Idea:

If s is an evolutionarily stable strategy, any other strategy s* will die off when competing against mixed population

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea:

If s is an evolutionarily stable strategy, any other strategy s* will die off when competing against mixed population

Population is mostly s

Idea:

If s is an evolutionarily stable strategy, any other strategy s* will die off when competing against mixed population

- Population is mostly s
 - If $u(s,s) > u(s^*,s)$,

Idea:

If s is an evolutionarily stable strategy, any other strategy s* will die off when competing against mixed population

- Population is mostly s
 - If $u(s,s) > u(s^*,s)$, s is stable

Idea:

If s is an evolutionarily stable strategy, any other strategy s* will die off when competing against mixed population

- Population is mostly s
 - If $u(s,s) > u(s^*,s)$, s is stable
 - ► If u(s*, s) > u(s, s),

Idea:

If s is an evolutionarily stable strategy, any other strategy s* will die off when competing against mixed population

- Population is mostly s
 - If $u(s,s) > u(s^*,s)$, s is stable
 - If $u(s^*, s) > u(s, s)$, s is not stable

Idea:

- If s is an evolutionarily stable strategy, any other strategy s* will die off when competing against mixed population
- Population is mostly s
 - If $u(s,s) > u(s^*,s)$, s is stable
 - If $u(s^*, s) > u(s, s)$, s is not stable
 - If $u(s,s) = u(s^*,s)$ we need to look at

$$(1-\epsilon) u(s,s) + \epsilon u(s,s^*) > (1-\epsilon) u(s^*,s) + \epsilon u(s^*,s^*)$$

Idea:

- If s is an evolutionarily stable strategy, any other strategy s* will die off when competing against mixed population
- Population is mostly s
 - If $u(s,s) > u(s^*,s)$, s is stable
 - If $u(s^*, s) > u(s, s)$, s is not stable
 - If $u(s,s) = u(s^*,s)$ we need to look at

$$(1-\epsilon) u(s,s) + \epsilon u(s,s^*) > (1-\epsilon) u(s^*,s) + \epsilon u(s^*,s^*)$$

• s will be evolutionarily stable only if $u(s, s^*) > u(s^*, s^*)$

Idea:

- If s is an evolutionarily stable strategy, any other strategy s* will die off when competing against mixed population
- Population is mostly s
 - If $u(s,s) > u(s^*,s)$, s is stable
 - If $u(s^*, s) > u(s, s)$, s is not stable
 - If $u(s,s) = u(s^*,s)$ we need to look at

$$(1-\epsilon) u(s,s) + \epsilon u(s,s^*) > (1-\epsilon) u(s^*,s) + \epsilon u(s^*,s^*)$$

• s will be evolutionarily stable only if $u(s, s^*) > u(s^*, s^*)$

• If s is evolutionarily stable, (s, s) is a Nash equilibrium

Idea:

- If s is an evolutionarily stable strategy, any other strategy s* will die off when competing against mixed population
- Population is mostly s
 - If $u(s,s) > u(s^*,s)$, s is stable
 - If $u(s^*, s) > u(s, s)$, s is not stable
 - If $u(s,s) = u(s^*,s)$ we need to look at

$$(1-\epsilon) u(s,s) + \epsilon u(s,s^*) > (1-\epsilon) u(s^*,s) + \epsilon u(s^*,s^*)$$

▶ *s* will be evolutionarily stable only if $u(s, s^*) > u(s^*, s^*)$

- If s is evolutionarily stable, (s, s) is a Nash equilibrium
- If (s, s) is a Nash equilibrium, s is not necessarily evolutionarily stable

Another definition for evolutionarily stable strategies: In a 2-player symmetric game, a strategy *s* is **evolutionarily stable** if:

1. (s, s) is a Nash equilibrium, and

2. If
$$u(s,s) = u(s^*,s)$$
 then $u(s,s^*) > u(s^*,s^*)$

Another definition for evolutionarily stable strategies: In a 2-player symmetric game, a strategy *s* is **evolutionarily stable** if:

1. (s, s) is a Nash equilibrium, and

2. If
$$u(s,s) = u(s^*,s)$$
 then $u(s,s^*) > u(s^*,s^*)$

• If $u(s,s) > u(s,s^*)$ for all s^* , there is nothing else to check

Another definition for evolutionarily stable strategies: In a 2-player symmetric game, a strategy *s* is **evolutionarily stable** if:

