Review

Fairness criteria for voting methods:

Review

Fairness criteria for voting methods:

- Condorcet criterion:
- A candidate is the Condorcet winner if they would win in head-to-head competition with any other candidate

Review

Fairness criteria for voting methods:

- Condorcet criterion:
- A candidate is the Condorcet winner if they would win in head-to-head competition with any other candidate
- A voting method satisfies the Condorcet criterion if a Condorcet winner will always win the election

Review

Fairness criteria for voting methods:

- Condorcet criterion:
- A candidate is the Condorcet winner if they would win in head-to-head competition with any other candidate
- A voting method satisfies the Condorcet criterion if a Condorcet winner will always win the election
- majority criterion:
- A voting method satisfies the majority criterion if a candidate with a majority of first-preference votes will win the election

Review

Fairness criteria for voting methods:

- Condorcet criterion:
- A candidate is the Condorcet winner if they would win in head-to-head competition with any other candidate
- A voting method satisfies the Condorcet criterion if a Condorcet winner will always win the election
- majority criterion:
- A voting method satisfies the majority criterion if a candidate with a majority of first-preference votes will win the election
- public enemy criterion:
- A voting method satisfies the public enemy criterion is a candidate with a majority of last-preference votes cannot win the election

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{\text {rd }}$ choice	C	A	A

- Is there a Condorcet winner?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{\text {rd }}$ choice	C	A	A

- Is there a Condorcet winner?
- B

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{\text {rd }}$ choice	C	A	A

- Is there a Condorcet winner?
- B
- Is there a majority winner?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{\text {rd }}$ choice	C	A	A

- Is there a Condorcet winner?
- B
- Is there a majority winner?
- no

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Is there a Condorcet winner?
- B
- Is there a majority winner?
- no
- Is there a public enemy?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Is there a Condorcet winner?
- B
- Is there a majority winner?
- no
- Is there a public enemy?
- A

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{\text {rd }}$ choice	C	A	A

- Is there a Condorcet winner?
- B
- Is there a majority winner?
- no
- Is there a public enemy?
- A
- Who is the plurality winner?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{\text {rd }}$ choice	C	A	A

- Is there a Condorcet winner?
- B
- Is there a majority winner?
- no
- Is there a public enemy?
- A
- Who is the plurality winner?
- A

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{\text {rd }}$ choice	C	A	A

- Is there a Condorcet winner?
- B
- Is there a majority winner?
- no
- Is there a public enemy?
- A
- Who is the plurality winner?
- A
- Who is the instant runoff winner (10 to win)?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{\text {rd }}$ choice	C	A	A

- Is there a Condorcet winner?
- B
- Is there a majority winner?
- no
- Is there a public enemy?
- A
- Who is the plurality winner?
- A
- Who is the instant runoff winner (10 to win)?
- C

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{\text {rd }}$ choice	C	A	A

- Is there a Condorcet winner?
- B
- Is there a majority winner?
- no
- Is there a public enemy?
- A
- Who is the plurality winner?
- A
- Who is the instant runoff winner (10 to win)?
- C
- Is there Borda winner?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{\text {rd }}$ choice	C	A	A

- Is there a Condorcet winner?
- B
- Is there a majority winner?
- no
- Is there a public enemy?
- A
- Who is the plurality winner?
- A
- Who is the instant runoff winner (10 to win)?
- C
- Is there Borda winner?
- B

Summary

	Condorcet	Majority	Public Enemy
Plurality	no	yes	no
Instant Runoff	no	yes	yes
Borda	no	no	yes

Example

- Instant runoffs are being used to determine the host city for the 2016 Olympics

Example

- Instant runoffs are being used to determine the host city for the 2016 Olympics
- Candidates are Rio de Janeiro, Madrid, and Tokyo

Example

- Instant runoffs are being used to determine the host city for the 2016 Olympics
- Candidates are Rio de Janeiro, Madrid, and Tokyo
- Poll yields the following preferences:

Number of Voters	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{4}$
$1^{\text {st }}$ choice	M	R	T	M
$2^{\text {nd }}$ choice	R	T	M	T
$3^{\text {rd }}$ choice	T	M	R	R

Example

- Instant runoffs are being used to determine the host city for the 2016 Olympics
- Candidates are Rio de Janeiro, Madrid, and Tokyo
- Poll yields the following preferences:

Number of Voters	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{4}$
$1^{\text {st }}$ choice	M	R	T	M
$2^{\text {nd }}$ choice	R	T	M	T
$3^{\text {rd }}$ choice	T	M	R	R

- If the election were held right now, who would win?

