Voting Theory

- Big question: what is the best way to hold an election?

Voting Theory

- Big question: what is the best way to hold an election?
- Everybody has individual preferences

Voting Theory

- Big question: what is the best way to hold an election?
- Everybody has individual preferences
- Want to transform individual preferences to a single societal preference

Voting Theory

- Big question: what is the best way to hold an election?
- Everybody has individual preferences
- Want to transform individual preferences to a single societal preference
- Want to do this fairly

Plurality Voting

Plurality Voting

- Everyone gets one vote

Plurality Voting

Plurality Voting

- Everyone gets one vote
- Candidate with most votes wins

Plurality Voting

Plurality Voting

- Everyone gets one vote
- Candidate with most votes wins
- Don't require majority to win

Plurality Voting

Plurality Voting

- Everyone gets one vote
- Candidate with most votes wins
- Don't require majority to win
- Method for voting Governors, Congressmen, President (ignoring electoral colleges)

Plurality Voting

Plurality Voting

- Everyone gets one vote
- Candidate with most votes wins
- Don't require majority to win
- Method for voting Governors, Congressmen, President (ignoring electoral colleges)
- Example:
- A gets 32%
- B gets 40%
- C gets 28%

Plurality Voting

Plurality Voting

- Everyone gets one vote
- Candidate with most votes wins
- Don't require majority to win
- Method for voting Governors, Congressmen, President (ignoring electoral colleges)
- Example:
- A gets 32%
- B gets 40%
- C gets 28%
- Who wins?

Plurality Voting

Plurality Voting

- Everyone gets one vote
- Candidate with most votes wins
- Don't require majority to win
- Method for voting Governors, Congressmen, President (ignoring electoral colleges)
- Example:
- A gets 32%
- B gets 40%
- C gets 28%
- Who wins?
- B

Plurality Voting

- Example:
- A gets 32%
- B gets 40%
- C gets 28%

Plurality Voting

- Example:
- A gets 32\%
- B gets 40%
- C gets 28%
- Possible scenarios:

Plurality Voting

- Example:
- A gets 32\%
- B gets 40%
- C gets 28%
- Possible scenarios:
- 1: Supporters of both A and C have B as their second choice

Plurality Voting

- Example:
- A gets 32\%
- B gets 40%
- C gets 28%
- Possible scenarios:
- 1: Supporters of both A and C have B as their second choice
- B should win

Plurality Voting

- Example:
- A gets 32\%
- B gets 40%
- C gets 28%
- Possible scenarios:
- 1: Supporters of both A and C have B as their second choice
- B should win
- 2: Supporters of both A and C have B as their last choice

Plurality Voting

- Example:
- A gets 32\%
- B gets 40%
- C gets 28%
- Possible scenarios:
- 1: Supporters of both A and C have B as their second choice
- B should win
- 2: Supporters of both A and C have B as their last choice
- The least preferred candidate wins!

Plurality Voting

- Example:
- A gets 32\%
- B gets 40%
- C gets 28%
- Possible scenarios:
- 1: Supporters of both A and C have B as their second choice
- B should win
- 2: Supporters of both A and C have B as their last choice
- The least preferred candidate wins!
- Example of vote splitting

Plurality Voting

- If there's only two candidates, the most preferred candidate wins

Plurality Voting

- If there's only two candidates, the most preferred candidate wins
- Makes new third candidates unviable

Plurality Voting

- If there's only two candidates, the most preferred candidate wins
- Makes new third candidates unviable
- From game theory: it is rarely a dominant strategy to enter the race

Plurality Voting

- If there's only two candidates, the most preferred candidate wins
- Makes new third candidates unviable
- From game theory: it is rarely a dominant strategy to enter the race
- 2000 Presidential election:
- Bush: 48.38\%
- Gore: 47.87\%
- Nader: 2.74\%

Plurality Voting

- If there's only two candidates, the most preferred candidate wins
- Makes new third candidates unviable
- From game theory: it is rarely a dominant strategy to enter the race
- 2000 Presidential election:
- Bush: 48.38\%
- Gore: 47.87\%
- Nader: 2.74\%
- Do these numbers truly reflect first preference?

