?
- This is an example of a coordination game:

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?
- This is an example of a coordination game:
- There are multiple Nash equilibria

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?
- This is an example of a coordination game:
- There are multiple Nash equilibria
- Saying your strategy out loud is beneficial

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?
- This is an example of a coordination game:
- There are multiple Nash equilibria
- Saying your strategy out loud is beneficial
- Other players will have no reason to think that you're lying

The Investment Game

- Let's play the game again.
- What happened to peoples' strategies?
- This is an example of a coordination game:
- There are multiple Nash equilibria
- Saying your strategy out loud is beneficial
- Other players will have no reason to think that you're lying
- Other players will choose the corresponding equilibrium point

Coordination Games

Other examples:

Coordination Games

Other examples:

- Driving a car on either side of the road

Coordination Games

Other examples:

- Driving a car on either side of the road
- Stag Hunt:
- You and a partner are hunting
- You track a stag to a thicket

Coordination Games

Other examples:

- Driving a car on either side of the road
- Stag Hunt:
- You and a partner are hunting
- You track a stag to a thicket
- Have option of waiting for stag to return, or hunt nearby rabbits

Coordination Games

Other examples:

- Driving a car on either side of the road
- Stag Hunt:
- You and a partner are hunting
- You track a stag to a thicket
- Have option of waiting for stag to return, or hunt nearby rabbits
- You must decide immediately

Coordination Games

Other examples:

- Driving a car on either side of the road
- Stag Hunt:
- You and a partner are hunting
- You track a stag to a thicket
- Have option of waiting for stag to return, or hunt nearby rabbits
- You must decide immediately
- If you both wait for the stag to return, the payoff is 5 (for both of you)

Coordination Games

Other examples:

- Driving a car on either side of the road
- Stag Hunt:
- You and a partner are hunting
- You track a stag to a thicket
- Have option of waiting for stag to return, or hunt nearby rabbits
- You must decide immediately
- If you both wait for the stag to return, the payoff is 5 (for both of you)
- If you hunt rabbit, the payoff is 1

Coordination Games

Other examples:

- Driving a car on either side of the road
- Stag Hunt:
- You and a partner are hunting
- You track a stag to a thicket
- Have option of waiting for stag to return, or hunt nearby rabbits
- You must decide immediately
- If you both wait for the stag to return, the payoff is 5 (for both of you)
- If you hunt rabbit, the payoff is 1
- If you wait for the stag and your partner hunts rabbit, the stag is scared off, and your payoff is 0

Coordination Games

Other examples:

- Battle of the Sexes:

Coordination Games

Other examples:

- Battle of the Sexes:
- You're meeting up with a date at the movies

Coordination Games

Other examples:

- Battle of the Sexes:
- You're meeting up with a date at the movies
- You prefer going to a comedy

Coordination Games

Other examples:

- Battle of the Sexes:
- You're meeting up with a date at the movies
- You prefer going to a comedy
- Your date prefers going to a drama

Coordination Games

Other examples:

- Battle of the Sexes:
- You're meeting up with a date at the movies
- You prefer going to a comedy
- Your date prefers going to a drama
- Brilliant idea: you plan on meeting in the back row of the theater

Coordination Games

Other examples:

- Battle of the Sexes:
- You're meeting up with a date at the movies
- You prefer going to a comedy
- Your date prefers going to a drama
- Brilliant idea: you plan on meeting in the back row of the theater
- Problem: you forgot to settle on which movie to go to

Coordination Games

Other examples:

- Battle of the Sexes:
- You're meeting up with a date at the movies
- You prefer going to a comedy
- Your date prefers going to a drama
- Brilliant idea: you plan on meeting in the back row of the theater
- Problem: you forgot to settle on which movie to go to
- You need to decide which movie to go in

Coordination Games

Other examples:

- Battle of the Sexes:
- You're meeting up with a date at the movies
- You prefer going to a comedy
- Your date prefers going to a drama
- Brilliant idea: you plan on meeting in the back row of the theater
- Problem: you forgot to settle on which movie to go to
- You need to decide which movie to go in
- Payouts:

Coordination Games

Other examples:

