The Candidate-Voter Model

Recall the Candidate-Voter Model:

- Have a political spectrum (0-100)

The Candidate-Voter Model

Recall the Candidate-Voter Model:

- Have a political spectrum ($0-100$)
- Any voter can become a candidate

The Candidate-Voter Model

Recall the Candidate-Voter Model:

- Have a political spectrum (0-100)
- Any voter can become a candidate
- Voter's place on the spectrum is fixed

The Candidate-Voter Model

Recall the Candidate-Voter Model:

- Have a political spectrum (0-100)
- Any voter can become a candidate
- Voter's place on the spectrum is fixed
- Voters will vote for the candidate who holds the closest views

The Candidate-Voter Model

Recall the Candidate-Voter Model:

- Have a political spectrum ($0-100$)
- Any voter can become a candidate
- Voter's place on the spectrum is fixed
- Voters will vote for the candidate who holds the closest views
- Win by random draw if candidates tie

The Candidate-Voter Model

Recall the Candidate-Voter Model:

- Have a political spectrum ($0-100$)
- Any voter can become a candidate
- Voter's place on the spectrum is fixed
- Voters will vote for the candidate who holds the closest views
- Win by random draw if candidates tie
- Payoffs:
- Utility of 200 for winning
- Cost of 100 to run
- Cost of $|x-y|$ for y winning (for x)

The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?

The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
- If 49 and 51 choose to run, 50 will lose Is this a problem?

The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
- If 49 and 51 choose to run, 50 will lose Is this a problem?
- No. Nash equilibria only considers if one player changes their strategy

The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
- If 49 and 51 choose to run, 50 will lose Is this a problem?
- No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?

The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
- If 49 and 51 choose to run, 50 will lose Is this a problem?
- No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
- Yes

The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
- If 49 and 51 choose to run, 50 will lose Is this a problem?
- No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
- Yes
- If 10 and 90 run, is this a Nash equilibrium?

The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
- If 49 and 51 choose to run, 50 will lose Is this a problem?
- No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
- Yes
- If 10 and 90 run, is this a Nash equilibrium?
- No

The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
- If 49 and 51 choose to run, 50 will lose Is this a problem?
- No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
- Yes
- If 10 and 90 run, is this a Nash equilibrium?
- No
- So a Nash equilibrium occurs when:

The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
- If 49 and 51 choose to run, 50 will lose Is this a problem?
- No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
- Yes
- If 10 and 90 run, is this a Nash equilibrium?
- No
- So a Nash equilibrium occurs when:
- All candidates who run tie

The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
- If 49 and 51 choose to run, 50 will lose Is this a problem?
- No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
- Yes
- If 10 and 90 run, is this a Nash equilibrium?
- No
- So a Nash equilibrium occurs when:
- All candidates who run tie
- No one can opt to run and tie or win

The Candidate-Voter Model

- Properties of this model:

The Candidate-Voter Model

- Properties of this model:
- There are many Nash equilibria

The Candidate-Voter Model

- Properties of this model:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median

The Candidate-Voter Model

- Properties of this model:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If candidates become too extreme, more central candidates will jump in

The Candidate-Voter Model

- Properties of this model:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If candidates become too extreme, more central candidates will jump in
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)

The Candidate-Voter Model

- Properties of this model:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If candidates become too extreme, more central candidates will jump in
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)
- Problems?

The Candidate-Voter Model

- Properties of this model:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If candidates become too extreme, more central candidates will jump in
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)
- Problems?
- Everyone decides whether or not to run at once

The Candidate-Voter Model

- Properties of this model:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If candidates become too extreme, more central candidates will jump in
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)
- Problems?
- Everyone decides whether or not to run at once
- Not everyone can practically run

The Candidate-Voter Model

- Properties of this model:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If candidates become too extreme, more central candidates will jump in
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)
- Problems?
- Everyone decides whether or not to run at once
- Not everyone can practically run
- Still assumes that politics lie on a single spectrum

Another Game:

- Consider the following outcome matrix:

	R	P	S
R	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

Another Game:

- Consider the following outcome matrix:

- What's the name of this game?

Another Game:

- Consider the following outcome matrix:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What's the name of this game?
- Rock Paper Scissors

Another Game:

- Consider the following outcome matrix:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What's the name of this game?
- Rock Paper Scissors
- Are there any Nash equilibria?