- 1. (s, s) is a Nash equilibrium, and
- 2. If $u(s,s) = u(s^*,s)$ then $u(s,s^*) > u(s^*,s^*)$
 - If $u(s,s) > u(s,s^*)$ for all s^* , there is nothing else to check
 - The second condition says "if a mutation does equally well against the original, the original must do better against the mutation than the mutation does against itself"

Another definition for evolutionarily stable strategies: In a 2-player symmetric game, a strategy *s* is **evolutionarily stable** if:

- 1. (s, s) is a Nash equilibrium, and
- 2. If $u(s,s) = u(s^*,s)$ then $u(s,s^*) > u(s^*,s^*)$
 - If $u(s,s) > u(s,s^*)$ for all s^* , there is nothing else to check
 - The second condition says "if a mutation does equally well against the original, the original must do better against the mutation than the mutation does against itself"

This definition is far easier to check

▶ If *s* is evolutionarily stable, is (*s*, *s*) a Nash equilibrium?

If s is evolutionarily stable, is (s, s) a Nash equilibrium?
Yes

- If s is evolutionarily stable, is (s, s) a Nash equilibrium?
 Yes
- If (s, s) is a Nash equilibrium, is s evolutionarily stable

- ▶ If *s* is evolutionarily stable, is (*s*, *s*) a Nash equilibrium?
 - Yes
- If (s, s) is a Nash equilibrium, is s evolutionarily stable
 - ▶ Not necessarily: if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$

- ▶ If *s* is evolutionarily stable, is (*s*, *s*) a Nash equilibrium?
 - Yes
- ▶ If (s, s) is a Nash equilibrium, is s evolutionarily stable
 - ▶ Not necessarily: if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$

If s is evolutionarily stable, is it possible that s* strongly dominates s?

▶ If *s* is evolutionarily stable, is (*s*, *s*) a Nash equilibrium?

Yes

- ▶ If (s, s) is a Nash equilibrium, is s evolutionarily stable
 - ▶ Not necessarily: if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$

If s is evolutionarily stable, is it possible that s* strongly dominates s?

No

If s^* strictly dominates s, it will do better against s (and (s, s) is not a Nash equilibrium)

▶ If *s* is evolutionarily stable, is (*s*, *s*) a Nash equilibrium?

Yes

- ▶ If (s, s) is a Nash equilibrium, is s evolutionarily stable
 - ▶ Not necessarily: if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$
- If s is evolutionarily stable, is it possible that s* strongly dominates s?

No

If s^* strictly dominates s, it will do better against s

(and (s, s) is not a Nash equilibrium)

If s is evolutionarily stable, is it possible that s* is not strongly dominated by s?

▶ If *s* is evolutionarily stable, is (*s*, *s*) a Nash equilibrium?

Yes

- ▶ If (s, s) is a Nash equilibrium, is s evolutionarily stable
 - ▶ Not necessarily: if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$
- If s is evolutionarily stable, is it possible that s* strongly dominates s?

No

If s^* strictly dominates s, it will do better against s (and (s, s) is not a Nash equilibrium)

If s is evolutionarily stable, is it possible that s* is not strongly dominated by s?

Yes

$$\begin{array}{c|cc}
 A & B \\
 A & 0, 0 & 2, 1 \\
 B & 1, 2 & 0, 0 \\
\end{array}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

What pure symmetric Nash equilibria are there?

$$\begin{array}{c|cc}
 A & B \\
 A & 0, 0 & 2, 1 \\
 B & 1, 2 & 0, 0 \\
\end{array}$$

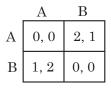
- What pure symmetric Nash equilibria are there?
 - None



$$\begin{array}{c|cc}
A & B \\
A & 0, 0 & 2, 1 \\
B & 1, 2 & 0, 0
\end{array}$$

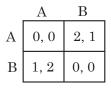
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?

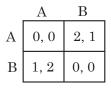


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

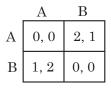
- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?
 - It will be mixed



- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?
 - It will be mixed
- The strategy $p = (\frac{2}{3}, \frac{1}{3})$ gives a symmetric Nash equilibria

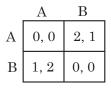


- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?
 - It will be mixed
- The strategy $p = (\frac{2}{3}, \frac{1}{3})$ gives a symmetric Nash equilibria
- Will it do strictly better against itself than any other strategy?

