Rock Paper Scissors

- Consider Rock Paper Scissors:

R	P	S	
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
R	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

-What is the expected payoff of $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

-What is the expected payoff of $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?

- 0

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

-What is the expected payoff of $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?

- 0
- Note that the expected payout is a weighted average of payouts

Rock Paper Scissors

- Consider Rock Paper Scissors:

R	P	S	
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- How can we raise the expected payout against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- How can we raise the expected payout against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?
- By removing pure strategies that lower the average

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- How can we raise the expected payout against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?
- By removing pure strategies that lower the average
- $u\left((1,0,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=\frac{1}{2}$

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- How can we raise the expected payout against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?
- By removing pure strategies that lower the average
- $u\left((1,0,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=\frac{1}{2}$
- $u\left((0,1,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=0$

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- How can we raise the expected payout against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?
- By removing pure strategies that lower the average
- $u\left((1,0,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=\frac{1}{2}$
- $u\left((0,1,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=0$
- $u\left((0,0,1),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=-\frac{1}{2}$

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- How can we raise the expected payout against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?
- By removing pure strategies that lower the average
- $u\left((1,0,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=\frac{1}{2}$
- $u\left((0,1,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=0$
- $u\left((0,0,1),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=-\frac{1}{2}$
- Best strategy against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ is

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- How can we raise the expected payout against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?
- By removing pure strategies that lower the average
- $u\left((1,0,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=\frac{1}{2}$
- $u\left((0,1,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=0$
- $u\left((0,0,1),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=-\frac{1}{2}$
- Best strategy against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ is to play rock

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
R	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- How can we raise the expected payout against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$?
- By removing pure strategies that lower the average
- $u\left((1,0,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=\frac{1}{2}$
- $u\left((0,1,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=0$
- $u\left((0,0,1),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=-\frac{1}{2}$
- Best strategy against $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ is to play rock
- A best response to a strategy will consist of pure strategies that have the same (high) expected payout

Nash Equilibrium

- Mixed strategies $\left(p_{1}, \ldots, p_{n}\right)$ are a Nash equilibrium if p_{i} is a best response to p_{-i}

Nash Equilibrium

- Mixed strategies $\left(p_{1}, \ldots, p_{n}\right)$ are a Nash equilibrium if p_{i} is a best response to p_{-i}
- Each player asks "if the other players stuck with their strategies, am I better off mixing the ratio of strategies?"

Nash Equilibrium

- Mixed strategies $\left(p_{1}, \ldots, p_{n}\right)$ are a Nash equilibrium if p_{i} is a best response to p_{-i}
- Each player asks "if the other players stuck with their strategies, am I better off mixing the ratio of strategies?"
- If p_{i} is a best response to p_{-i}, the payouts of the pure strategies in p_{i} are equal

Nash Equilibrium

- Mixed strategies $\left(p_{1}, \ldots, p_{n}\right)$ are a Nash equilibrium if p_{i} is a best response to p_{-i}
- Each player asks "if the other players stuck with their strategies, am I better off mixing the ratio of strategies?"
- If p_{i} is a best response to p_{-i}, the payouts of the pure strategies in p_{i} are equal
- Note that pure Nash equilibria are still Nash equilibria

Rock Paper Scissors

- Consider Rock Paper Scissors:

R	P	S	
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What should the (unique) Nash equilibrium be?

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What should the (unique) Nash equilibrium be?
- When both players use $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What should the (unique) Nash equilibrium be?
- When both players use ($\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$)
- Test this: what is the payoff of a pure strategy against $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$?