Example

- Instant runoffs are being used to determine the host city for the 2016 Olympics
- Candidates are Rio de Janeiro, Madrid, and Tokyo
- Poll yields the following preferences:

Number of Voters	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{4}$
$1^{\text {st }}$ choice	M	R	T	M
$2^{\text {nd }}$ choice	R	T	M	T
$3^{\text {rd }}$ choice	T	M	R	R

- If the election were held right now, who would win?
- Rio de Janeiro is eliminated in the first round

Example

- Instant runoffs are being used to determine the host city for the 2016 Olympics
- Candidates are Rio de Janeiro, Madrid, and Tokyo
- Poll yields the following preferences:

Number of Voters	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{4}$
$1^{\text {st }}$ choice	M	R	T	M
$2^{\text {nd }}$ choice	R	T	M	T
$3^{\text {rd }}$ choice	T	M	R	R

- If the election were held right now, who would win?
- Rio de Janeiro is eliminated in the first round
- Tokyo wins

Example

- Suppose that the contingent of 4 decides to help Tokyo:

Example

- Suppose that the contingent of 4 decides to help Tokyo:

Number of Voters	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{4}$
$1^{\text {st }}$ choice	M	R	T	$A M T$
$2^{\text {nd }}$ choice	R	T	M	$\mp M$
$3^{r d}$ choice	T	M	R	R

Example

- Suppose that the contingent of 4 decides to help Tokyo:

Number of Voters	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{4}$
$1^{\text {st }}$ choice	M	R	T	ATT
$2^{\text {nd }}$ choice	R	T	M	$T M$
$3^{r d}$ choice	T	M	R	R

- The change looks like it only benefits Tokyo (the presumed winner)

Example

- Suppose that the contingent of 4 decides to help Tokyo:

Number of Voters	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{4}$
$1^{\text {st }}$ choice	M	R	T	MT
$2^{\text {nd }}$ choice	R	T	M	$T M$
$3^{\text {rd }}$ choice	T	M	R	R

- The change looks like it only benefits Tokyo (the presumed winner)
- Who wins?

Example

- Suppose that the contingent of 4 decides to help Tokyo:

Number of Voters	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{4}$
$1^{\text {st }}$ choice	M	R	T	$M T$
$2^{\text {nd }}$ choice	R	T	M	$T M$
$3^{r d}$ choice	T	M	R	R

- The change looks like it only benefits Tokyo (the presumed winner)
- Who wins?
- Madrid is eliminated in the first round

Example

- Suppose that the contingent of 4 decides to help Tokyo:

Number of Voters	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{4}$
$1^{\text {st }}$ choice	M	R	T	MT
$2^{\text {nd }}$ choice	R	T	M	$T M$
$3^{r d}$ choice	T	M	R	R

- The change looks like it only benefits Tokyo (the presumed winner)
- Who wins?
- Madrid is eliminated in the first round
- Rio de Janeiro wins!?!

Example

- Suppose that the contingent of 4 decides to help Tokyo:

Number of Voters	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{4}$
$1^{\text {st }}$ choice	M	R	T	$\mathrm{~A} T$
$2^{\text {nd }}$ choice	R	T	M	$T M$
$3^{\text {rd }}$ choice	T	M	R	R

- The change looks like it only benefits Tokyo (the presumed winner)
- Who wins?
- Madrid is eliminated in the first round
- Rio de Janeiro wins!?!
- So Tokyo getting more first round votes caused them to lose

The Monotonicity Criterion

- The monotonicity criterion:

The Monotonicity Criterion

- The monotonicity criterion:
- A voting method satisfies the monotonicity criterion if the winner of an election cannot lose a repeat election if preferences are altered only to the benefit of the original winner

The Monotonicity Criterion

- The monotonicity criterion:
- A voting method satisfies the monotonicity criterion if the winner of an election cannot lose a repeat election if preferences are altered only to the benefit of the original winner
- Instant runoffs do not satisfy the monotonicity criterion

The Monotonicity Criterion

- The monotonicity criterion:
- A voting method satisfies the monotonicity criterion if the winner of an election cannot lose a repeat election if preferences are altered only to the benefit of the original winner
- Instant runoffs do not satisfy the monotonicity criterion
- Does plurality voting satisfy the monotonicity criterion?

The Monotonicity Criterion

- The monotonicity criterion:
- A voting method satisfies the monotonicity criterion if the winner of an election cannot lose a repeat election if preferences are altered only to the benefit of the original winner
- Instant runoffs do not satisfy the monotonicity criterion
- Does plurality voting satisfy the monotonicity criterion?
- Yes

The Monotonicity Criterion

- The monotonicity criterion:
- A voting method satisfies the monotonicity criterion if the winner of an election cannot lose a repeat election if preferences are altered only to the benefit of the original winner
- Instant runoffs do not satisfy the monotonicity criterion
- Does plurality voting satisfy the monotonicity criterion?
- Yes
- Does the Borda method satisfy the monotonicity criterion?

The Monotonicity Criterion

- The monotonicity criterion:
- A voting method satisfies the monotonicity criterion if the winner of an election cannot lose a repeat election if preferences are altered only to the benefit of the original winner
- Instant runoffs do not satisfy the monotonicity criterion
- Does plurality voting satisfy the monotonicity criterion?
- Yes
- Does the Borda method satisfy the monotonicity criterion?
- Yes

Summary

	Condorcet	Majority	Public Enemy	Monotonicity
Plurality	no	yes	no	yes
Instant Runoff	no	yes	yes	no
Borda	no	no	yes	yes

One Last Criterion

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	B	C	D
$2^{\text {nd }}$ choice	D	C	D	B
$3^{\text {rd }}$ choice	B	A	A	C
$4^{\text {th }}$ choice	C	D	B	A

- Who is the plurality winner?

One Last Criterion

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	B	C	D
$2^{\text {nd }}$ choice	D	C	D	B
$3^{\text {rd }}$ choice	B	A	A	C
$4^{\text {th }}$ choice	C	D	B	A

- Who is the plurality winner?
- A

One Last Criterion

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	B	C	D
$2^{\text {nd }}$ choice	D	C	D	B
$3^{\text {rd }}$ choice	B	A	A	C
$4^{\text {th }}$ choice	C	D	B	A

- Who is the plurality winner?
- A
- Who is the instant runoff winner (11 to win)?

One Last Criterion

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	B	C	D
$2^{\text {nd }}$ choice	D	C	D	B
$3^{\text {rd }}$ choice	B	A	A	C
$4^{\text {th }}$ choice	C	D	B	A

- Who is the plurality winner?
- A
- Who is the instant runoff winner (11 to win)?
- A

One Last Criterion

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	B	C	D
$2^{\text {nd }}$ choice	D	C	D	B
$3^{\text {rd }}$ choice	B	A	A	C
$4^{\text {th }}$ choice	C	D	B	A

- Who is the plurality winner?
- A
- Who is the instant runoff winner (11 to win)?
- A
- Who is the Borda winner?

One Last Criterion

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	B	C	D
$2^{\text {nd }}$ choice	D	C	D	B
$3^{\text {rd }}$ choice	B	A	A	C
$4^{\text {th }}$ choice	C	D	B	A

- Who is the plurality winner?
- A
- Who is the instant runoff winner (11 to win)?
- A
- Who is the Borda winner?
- A

One Last Criterion

Now suppose that B drops out:

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	$\mathbb{B} C$	C	D
$2^{\text {nd }}$ choice	D	$\mathbb{X} A$	D	$\mathbb{B} C$
$3^{\text {rd }}$ choice	$\mathbb{Z} C$	$\mathbb{X} D$	A	$\mathbb{X} A$
	\mathbb{Q}	\mathbb{B}	\mathbb{X}	

- Who is the plurality winner?