Plurality Voting

- If there's only two candidates, the most preferred candidate wins
- Makes new third candidates unviable
- From game theory: it is rarely a dominant strategy to enter the race
- 2000 Presidential election:
- Bush: 48.38\%
- Gore: 47.87\%
- Nader: 2.74\%
- Do these numbers truly reflect first preference?
- Probable that many preferred Nader, but did not want to "throw away their vote"

Runoff Elections

- One possible solution: hold runoff elections

Runoff Elections

- One possible solution: hold runoff elections
- After election, eliminate weakest candidate(s)

Runoff Elections

- One possible solution: hold runoff elections
- After election, eliminate weakest candidate(s)
- Hold another election

Runoff Elections

- One possible solution: hold runoff elections
- After election, eliminate weakest candidate(s)
- Hold another election
- Round 1:
- A gets 32%
- B gets 40%
- C gets 28%

Runoff Elections

- One possible solution: hold runoff elections
- After election, eliminate weakest candidate(s)
- Hold another election
- Round 1:
- A gets 32%
- B gets 40%
- C gets 28%
- C gets eliminated

Runoff Elections

- One possible solution: hold runoff elections
- After election, eliminate weakest candidate(s)
- Hold another election
- Round 1:
- A gets 32%
- B gets 40%
- C gets 28%
- C gets eliminated
- Round 2: people who voted for C get their second preference

Runoff Elections

- One possible solution: hold runoff elections
- After election, eliminate weakest candidate(s)
- Hold another election
- Round 1:
- A gets 32%
- B gets 40%
- C gets 28%
- C gets eliminated
- Round 2: people who voted for C get their second preference
- Used in French presidential elections

Runoff Elections

- Perks:

Runoff Elections

- Perks:
- Voters will more likely vote their preference

Runoff Elections

- Perks:
- Voters will more likely vote their preference
- Least preferred candidate can't win

Runoff Elections

- Perks:
- Voters will more likely vote their preference
- Least preferred candidate can't win
- Problems:

Runoff Elections

- Perks:
- Voters will more likely vote their preference
- Least preferred candidate can't win
- Problems:
- Inefficient; need to hold election over multiple days

Approval Voting

- One possible solution: approval voting

Approval Voting

- One possible solution: approval voting
- Each voter checks off candidates that they approve of

Approval Voting

- One possible solution: approval voting
- Each voter checks off candidates that they approve of
- Candidate with most votes wins

Approval Voting

- One possible solution: approval voting
- Each voter checks off candidates that they approve of
- Candidate with most votes wins
- Example:

	A	B	C
Voter 1	\checkmark		
Voter 2	\checkmark		\checkmark
Voter 3		\checkmark	\checkmark
Voter 4	\checkmark	\checkmark	

Approval Voting

- One possible solution: approval voting
- Each voter checks off candidates that they approve of
- Candidate with most votes wins
- Example:

	A	B	C
Voter 1	\checkmark		
Voter 2	\checkmark		\checkmark
Voter 3		\checkmark	\checkmark
Voter 4	\checkmark	\checkmark	

- A gets 3 votes, B gets 2 votes, C gets 2 votes

Approval Voting

- One possible solution: approval voting
- Each voter checks off candidates that they approve of
- Candidate with most votes wins
- Example:

	A	B	C
Voter 1	\checkmark		
Voter 2	\checkmark		\checkmark
Voter 3		\checkmark	\checkmark
Voter 4	\checkmark	\checkmark	

- A gets 3 votes, B gets 2 votes, C gets 2 votes
- A wins

Approval Voting

- One possible solution: approval voting
- Each voter checks off candidates that they approve of
- Candidate with most votes wins
- Example:

	A	B	C
Voter 1	\checkmark		
Voter 2	\checkmark		\checkmark
Voter 3		\checkmark	\checkmark
Voter 4	\checkmark	\checkmark	

- A gets 3 votes, B gets 2 votes, C gets 2 votes
- A wins
- Used in many professional societies, and the election for the U.N. Secretary-General

Approval Voting

- Perks:

Approval Voting

- Perks:
- Voters get to choose to vote for or against a candidate

Approval Voting

- Perks:
- Voters get to choose to vote for or against a candidate
- Note that voting for everybody is equivalent to voting for nobody

Approval Voting

- Perks:
- Voters get to choose to vote for or against a candidate
- Note that voting for everybody is equivalent to voting for nobody
- Third party candidates are more legitimate