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
R	0,0	$-1,1$	$1,-1$
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What should the (unique) Nash equilibrium be?
- When both players use ($\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- Test this: what is the payoff of a pure strategy against $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$?
- 0

Rock Paper Scissors

- Consider Rock Paper Scissors:

	R	P	S
	0,0	$-1,1$	$1,-1$
	0,0		
	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

- What should the (unique) Nash equilibrium be?
- When both players use ($\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- Test this: what is the payoff of a pure strategy against $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$?
- 0
- Note that the expected payoff for each player is 0 (the game is fair)

Nash Equilibrium

- We saw that there are not always pure Nash equilibrium

Nash Equilibrium

- We saw that there are not always pure Nash equilibrium
- Can we guarantee a mixed Nash equilibrium?

Nash Equilibrium

- We saw that there are not always pure Nash equilibrium
- Can we guarantee a mixed Nash equilibrium?

Theorem (Nash)
Suppose that:

- a game has finitely many players
- each player has finitely many pure strategies
- we allow for mixed strategies

Then the game admits a Nash equilibrium

Tennis

- You're playing tennis, and returning the ball

Tennis

- You're playing tennis, and returning the ball
- Options:

Tennis

- You're playing tennis, and returning the ball
- Options:
- You can hit the ball to either the opponent's left or right

Tennis

- You're playing tennis, and returning the ball
- Options:
- You can hit the ball to either the opponent's left or right
- Opponent can anticipate where you will hit the ball (to their left or right)

Tennis

- You're playing tennis, and returning the ball
- Options:
- You can hit the ball to either the opponent's left or right
- Opponent can anticipate where you will hit the ball (to their left or right)
- Payoffs are:

Tennis

- You're playing tennis, and returning the ball
- Options:
- You can hit the ball to either the opponent's left or right
- Opponent can anticipate where you will hit the ball (to their left or right)
- Payoffs are:

- What are the Nash equilibrium?

Tennis

- You're playing tennis, and returning the ball
- Options:
- You can hit the ball to either the opponent's left or right
- Opponent can anticipate where you will hit the ball (to their left or right)
- Payoffs are:

- What are the Nash equilibrium?
- No pure Nash equilibrium

Tennis

- You're playing tennis, and returning the ball
- Options:
- You can hit the ball to either the opponent's left or right
- Opponent can anticipate where you will hit the ball (to their left or right)
- Payoffs are:

- What are the Nash equilibrium?
- No pure Nash equilibrium
- Assume that strategies are $(p, 1-p)$ and $(q, 1-q)$

Tennis

- You're playing tennis, and returning the ball
- Options:
- You can hit the ball to either the opponent's left or right
- Opponent can anticipate where you will hit the ball (to their left or right)
- Payoffs are:

- What are the Nash equilibrium?
- No pure Nash equilibrium
- Assume that strategies are $(p, 1-p)$ and $(q, 1-q)$
- Idea: your opponent's pure strategies must return the same expected payoff (for them) against ($p, 1-p$)

Tennis

- You're playing tennis, and returning the ball
- Options:
- You can hit the ball to either the opponent's left or right
- Opponent can anticipate where you will hit the ball (to their left or right)
- Payoffs are:

- What are the Nash equilibrium?
- No pure Nash equilibrium
- Assume that strategies are $(p, 1-p)$ and $(q, 1-q)$
- Idea: your opponent's pure strategies must return the same expected payoff (for them) against ($p, 1-p$)
- Strategies in Nash equilibrium are (.7,.3) $(p=.7)$ and $(.6, .4)(q=.6)$

Going to the Movies

- What are the Nash equilibria?

Going to the Movies

- What are the Nash equilibria?
- Pure Nash equilibria occur when you both go to the same movie
- For mixed Nashed equilibria, write out the strategies as ($p, 1-p$) and ($q, 1-q$)

Going to the Movies

- What are the Nash equilibria?
- Pure Nash equilibria occur when you both go to the same movie
- For mixed Nashed equilibria, write out the strategies as $(p, 1-p)$ and $(q, 1-q)$
- (Same) trick: to find p, consider your date's pure strategies: the payouts for both strategies must be the same