Another Game:

- Consider the following outcome matrix:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What's the name of this game?
- Rock Paper Scissors
- Are there any Nash equilibria?
- No

Another Game:

- Consider the following outcome matrix:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What's the name of this game?
- Rock Paper Scissors
- Are there any Nash equilibria?
- No
- What is the best strategy?

Another Game:

- Consider the following outcome matrix:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What's the name of this game?
- Rock Paper Scissors
- Are there any Nash equilibria?
- No
- What is the best strategy?
- Should be to pick each of rock, paper, and scissors randomly with probability of $\frac{1}{3}$ (Denote this as $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$)

Another Game:

- Consider the following outcome matrix:

	R	P	S
R	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What's the name of this game?
- Rock Paper Scissors
- Are there any Nash equilibria?
- No
- What is the best strategy?
- Should be to pick each of rock, paper, and scissors randomly with probability of $\frac{1}{3}$ (Denote this as $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$)
- This is an example of a mixed strategy

Expected Payout

R	P	S	
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

-What is the expected payout of $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ against $(1,0,0)$? $\left(u\left(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),(1,0,0)\right)\right)$

Expected Payout

R	P	S	
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

-What is the expected payout of $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ against $(1,0,0)$? $\left(u\left(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),(1,0,0)\right)\right)$

- 0

Expected Payout

R	P	S	
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

-What is the expected payout of $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ against $(1,0,0)$? $\left(u\left(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),(1,0,0)\right)\right)$

- 0
- Note that the expected payout is weighted average of the payouts of the pure strategies (with positive probabilities)

Weighted Averages

- How can you raise the average batting average of a baseball team?

Weighted Averages

- How can you raise the average batting average of a baseball team?
- By cutting people with a low batting average

Weighted Averages

- How can you raise the average batting average of a baseball team?
- By cutting people with a low batting average
- If the average batting average is maximized, all players must have the same batting average
- If p_{i} is a best response to the other strategies, all the pure strategies used in p_{i} are best responses to p_{-i}

Weighted Averages

- How can you raise the average batting average of a baseball team?
- By cutting people with a low batting average
- If the average batting average is maximized, all players must have the same batting average
- If p_{i} is a best response to the other strategies, all the pure strategies used in p_{i} are best responses to p_{-i}
- Consider this modified Battle of the Sexes game:

Weighted Averages

- How can you raise the average batting average of a baseball team?
- By cutting people with a low batting average
- If the average batting average is maximized, all players must have the same batting average
- If p_{i} is a best response to the other strategies, all the pure strategies used in p_{i} are best responses to p_{-i}
- Consider this modified Battle of the Sexes game:

- Is $\left(\frac{1}{2}, \frac{1}{2}\right)$ a best response to $(0,1)$?

Weighted Averages

- How can you raise the average batting average of a baseball team?
- By cutting people with a low batting average
- If the average batting average is maximized, all players must have the same batting average
- If p_{i} is a best response to the other strategies, all the pure strategies used in p_{i} are best responses to p_{-i}
- Consider this modified Battle of the Sexes game:

- Is $\left(\frac{1}{2}, \frac{1}{2}\right)$ a best response to $(0,1)$?
- No - you should drop C

Nash Equilibrium

- Mixed strategies $\left(p_{1}, \ldots, p_{n}\right)$ are a Nash equilibrium if p_{i} is a best response to p_{-i}

Nash Equilibrium

- Mixed strategies $\left(p_{1}, \ldots, p_{n}\right)$ are a Nash equilibrium if p_{i} is a best response to p_{-i}
- Each player asks "if the other players stuck with their strategies, am I better off mixing the ratio of strategies?"

Nash Equilibrium

- Mixed strategies $\left(p_{1}, \ldots, p_{n}\right)$ are a Nash equilibrium if p_{i} is a best response to p_{-i}
- Each player asks "if the other players stuck with their strategies, am I better off mixing the ratio of strategies?"
- If p_{i} is a best response to p_{-i}, the payouts of the pure strategies in p_{i} are equal

Nash Equilibrium

- Mixed strategies $\left(p_{1}, \ldots, p_{n}\right)$ are a Nash equilibrium if p_{i} is a best response to p_{-i}
- Each player asks "if the other players stuck with their strategies, am I better off mixing the ratio of strategies?"
- If p_{i} is a best response to p_{-i}, the payouts of the pure strategies in p_{i} are equal
- Note that pure Nash equilibria are still Nash equilibria