One Last Criterion

Now suppose that B drops out:

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	$\mathbb{Z} C$	C	D
$2^{\text {nd }}$ choice	D	$\mathbb{X} A$	D	$\mathbb{B} C$
$3^{\text {rd }}$ choice	$\mathbb{B} C$	$\mathbb{X} D$	A	$\mathbb{X} A$
	\mathbb{Q}	\mathbb{B}	\mathbb{X}	

- Who is the plurality winner?
- C

One Last Criterion

Now suppose that B drops out:

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	$\mathbb{B} C$	C	D
$2^{\text {nd }}$ choice	D	$\mathbb{X} A$	D	$\mathbb{B} C$
$3^{\text {rd }}$ choice	$\mathbb{B} C$	$\mathbb{A} D$	A	$\mathbb{X} A$
	\mathbb{Q}	\mathbb{B}	\mathbb{X}	

- Who is the plurality winner?
- C
- Who is the instant runoff winner (11 to win)?

One Last Criterion

Now suppose that B drops out:

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	$\mathbb{B} C$	C	D
$2^{\text {nd }}$ choice	D	$\mathbb{X} A$	D	$\mathbb{B} C$
$3^{\text {rd }}$ choice	\mathbb{Z}	$\mathbb{X} D$	A	$\mathbb{X} A$
	\mathbb{Q}	\mathbb{B}	\mathbb{X}	

- Who is the plurality winner?
- C
- Who is the instant runoff winner (11 to win)?
- C

One Last Criterion

Now suppose that B drops out:

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	$\mathbb{B} C$	C	D
$2^{\text {nd }}$ choice	D	$\mathbb{X} A$	D	$\mathbb{B} C$
$3^{\text {rd }}$ choice	$\mathbb{B} C$	$\mathbb{X} D$	A	$\mathbb{X} A$
	\mathbb{Q}	\mathbb{B}	\mathbb{X}	

- Who is the plurality winner?
- C
- Who is the instant runoff winner (11 to win)?
- C
- Who is the Borda winner?

One Last Criterion

Now suppose that B drops out:

Number of Voters	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$
$1^{\text {st }}$ choice	A	$\mathbb{B} C$	C	D
$2^{\text {nd }}$ choice	D	$\mathbb{X} A$	D	$\mathbb{B} C$
$3^{\text {rd }}$ choice	$\mathbb{B} C$	$\mathbb{X} D$	A	$\mathbb{X} A$
	\mathbb{Q}	\mathbb{B}	\mathbb{X}	

- Who is the plurality winner?
- C
- Who is the instant runoff winner (11 to win)?
- C
- Who is the Borda winner?
- C

Independence of Irrelevant Alternatives

- The independence of irrelevant alternatives criterion:

Independence of Irrelevant Alternatives

- The independence of irrelevant alternatives criterion:
- A voting method satisfies the I.I.A. criterion if the winner of an election would still win if other candidates were disqualified

Independence of Irrelevant Alternatives

- The independence of irrelevant alternatives criterion:
- A voting method satisfies the I.I.A. criterion if the winner of an election would still win if other candidates were disqualified
- Plurality, instant runoffs, and the Borda method do not satisfy I.I.A.

Summary

	Cond.	Maj.	P.E.	Mono.	I.I.A.
Plurality	no	yes	no	yes	no
Instant Runoff	no	yes	yes	no	no
Borda	no	no	yes	yes	no

Method of Pairwise Comparisons (Condorcet Method)

Method of pairwise comparisons

- Compare each pair of candidates

Method of Pairwise Comparisons (Condorcet Method)

Method of pairwise comparisons

- Compare each pair of candidates
- Candidate earns one point for each candidate that they beat

Method of Pairwise Comparisons (Condorcet Method)

Method of pairwise comparisons

- Compare each pair of candidates
- Candidate earns one point for each candidate that they beat
- Candidate with the most points wins