Going to the Movies

- What are the Nash equilibria?
- Pure Nash equilibria occur when you both go to the same movie
- For mixed Nashed equilibria, write out the strategies as $(p, 1-p)$ and $(q, 1-q)$
- (Same) trick: to find p, consider your date's pure strategies: the payouts for both strategies must be the same
- So $2 p=p+3(1-p)$

Going to the Movies

- What are the Nash equilibria?
- Pure Nash equilibria occur when you both go to the same movie
- For mixed Nashed equilibria, write out the strategies as $(p, 1-p)$ and $(q, 1-q)$
- (Same) trick: to find p, consider your date's pure strategies: the payouts for both strategies must be the same
- So $2 p=p+3(1-p)$
- $p=\frac{3}{4}$

Going to the Movies

- What are the Nash equilibria?
- Pure Nash equilibria occur when you both go to the same movie
- For mixed Nashed equilibria, write out the strategies as ($p, 1-p$) and ($q, 1-q$)
- (Same) trick: to find p, consider your date's pure strategies: the payouts for both strategies must be the same
- So $2 p=p+3(1-p)$
- $p=\frac{3}{4}$
- Similarly, $q=\frac{1}{4}$

Going to the Movies

- What are the Nash equilibria?
- Pure Nash equilibria occur when you both go to the same movie
- For mixed Nashed equilibria, write out the strategies as $(p, 1-p)$ and $(q, 1-q)$
- (Same) trick: to find p, consider your date's pure strategies: the payouts for both strategies must be the same
- So $2 p=p+3(1-p)$
- $p=\frac{3}{4}$
- Similarly, $q=\frac{1}{4}$
- Note that both you and your date's expected payout is

Going to the Movies

- What are the Nash equilibria?
- Pure Nash equilibria occur when you both go to the same movie
- For mixed Nashed equilibria, write out the strategies as $(p, 1-p)$ and $(q, 1-q)$
- (Same) trick: to find p, consider your date's pure strategies: the payouts for both strategies must be the same
- So $2 p=p+3(1-p)$
- $p=\frac{3}{4}$
- Similarly, $q=\frac{1}{4}$
- Note that both you and your date's expected payout is $\frac{3}{2}$ (between the original payouts of the Nash equilbrium)

Evolutionarily Stable Strategies

- Simplification of theory due to John Maynard Smith

Evolutionarily Stable Strategies

- Simplification of theory due to John Maynard Smith
- Idea: some small percentage of a population develops a mutation

Evolutionarily Stable Strategies

- Simplification of theory due to John Maynard Smith
- Idea: some small percentage of a population develops a mutation
- This creates a competing 'strategy', compared to animals without the mutation

Evolutionarily Stable Strategies

- Simplification of theory due to John Maynard Smith
- Idea: some small percentage of a population develops a mutation
- This creates a competing 'strategy', compared to animals without the mutation
- Will those with the mutation thrive or die?

Evolutionarily Stable Strategies

- An example: ants may or may not help defend the nest

Evolutionarily Stable Strategies

- An example: ants may or may not help defend the nest
- This creates a game such as:

Evolutionarily Stable Strategies

- An example: ants may or may not help defend the nest
- This creates a game such as:

- Suppose that $\epsilon \%$ (some really small percent) of the ants have the mutation, and $100-\epsilon \%$ don't

Evolutionarily Stable Strategies

- An example: ants may or may not help defend the nest
- This creates a game such as:

- Suppose that $\epsilon \%$ (some really small percent) of the ants have the mutation, and $100-\epsilon \%$ don't
- Payoff for a mutant is bigger when ϵ is small

Evolutionarily Stable Strategies

- An example: ants may or may not help defend the nest
- This creates a game such as:

- Suppose that $\epsilon \%$ (some really small percent) of the ants have the mutation, and $100-\epsilon \%$ don't
- Payoff for a mutant is bigger when ϵ is small
- Percent of population with mutation will grow until Nash equilibrium is reached