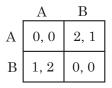


- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?
 - It will be mixed
- The strategy $p = (\frac{2}{3}, \frac{1}{3})$ gives a symmetric Nash equilibria
- Will it do strictly better against itself than any other strategy?

No - because it is a mixed strategy



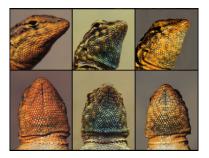
- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?
 - It will be mixed
- The strategy $p = (\frac{2}{3}, \frac{1}{3})$ gives a symmetric Nash equilibria
- Will it do strictly better against itself than any other strategy?
 - No because it is a mixed strategy
- Need to check how p does against any other mixed strategy (vs. how that strategy does against itself)



- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?
 - It will be mixed
- The strategy $p = (\frac{2}{3}, \frac{1}{3})$ gives a symmetric Nash equilibria
- Will it do strictly better against itself than any other strategy?
 - No because it is a mixed strategy
- Need to check how p does against any other mixed strategy (vs. how that strategy does against itself)
- ► p is a mixed evolutionarily stable strategy

Can mixed evolutionarily stable strategies happen in nature?

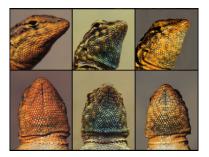
Can mixed evolutionarily stable strategies happen in nature?



Common side-blotched lizard

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Can mixed evolutionarily stable strategies happen in nature?

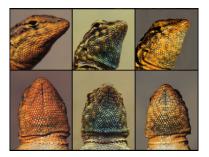


Common side-blotched lizard

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Males have three possible colorings (orange-blue-yellow)

Can mixed evolutionarily stable strategies happen in nature?



Common side-blotched lizard

- Males have three possible colorings (orange-blue-yellow)
- Colorings corresponding to mating habits

 Blue lizards (dominant) guard small territory and have a single mate

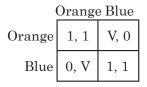
(ロ)、(型)、(E)、(E)、 E) の(の)

- Blue lizards (dominant) guard small territory and have a single mate
- Orange lizards (ultradominant) have larger territory, and try to claim all females in the territory

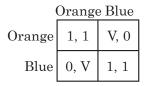
- Blue lizards (dominant) guard small territory and have a single mate
- Orange lizards (ultradominant) have larger territory, and try to claim all females in the territory

If there were just these two types, what would happen?

- Blue lizards (dominant) guard small territory and have a single mate
- Orange lizards (ultradominant) have larger territory, and try to claim all females in the territory
- If there were just these two types, what would happen?
- Game looks something like (1 < V < 2)



- Blue lizards (dominant) guard small territory and have a single mate
- Orange lizards (ultradominant) have larger territory, and try to claim all females in the territory
- If there were just these two types, what would happen?
- Game looks something like (1 < V < 2)



Only evolutionarily stable strategy is Orange

Yellow lizards (sneakers) look similar to females

- Yellow lizards (sneakers) look similar to females
- Guard no territory and sneak into others' territory

- Yellow lizards (sneakers) look similar to females
- Guard no territory and sneak into others' territory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What happens with these three profiles?

- Yellow lizards (sneakers) look similar to females
- Guard no territory and sneak into others' territory
- What happens with these three profiles?
- Game looks something like (1 < V < 2)

Orange Blue Yellow				
Orange	1, 1	V, 0	0, V	
Blue	0, V	1, 1	V, 0	
Yellow	V, 0	0, V	1, 1	

- Yellow lizards (sneakers) look similar to females
- Guard no territory and sneak into others' territory
- What happens with these three profiles?
- Game looks something like (1 < V < 2)

(Orange Blue Yellow				
Orange	1, 1	V, 0	0, V		
Blue	0, V	1, 1	V, 0		
Yellow	V, 0	0, V	1, 1		

No pure evolutionarily stable strategies

- Yellow lizards (sneakers) look similar to females
- Guard no territory and sneak into others' territory
- What happens with these three profiles?
- Game looks something like (1 < V < 2)

Orange Blue Yellow					
Orange	1, 1	V, 0	0, V		
Blue	0, V	1, 1	V, 0		
Yellow	V, 0	0, V	1, 1		

- No pure evolutionarily stable strategies
- $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is evolutionarily stable