Approval Voting

- Perks:
- Voters get to choose to vote for or against a candidate
- Note that voting for everybody is equivalent to voting for nobody
- Third party candidates are more legitimate
- Easy to understand

Approval Voting

- Perks:
- Voters get to choose to vote for or against a candidate
- Note that voting for everybody is equivalent to voting for nobody
- Third party candidates are more legitimate
- Easy to understand
- Problems will be covered later

Ranked Voting

- Another method: ranked voting

Ranked Voting

- Another method: ranked voting
- Voters rank candidates from most preferred to least preferred

Ranked Voting

- Another method: ranked voting
- Voters rank candidates from most preferred to least preferred
- Example:

	Voters								
Most Preferred	A	B	B	B	C	C	A	C	B
	B	C	C	C	A	A	C	B	C
Least Preferred	C	A	A	A	B	B	B	A	A

Ranked Voting

- Another method: ranked voting
- Voters rank candidates from most preferred to least preferred
- Example:

	Voters								
Most Preferred	A	B	B	B	C	C	A	C	B
	B	C	C	C	A	A	C	B	C
Least Preferred	C	A	A	A	B	B	B	A	A

- Question: how do we tally the votes?

Instant Runoffs

- Instant Runoffs:

Instant Runoffs

- Instant Runoffs:
- Look at everyone's first choice

Instant Runoffs

- Instant Runoffs:
- Look at everyone's first choice
- If one candidate has $>50 \%$, they win

Instant Runoffs

- Instant Runoffs:
- Look at everyone's first choice
- If one candidate has $>50 \%$, they win
- Otherwise, eliminate candidate with fewest first choice votes

Instant Runoffs

- Instant Runoffs:
- Look at everyone's first choice
- If one candidate has $>50 \%$, they win
- Otherwise, eliminate candidate with fewest first choice votes
- Repeat as necessary

Instant Runoffs

- Instant Runoffs:
- Look at everyone's first choice
- If one candidate has $>50 \%$, they win
- Otherwise, eliminate candidate with fewest first choice votes
- Repeat as necessary
- Used in Australian and Irish national elections

Instant Runoffs

- Instant Runoffs:
- Look at everyone's first choice
- If one candidate has $>50 \%$, they win
- Otherwise, eliminate candidate with fewest first choice votes
- Repeat as necessary
- Used in Australian and Irish national elections
- Back to the example:

	Voters									
Most Preferred	A	B	B	B	C	C	A	C	B	
	B	C	C	C	A	A	C	B	C	
Least Preferred	C	A	A	A	B	B	B	A	A	

Instant Runoffs

- Instant Runoffs:
- Look at everyone's first choice
- If one candidate has $>50 \%$, they win
- Otherwise, eliminate candidate with fewest first choice votes
- Repeat as necessary
- Used in Australian and Irish national elections
- Back to the example:

	Voters									
Most Preferred	A	B	B	B	C	C	A	C	B	
	B	C	C	C	A	A	C	B	C	
Least Preferred	C	A	A	A	B	B	B	A	A	

- A has 2 votes
- B has 4 votes
- C has 3 votes

Instant Runoffs

- Instant Runoffs:
- Look at everyone's first choice
- If one candidate has $>50 \%$, they win
- Otherwise, eliminate candidate with fewest first choice votes
- Repeat as necessary
- Used in Australian and Irish national elections
- Back to the example:

	Voters									
Most Preferred	A	B	B	B	C	C	A	C	B	
	B	C	C	C	A	A	C	B	C	
Least Preferred	C	A	A	A	B	B	B	A	A	

- Ahas 2 votes

Instant Runoffs

- Instant Runoffs:
- Look at everyone's first choice
- If one candidate has $>50 \%$, they win
- Otherwise, eliminate candidate with fewest first choice votes
- Repeat as necessary
- Used in Australian and Irish national elections
- Back to the example:

	Voters									
Most Preferred	A	B	B	B	C	C	A	C	B	
	B	C	C	C	A	A	C	B	C	
Least Preferred	C	A	A	A	B	B	B	A	A	

- A has 2 votes
- B has 5 votes
- C has 4 votes

Instant Runoffs

- Instant Runoffs:
- Look at everyone's first choice
- If one candidate has $>50 \%$, they win
- Otherwise, eliminate candidate with fewest first choice votes
- Repeat as necessary
- Used in Australian and Irish national elections
- Back to the example:

	Voters									
Most Preferred	A	B	B	B	C	C	A	C	B	
	B	C	C	C	A	A	C	B	C	
Least Preferred	C	A	A	A	B	B	B	A	A	

- A has 2 votes
- B has 5 votes
- C has 4 votes

So B wins

Borda Count

- Another method for tallying ranked votes: the Borda method

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference
- Candidate gets $n-1$ points if a second preference

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference
- Candidate gets $n-1$ points if a second preference
- Candidate gets 1 point if a last preference

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference
- Candidate gets $n-1$ points if a second preference
- Candidate gets 1 point if a last preference
- Back to the example:

	Voters									
Most Preferred	A	B	B	B	C	C	A	C	B	
	B	C	C	C	A	A	C	B	C	
Least Preferred	C	A	A	A	B	B	B	A	A	

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference
- Candidate gets $n-1$ points if a second preference
- Candidate gets 1 point if a last preference
- Back to the example:

	Voters								
Most Preferred	A	B	B	B	C	C	A	C	B
	B	C	C	C	A	A	C	B	C
Least Preferred	C	A	A	A	B	B	B	A	A

- A gets

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference
- Candidate gets $n-1$ points if a second preference
- Candidate gets 1 point if a last preference
- Back to the example:

	Voters								
Most Preferred	A	B	B	B	C	C	A	C	B
	B	C	C	C	A	A	C	B	C
Least Preferred	C	A	A	A	B	B	B	A	A

- A gets $3 \cdot 2+2 \cdot 2+1 \cdot 5=15$ points

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference
- Candidate gets $n-1$ points if a second preference
- Candidate gets 1 point if a last preference
- Back to the example:

	Voters								
Most Preferred	A	B	B	B	C	C	A	C	B
	B	C	C	C	A	A	C	B	C
Least Preferred	C	A	A	A	B	B	B	A	A

- A gets $3 \cdot 2+2 \cdot 2+1 \cdot 5=15$ points
- B gets

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference
- Candidate gets $n-1$ points if a second preference
- Candidate gets 1 point if a last preference
- Back to the example:

	Voters								
Most Preferred	A	B	B	B	C	C	A	C	B
	B	C	C	C	A	A	C	B	C
Least Preferred	C	A	A	A	B	B	B	A	A

- A gets $3 \cdot 2+2 \cdot 2+1 \cdot 5=15$ points
- B gets $3 \cdot 4+2 \cdot 2+1 \cdot 3=19$ points

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference
- Candidate gets $n-1$ points if a second preference
- Candidate gets 1 point if a last preference
- Back to the example:

	Voters								
Most Preferred	A	B	B	B	C	C	A	C	B
	B	C	C	C	A	A	C	B	C
Least Preferred	C	A	A	A	B	B	B	A	A

- A gets $3 \cdot 2+2 \cdot 2+1 \cdot 5=15$ points
- B gets $3 \cdot 4+2 \cdot 2+1 \cdot 3=19$ points
- C gets

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference
- Candidate gets $n-1$ points if a second preference
- Candidate gets 1 point if a last preference
- Back to the example:

	Voters									
Most Preferred	A	B	B	B	C	C	A	C	B	
	B	C	C	C	A	A	C	B	C	
Least Preferred	C	A	A	A	B	B	B	A	A	

- A gets $3 \cdot 2+2 \cdot 2+1 \cdot 5=15$ points
- B gets $3 \cdot 4+2 \cdot 2+1 \cdot 3=19$ points
- C gets $3 \cdot 3+2 \cdot 5+1 \cdot 1=20$ points

Borda Count

- Another method for tallying ranked votes: the Borda method
- Candidate gets n points if a first preference
- Candidate gets $n-1$ points if a second preference
- Candidate gets 1 point if a last preference
- Back to the example:

	Voters									
Most Preferred	A	B	B	B	C	C	A	C	B	
	B	C	C	C	A	A	C	B	C	
Least Preferred	C	A	A	A	B	B	B	A	A	