- Battle of the Sexes:
- You're meeting up with a date at the movies
- You prefer going to a comedy
- Your date prefers going to a drama
- Brilliant idea: you plan on meeting in the back row of the theater
- Problem: you forgot to settle on which movie to go to
- You need to decide which movie to go in
- Payouts:

- Different players prefer different Nash equilibria

Coordination Games

Other examples:

- Battle of the Sexes:
- You're meeting up with a date at the movies
- You prefer going to a comedy
- Your date prefers going to a drama
- Brilliant idea: you plan on meeting in the back row of the theater
- Problem: you forgot to settle on which movie to go to
- You need to decide which movie to go in
- Payouts:

- Different players prefer different Nash equilibria
- Basic model for negotiations

Prisoners' Dilemma

Another version of Prisoners' Dilemma:

- You and an accomplice are caught by the police

Prisoners' Dilemma

Another version of Prisoners' Dilemma:

- You and an accomplice are caught by the police
- Cops want you to confess

Prisoners' Dilemma

Another version of Prisoners' Dilemma:

- You and an accomplice are caught by the police
- Cops want you to confess
- Payouts:

Prisoners' Dilemma

Another version of Prisoners' Dilemma:

- You and an accomplice are caught by the police
- Cops want you to confess
- Payouts:
- If you both deny the crime, you'll both serve 1 year for a lighter crime

Prisoners' Dilemma

Another version of Prisoners' Dilemma:

- You and an accomplice are caught by the police
- Cops want you to confess
- Payouts:
- If you both deny the crime, you'll both serve 1 year for a lighter crime
- If you confess and your accomplice does not, you get off and he gets 5 years

Prisoners' Dilemma

Another version of Prisoners' Dilemma:

- You and an accomplice are caught by the police
- Cops want you to confess
- Payouts:
- If you both deny the crime, you'll both serve 1 year for a lighter crime
- If you confess and your accomplice does not, you get off and he gets 5 years
- If you both confess, you both get 3 years

Prisoners' Dilemma

Another version of Prisoners' Dilemma:

- You and an accomplice are caught by the police
- Cops want you to confess
- Payouts:
- If you both deny the crime, you'll both serve 1 year for a lighter crime
- If you confess and your accomplice does not, you get off and he gets 5 years
- If you both confess, you both get 3 years
- Is this a coordination game?

Prisoners' Dilemma

Another version of Prisoners' Dilemma:

- You and an accomplice are caught by the police
- Cops want you to confess
- Payouts:
- If you both deny the crime, you'll both serve 1 year for a lighter crime
- If you confess and your accomplice does not, you get off and he gets 5 years
- If you both confess, you both get 3 years
- Is this a coordination game?
- No - only one Nash equilibrium

Prisoners' Dilemma

Another version of Prisoners' Dilemma:

- You and an accomplice are caught by the police
- Cops want you to confess
- Payouts:
- If you both deny the crime, you'll both serve 1 year for a lighter crime
- If you confess and your accomplice does not, you get off and he gets 5 years
- If you both confess, you both get 3 years
- Is this a coordination game?
- No - only one Nash equilibrium
- The best outcome is not a Nash equilibrium

The Candidate-Voter Model

Another model for elections:

- Have a political spectrum ($0-100$)

The Candidate-Voter Model

Another model for elections:

- Have a political spectrum ($0-100$)
- Any voter can become a candidate

The Candidate-Voter Model

Another model for elections:

- Have a political spectrum ($0-100$)
- Any voter can become a candidate
- Voter's place on the spectrum is fixed

The Candidate-Voter Model

Another model for elections:

- Have a political spectrum ($0-100$)
- Any voter can become a candidate
- Voter's place on the spectrum is fixed
- Voters will vote for the candidate who holds the closest views

The Candidate-Voter Model

Another model for elections:

- Have a political spectrum ($0-100$)
- Any voter can become a candidate
- Voter's place on the spectrum is fixed
- Voters will vote for the candidate who holds the closest views
- Candidates will split the vote of views that are the same distance to both candidates

The Candidate-Voter Model

Another model for elections:

- Have a political spectrum ($0-100$)
- Any voter can become a candidate
- Voter's place on the spectrum is fixed
- Voters will vote for the candidate who holds the closest views
- Candidates will split the vote of views that are the same distance to both candidates
- Win by random draw if candidates tie
- Payoffs:
- Utility of 200 for winning
- Cost of 100 to run
- Cost of $|x-y|$ for y winning (for x)

The Candidate-Voter Model

Examples:

- If x enters and wins, their payoff is $200-100=100$

The Candidate-Voter Model

Examples:

- If x enters and wins, their payoff is $200-100=100$
- If 10 does not enter, and 70 wins, their payoff is
$-|10-70|=-60$

The Candidate-Voter Model

Examples:

- If x enters and wins, their payoff is $200-100=100$
- If 10 does not enter, and 70 wins, their payoff is
$-|10-70|=-60$
- If 10 enters, and 70 wins, their payoff is
$-100-|10-70|=-160$

The Candidate-Voter Model

Examples:

- If x enters and wins, their payoff is $200-100=100$
- If 10 does not enter, and 70 wins, their payoff is
$-|10-70|=-60$
- If 10 enters, and 70 wins, their payoff is
$-100-|10-70|=-160$
Questions:

The Candidate-Voter Model

Examples:

- If x enters and wins, their payoff is $200-100=100$
- If 10 does not enter, and 70 wins, their payoff is
$-|10-70|=-60$
- If 10 enters, and 70 wins, their payoff is
$-100-|10-70|=-160$
Questions:
- Is it a Nash equilibrium if no one runs?

The Candidate-Voter Model

Examples:

- If x enters and wins, their payoff is $200-100=100$
- If 10 does not enter, and 70 wins, their payoff is $-|10-70|=-60$
- If 10 enters, and 70 wins, their payoff is
$-100-|10-70|=-160$
Questions:
- Is it a Nash equilibrium if no one runs?
- No

The Candidate-Voter Model

Examples:

- If x enters and wins, their payoff is $200-100=100$
- If 10 does not enter, and 70 wins, their payoff is $-|10-70|=-60$
- If 10 enters, and 70 wins, their payoff is
$-100-|10-70|=-160$
Questions:
- Is it a Nash equilibrium if no one runs?
- No
- Is it a Nash equilibrium if only one person runs?

The Candidate-Voter Model

Examples:

- If x enters and wins, their payoff is $200-100=100$
- If 10 does not enter, and 70 wins, their payoff is $-|10-70|=-60$
- If 10 enters, and 70 wins, their payoff is
$-100-|10-70|=-160$
Questions:
- Is it a Nash equilibrium if no one runs?
- No
- Is it a Nash equilibrium if only one person runs?
- Only if they lie on 50

The Candidate-Voter Model

- Are there other Nash equilibria?

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50
- Is this enough?

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50
- Is this enough?
- No - if candidates are too extreme, a central candidate can win

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50
- Is this enough?
- No - if candidates are too extreme, a central candidate can win
- Morals:

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50
- Is this enough?
- No - if candidates are too extreme, a central candidate can win
- Morals:
- There are many Nash equilibria

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50
- Is this enough?
- No - if candidates are too extreme, a central candidate can win
- Morals:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50
- Is this enough?
- No - if candidates are too extreme, a central candidate can win
- Morals:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50
- Is this enough?
- No - if candidates are too extreme, a central candidate can win
- Morals:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)
- Problems?

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50
- Is this enough?
- No - if candidates are too extreme, a central candidate can win
- Morals:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)
- Problems?
- Everyone decides whether or not to run at once

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50
- Is this enough?
- No - if candidates are too extreme, a central candidate can win
- Morals:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)
- Problems?
- Everyone decides whether or not to run at once
- Not everyone can practically run

The Candidate-Voter Model

- Are there other Nash equilibria?
- Two candidates must be equidistant from 50
- Is this enough?
- No - if candidates are too extreme, a central candidate can win
- Morals:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)
- Problems?
- Everyone decides whether or not to run at once
- Not everyone can practically run
- Still assumes that politics lie on a single spectrum

