Inheritance

- Two parties are fighting over inheritance (say \$100)

Inheritance

- Two parties are fighting over inheritance (say \$100)
- Party A claims $\$ 100$
- Party B claims $\$ 50$

Inheritance

- Two parties are fighting over inheritance (say $\$ 100$)
- Party A claims $\$ 100$
- Party B claims $\$ 50$
- How should one split the $\$ 100$?

Two Methods

Two Methods:

- Equal division

Two Methods

Two Methods:

- Equal division
- Both parties get \$50

Two Methods

Two Methods:

- Equal division
- Both parties get $\$ 50$
- All parties get the same amount

Two Methods

Two Methods:

- Equal division
- Both parties get $\$ 50$
- All parties get the same amount
- Proportional Division

Two Methods

Two Methods:

- Equal division
- Both parties get $\$ 50$
- All parties get the same amount
- Proportional Division
- Party A gets $\$ 67$
- Party B gets $\$ 33$

Two Methods

Two Methods:

- Equal division
- Both parties get $\$ 50$
- All parties get the same amount
- Proportional Division
- Party A gets $\$ 67$
- Party B gets $\$ 33$
- Parties get the proportion of what they claimed to the sums of all claims

Two Methods

Two Methods:

- Equal division
- Both parties get $\$ 50$
- All parties get the same amount
- Proportional Division
- Party A gets $\$ 67$
- Party B gets $\$ 33$
- Parties get the proportion of what they claimed to the sums of all claims
- Resolution depends on social customs

Fair Division

This is an example of a fair division problem:

- Want to split some goods fairly among some people

Fair Division

This is an example of a fair division problem:

- Want to split some goods fairly among some people
- Goods can be:

Fair Division

This is an example of a fair division problem:

- Want to split some goods fairly among some people
- Goods can be:
- divisible: can split goods into any proportions (money)

Fair Division

This is an example of a fair division problem:

- Want to split some goods fairly among some people
- Goods can be:
- divisible: can split goods into any proportions (money)
- indivisible: cannot split goods into any proportions (piano, car, dog\})

Fair Division

This is an example of a fair division problem:

- Want to split some goods fairly among some people
- Goods can be:
- divisible: can split goods into any proportions (money)
- indivisible: cannot split goods into any proportions ($\{$ piano, car, dog\})
- Not all people have to value the same goods the same way

Fair Division

This is an example of a fair division problem:

- Want to split some goods fairly among some people
- Goods can be:
- divisible: can split goods into any proportions (money)
- indivisible: cannot split goods into any proportions (\{piano, car, dog\})
- Not all people have to value the same goods the same way
- People may have different levels of entitlement

Fair Division

This is an example of a fair division problem:

- Want to split some goods fairly among some people
- Goods can be:
- divisible: can split goods into any proportions (money)
- indivisible: cannot split goods into any proportions ($\{$ piano, car, dog\})
- Not all people have to value the same goods the same way
- People may have different levels of entitlement
- Can divide inheritance, chores, business profits, Berlin, cake,

Fair Division

- Let $u_{i}\left(X_{j}\right)$ be the value that person i assigns to j 's division

Fair Division

- Let $u_{i}\left(X_{j}\right)$ be the value that person i assigns to j 's division
- Fairness can be measured by:

Fair Division

- Let $u_{i}\left(X_{j}\right)$ be the value that person i assigns to j 's division
- Fairness can be measured by:
- simple fair division: $u_{i}\left(X_{i}\right) \geq \frac{1}{n}$

Fair Division

- Let $u_{i}\left(X_{j}\right)$ be the value that person i assigns to j 's division
- Fairness can be measured by:
- simple fair division: $u_{i}\left(X_{i}\right) \geq \frac{1}{n}$
- envy-free: $u_{i}\left(X_{i}\right) \geq u_{i}\left(X_{j}\right)$

Fair Division

- Let $u_{i}\left(X_{j}\right)$ be the value that person i assigns to j 's division
- Fairness can be measured by:
- simple fair division: $u_{i}\left(X_{i}\right) \geq \frac{1}{n}$
- envy-free: $u_{i}\left(X_{i}\right) \geq u_{i}\left(X_{j}\right)$
- equitable: $u_{i}\left(X_{i}\right)=u_{j}\left(X_{j}\right)$

Fair Division

- Let $u_{i}\left(X_{j}\right)$ be the value that person i assigns to j 's division
- Fairness can be measured by:
- simple fair division: $u_{i}\left(X_{i}\right) \geq \frac{1}{n}$
- envy-free: $u_{i}\left(X_{i}\right) \geq u_{i}\left(X_{j}\right)$
- equitable: $u_{i}\left(X_{i}\right)=u_{j}\left(X_{j}\right)$
- Pareto optimal: no other division would make someone else better off without making someone else worse off

Fair Division

- Let $u_{i}\left(X_{j}\right)$ be the value that person i assigns to j 's division
- Fairness can be measured by:
- simple fair division: $u_{i}\left(X_{i}\right) \geq \frac{1}{n}$
- envy-free: $u_{i}\left(X_{i}\right) \geq u_{i}\left(X_{j}\right)$
- equitable: $u_{i}\left(X_{i}\right)=u_{j}\left(X_{j}\right)$
- Pareto optimal: no other division would make someone else better off without making someone else worse off
- Problem:

Fair Division

- Let $u_{i}\left(X_{j}\right)$ be the value that person i assigns to j 's division
- Fairness can be measured by:
- simple fair division: $u_{i}\left(X_{i}\right) \geq \frac{1}{n}$
- envy-free: $u_{i}\left(X_{i}\right) \geq u_{i}\left(X_{j}\right)$
- equitable: $u_{i}\left(X_{i}\right)=u_{j}\left(X_{j}\right)$
- Pareto optimal: no other division would make someone else better off without making someone else worse off
- Problem: Someone getting everything, and everyone else getting nothing, is Pareto optimal

Three Wives

A rule in the Talmud:

- Man is married to three women

Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband's death, each wife is to receive 100, 200, 300 (zuz)

Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband's death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600

Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband's death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$ (this agrees with equal division)

Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband's death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$ (this agrees with equal division)
- If estate worth is 300 , the wives receive $50,100,150$ (this agrees with proportional division)

Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband's death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$ (this agrees with equal division)
- If estate worth is 300 , the wives receive $50,100,150$ (this agrees with proportional division)
- If estate worth is 200 , the wives receive $50,75,75$ (???)

Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband's death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$ (this agrees with equal division)
- If estate worth is 300 , the wives receive $50,100,150$ (this agrees with proportional division)
- If estate worth is 200 , the wives receive $50,75,75$ (???)
- Is there a coherent rule that outlines these cases?

Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband's death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$ (this agrees with equal division)
- If estate worth is 300 , the wives receive $50,100,150$ (this agrees with proportional division)
- If estate worth is 200 , the wives receive $50,75,75$ (???)
- Is there a coherent rule that outlines these cases?
- Solved by game theorists in 1985

Equal Division of Contested Sums

- Trying to fairly divide amongst two people

Equal Division of Contested Sums

- Trying to fairly divide amongst two people
- Idea:
- Give everyone their uncontested amounts

Equal Division of Contested Sums

- Trying to fairly divide amongst two people
- Idea:
- Give everyone their uncontested amounts
- Split contested amount in half

Equal Division of Contested Sums

- Two parties are trying to split 100

Equal Division of Contested Sums

- Two parties are trying to split 100
- Party A claims 100

Equal Division of Contested Sums

- Two parties are trying to split 100
- Party A claims 100
- Party B claims 50

Equal Division of Contested Sums

- Two parties are trying to split 100
- Party A claims 100
- Party B claims 50
- Using equal division of contested sums, how much does each party receive?

Equal Division of Contested Sums

- Two parties are trying to split 100
- Party A claims 100
- Party B claims 50
- Using equal division of contested sums, how much does each party receive?
- A receives 75
- B receives 25

Equal Division of Contested Sums

- Two parties are trying to split inheritance

Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100

Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300

Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80 , how much does each party receive?

Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
- A receives 40
- B receives 40

Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
- A receives 40
- B receives 40
- If estate is worth 125 , how much does each party receive?

Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
- A receives 40
- B receives 40
- If estate is worth 125 , how much does each party receive?
- A receives 50
- B receives 75

Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
- A receives 40
- B receives 40
- If estate is worth 125 , how much does each party receive?
- A receives 50
- B receives 75
- If estate is worth 200, how much does each party receive?

Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
- A receives 40
- B receives 40
- If estate is worth 125 , how much does each party receive?
- A receives 50
- B receives 75
- If estate is worth 200, how much does each party receive?
- A receives 50
- B receives 150

Three Wives

- Back to rule in the Talmud:

Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300

Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$

Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$
- If estate worth is 300 , the wives receive $50,100,150$

Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$
- If estate worth is 300 , the wives receive $50,100,150$
- If estate worth is 200 , the wives receive $50,75,75$

Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$
- If estate worth is 300 , the wives receive $50,100,150$
- If estate worth is 200 , the wives receive $50,75,75$

Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$
- If estate worth is 300 , the wives receive $50,100,150$
- If estate worth is 200 , the wives receive $50,75,75$
- The allotment of any two wives is split using the above rule! (three things to check in each case)

Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
- If estate worth is 100 , each wife receives $33 \frac{1}{3}$
- If estate worth is 300 , the wives receive $50,100,150$
- If estate worth is 200 , the wives receive $50,75,75$
- The allotment of any two wives is split using the above rule! (three things to check in each case)
- Need method for when there are more than two parties

Algorithm

Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)

Algorithm

Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim

Algorithm

Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim
- Divide estate equally among 2 through n until 2 receives half of their claim

Algorithm

Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim
- Divide estate equally among 2 through n until 2 receives half of their claim
- Proceed until everyone has half of their claim

Algorithm

Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim
- Divide estate equally among 2 through n until 2 receives half of their claim
- Proceed until everyone has half of their claim
- Give n money until their loss equals $n-1$'s loss (loss is money owed minus money given)

Algorithm

Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim
- Divide estate equally among 2 through n until 2 receives half of their claim
- Proceed until everyone has half of their claim
- Give n money until their loss equals $n-1$'s loss (loss is money owed minus money given)
- Give $n-1$ and n money until their loss equals $n-2$'s loss

Algorithm

Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim
- Divide estate equally among 2 through n until 2 receives half of their claim
- Proceed until everyone has half of their claim
- Give n money until their loss equals $n-1$'s loss (loss is money owed minus money given)
- Give $n-1$ and n money until their loss equals $n-2$'s loss
- Proceed until all losses are equal

Equal Division of Contested Sums

- Suppose the estate is worth 550

Equal Division of Contested Sums

- Suppose the estate is worth 550
- How much do the parties receive using the algorithm?

Equal Division of Contested Sums

- Suppose the estate is worth 550
- How much do the parties receive using the algorithm?
- $83 \frac{1}{3}, 183 \frac{1}{3}$, and $283 \frac{1}{3}$