- A gets $3 \cdot 2+2 \cdot 2+1 \cdot 5=15$ points
- B gets $3 \cdot 4+2 \cdot 2+1 \cdot 3=19$ points
- C gets $3 \cdot 3+2 \cdot 5+1 \cdot 1=20$ points
so C wins

Fair Voting

- Want to determine if the outcome of the election is "fair"

Fair Voting

- Want to determine if the outcome of the election is "fair"
- One good idea is the Condorcet criterion:

Fair Voting

- Want to determine if the outcome of the election is "fair"
- One good idea is the Condorcet criterion:
- A candidate is the Condorcet winner if they would win in head-to-head competition with any other candidate

Fair Voting

- Want to determine if the outcome of the election is "fair"
- One good idea is the Condorcet criterion:
- A candidate is the Condorcet winner if they would win in head-to-head competition with any other candidate
- A voting method satisfies the Condorcet criterion if a Condorcet winner will always win

Plurality Voting and the Condorcet Criterion

- Suppose that:

Plurality Voting and the Condorcet Criterion

- Suppose that:
- 32% prefer A then B then C
- 28% prefer B then A then C
- 40% prefer C then A then B

Plurality Voting and the Condorcet Criterion

- Suppose that:
- 32% prefer A then B then C
- 28% prefer B then A then C
- 40% prefer C then A then B
- Who would win A vs. B ?

Plurality Voting and the Condorcet Criterion

- Suppose that:
- 32% prefer A then B then C
- 28% prefer B then A then C
- 40% prefer C then A then B
- Who would win A vs. B ?
- A would get $72 \% ; B$ would get 36%

Plurality Voting and the Condorcet Criterion

- Suppose that:
- 32% prefer A then B then C
- 28% prefer B then A then C
- 40% prefer C then A then B
- Who would win A vs. B ?
- A would get $72 \% ; B$ would get 36%
- Who would win A vs. C?

Plurality Voting and the Condorcet Criterion

- Suppose that:
- 32\% prefer A then B then C
- 28% prefer B then A then C
- 40% prefer C then A then B
- Who would win A vs. B ?
- A would get $72 \% ; B$ would get 36%
- Who would win A vs. C?
- A would get $60 \% ; C$ would get 40%

Plurality Voting and the Condorcet Criterion

- Suppose that:
- 32\% prefer A then B then C
- 28% prefer B then A then C
- 40% prefer C then A then B
- Who would win A vs. B ?
- A would get $72 \% ; B$ would get 36%
- Who would win A vs. C?
- A would get $60 \% ; C$ would get 40%
- Who would win B vs. C ?

Plurality Voting and the Condorcet Criterion

- Suppose that:
- 32% prefer A then B then C
- 28% prefer B then A then C
- 40% prefer C then A then B
- Who would win A vs. B ?
- A would get $72 \% ; B$ would get 36%
- Who would win A vs. C?
- A would get $60 \% ; C$ would get 40%
- Who would win B vs. C?
- B would get $60 \% ; C$ would get 40%

Plurality Voting and the Condorcet Criterion

- Suppose that:
- 32% prefer A then B then C
- 28% prefer B then A then C
- 40% prefer C then A then B
- Who would win A vs. B ?
- A would get $72 \% ; B$ would get 36%
- Who would win A vs. C?
- A would get $60 \% ; C$ would get 40%
- Who would win B vs. C ?
- B would get 60%; C would get 40%
- A is the Condorcet winner

Plurality Voting and the Condorcet Criterion

- Suppose that:
- 32% prefer A then B then C
- 28% prefer B then A then C
- 40% prefer C then A then B
- Who would win A vs. B ?
- A would get $72 \% ; B$ would get 36%
- Who would win A vs. C?
- A would get $60 \% ; C$ would get 40%
- Who would win B vs. C ?
- B would get 60%; C would get 40%
- A is the Condorcet winner
- In a plurality election, C wins the election!

Plurality Voting and the Condorcet Criterion

- Suppose that:
- 32% prefer A then B then C
- 28% prefer B then A then C
- 40% prefer C then A then B
- Who would win A vs. B ?
- A would get $72 \% ; B$ would get 36%
- Who would win A vs. C?
- A would get 60%; C would get 40%
- Who would win B vs. C?
- B would get 60%; C would get 40%
- A is the Condorcet winner
- In a plurality election, C wins the election!
- Plurality voting does not satisfy the Condorcet criterion