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?
- B

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?
- B
- The method of pairwise comparisons satisfies the Condorcet criterion

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?
- B
- The method of pairwise comparisons satisfies the Condorcet criterion
- Does it satisfy the majority criterion?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?
- B
- The method of pairwise comparisons satisfies the Condorcet criterion
- Does it satisfy the majority criterion?
- yes

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?
- B
- The method of pairwise comparisons satisfies the Condorcet criterion
- Does it satisfy the majority criterion?
- yes
- Does it satisfy the public enemy criterion?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?
- B
- The method of pairwise comparisons satisfies the Condorcet criterion
- Does it satisfy the majority criterion?
- yes
- Does it satisfy the public enemy criterion?
- yes

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?
- B
- The method of pairwise comparisons satisfies the Condorcet criterion
- Does it satisfy the majority criterion?
- yes
- Does it satisfy the public enemy criterion?
- yes
- Does it satisfy the monotonicity criterion?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?
- B
- The method of pairwise comparisons satisfies the Condorcet criterion
- Does it satisfy the majority criterion?
- yes
- Does it satisfy the public enemy criterion?
- yes
- Does it satisfy the monotonicity criterion?
- yes

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?
- B
- The method of pairwise comparisons satisfies the Condorcet criterion
- Does it satisfy the majority criterion?
- yes
- Does it satisfy the public enemy criterion?
- yes
- Does it satisfy the monotonicity criterion?
- yes
- Does it satisfy the I.I.A. criterion?

Example

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	B
$3^{r d}$ choice	C	A	A

- Who wins via the method of pairwise comparisons?
- B
- The method of pairwise comparisons satisfies the Condorcet criterion
- Does it satisfy the majority criterion?
- yes
- Does it satisfy the public enemy criterion?
- yes
- Does it satisfy the monotonicity criterion?
- yes
- Does it satisfy the I.I.A. criterion?
- no

Method of Pairwise Comparisons

Problems with the method of pairwise comparisons?

Method of Pairwise Comparisons

Problems with the method of pairwise comparisons?

- Complicated/inefficient:

Method of Pairwise Comparisons

Problems with the method of pairwise comparisons?

- Complicated/inefficient:
- If there are n candidates, you have to do $\frac{n^{2}-n}{2}$ comparisons

Method of Pairwise Comparisons

Problems with the method of pairwise comparisons?

- Complicated/inefficient:
- If there are n candidates, you have to do $\frac{n^{2}-n}{2}$ comparisons
- For other methods, you have to do $\sim n$ computations

Method of Pairwise Comparisons

Problems with the method of pairwise comparisons?

- Complicated/inefficient:
- If there are n candidates, you have to do $\frac{n^{2}-n}{2}$ comparisons
- For other methods, you have to do $\sim n$ computations
- There might not be winner:

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

Method of Pairwise Comparisons

Problems with the method of pairwise comparisons?

- Complicated/inefficient:
- If there are n candidates, you have to do $\frac{n^{2}-n}{2}$ comparisons
- For other methods, you have to do $\sim n$ computations
- There might not be winner:

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{r d}$ choice	C	A	B

- Who wins via the method of pairwise comparisons?

Method of Pairwise Comparisons

Problems with the method of pairwise comparisons?

- Complicated/inefficient:
- If there are n candidates, you have to do $\frac{n^{2}-n}{2}$ comparisons
- For other methods, you have to do $\sim n$ computations
- There might not be winner:

Number of Voters	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins via the method of pairwise comparisons?
- Nobody (rock, paper, scissors)

Summary

	Cond.	Maj.	P.E.	Mono.	I.I.A.
Plurality	no	yes	no	yes	no
Instant Runoff	no	yes	yes	no	no
Borda	no	no	yes	yes	no
Pairwise Comparisons	yes	yes	yes	yes	no

Another Method?

- Is there a method that satisfies all of these criteria?

Another Method?

- Is there a method that satisfies all of these criteria?

Arrow's Impossibility Theorem
There is no voting method that satisfies:

- Condorcet criterion
- majority criterion
- monotonicity criterion
- I.I.A. criterion

