Cloning

- Cloning is the introduction of a new candidate A^{\prime} that is similar to candidate A

Cloning

- Cloning is the introduction of a new candidate A^{\prime} that is similar to candidate A
- A^{\prime} is just slightly less popular than A

Cloning

- Cloning is the introduction of a new candidate A^{\prime} that is similar to candidate A
- A^{\prime} is just slightly less popular than A
- Effect is that people will place A^{\prime} just under A on a list of preferences

Cloning

- In a plurality vote, what happens when a candidate is cloned?

Cloning

- In a plurality vote, what happens when a candidate is cloned?
- Vote splitting

Cloning

- In a plurality vote, what happens when a candidate is cloned?
- Vote splitting
- The candidate should receive about half as many votes as before

Cloning

- In a plurality vote, what happens when a candidate is cloned?
- Vote splitting
- The candidate should receive about half as many votes as before
- This is why political parties hold primaries

Cloning

- In a plurality vote, what happens when a candidate is cloned?
- Vote splitting
- The candidate should receive about half as many votes as before
- This is why political parties hold primaries
- Plurality is said to be cloning negative

Cloning

- In an instant runoff, what happens when a candidate is cloned?

Cloning

- In an instant runoff, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

Cloning

- In an instant runoff, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins (using instant runoff)?

Cloning

- In an instant runoff, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins (using instant runoff)?
- A

Cloning

- In an instant runoff, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins (using instant runoff)?
- A
- Now suppose that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

Cloning

- In an instant runoff, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins (using instant runoff)?
- A
- Now suppose that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

- Who wins (using instant runoff)?

Cloning

- In an instant runoff, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins (using instant runoff)?
- A
- Now suppose that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

- Who wins (using instant runoff)?
- Still A

Cloning

- Suppose instead that C is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	C^{\prime}
$3^{\text {rd }}$ choice	C	C^{\prime}	A
$4^{\text {th }}$ choice	C^{\prime}	A	B

Cloning

- Suppose instead that C is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	C^{\prime}
$3^{\text {rd }}$ choice	C	C^{\prime}	A
$4^{\text {th }}$ choice	C^{\prime}	A	B

- Who wins (using instant runoff)?

Cloning

- Suppose instead that C is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	C^{\prime}
$3^{\text {rd }}$ choice	C	C^{\prime}	A
$4^{\text {th }}$ choice	C^{\prime}	A	B

- Who wins (using instant runoff)?
- Still A

Cloning

- Suppose instead that C is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	C^{\prime}
$3^{\text {rd }}$ choice	C	C^{\prime}	A
$4^{\text {th }}$ choice	C^{\prime}	A	B

- Who wins (using instant runoff)?
- Still A
- In an instant runoff, the clone will be eliminated immediately

Cloning

- Suppose instead that C is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	C^{\prime}
$3^{\text {rd }}$ choice	C	C^{\prime}	A
$4^{\text {th }}$ choice	C^{\prime}	A	B

- Who wins (using instant runoff)?
- Still A
- In an instant runoff, the clone will be eliminated immediately
- Plurality is said to be cloning neutral

Cloning

- When using the Borda method, what happens when a candidate is cloned?

Cloning

- When using the Borda method, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

Cloning

- When using the Borda method, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins (using the Borda method)?

Cloning

- When using the Borda method, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 3+8 \cdot 2+10 \cdot 1=59$ points

Cloning

- When using the Borda method, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 3+8 \cdot 2+10 \cdot 1=59$ points
- B gets $10 \cdot 3+11 \cdot 2+8 \cdot 1=60$ points

Cloning

- When using the Borda method, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 3+8 \cdot 2+10 \cdot 1=59$ points
- B gets $10 \cdot 3+11 \cdot 2+8 \cdot 1=60$ points
- C gets $8 \cdot 3+10 \cdot 2+11 \cdot 1=55$ points

Cloning

- When using the Borda method, what happens when a candidate is cloned?
- Example: consider the following list of preferences:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 3+8 \cdot 2+10 \cdot 1=59$ points
- B gets $10 \cdot 3+11 \cdot 2+8 \cdot 1=60$ points
- C gets $8 \cdot 3+10 \cdot 2+11 \cdot 1=55$ points
- B wins

Cloning

- Now suppose that B is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	B^{\prime}	A
$3^{\text {rd }}$ choice	B^{\prime}	C	B
$4^{\text {th }}$ choice	C	A	B^{\prime}

Cloning

- Now suppose that B is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	B^{\prime}	A
$3^{\text {rd }}$ choice	B^{\prime}	C	B
$4^{\text {th }}$ choice	C	A	B^{\prime}

- Who wins (using the Borda method)?

Cloning

- Now suppose that B is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	B^{\prime}	A
$3^{\text {rd }}$ choice	B^{\prime}	C	B
$4^{\text {th }}$ choice	C	A	B^{\prime}

- Who wins (using the Borda method)?

Cloning

- Now suppose that B is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	B^{\prime}	A
$3^{\text {rd }}$ choice	B^{\prime}	C	B
$4^{\text {th }}$ choice	C	A	B^{\prime}

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 1=78$ points

Cloning

- Now suppose that B is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	B^{\prime}	A
$3^{\text {rd }}$ choice	B^{\prime}	C	B
$4^{\text {th }}$ choice	C	A	B^{\prime}

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 1=78$ points
- B gets $10 \cdot 4+11 \cdot 3+8 \cdot 2=89$ points

Cloning

- Now suppose that B is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	B^{\prime}	A
$3^{\text {rd }}$ choice	B^{\prime}	C	B
$4^{\text {th }}$ choice	C	A	B^{\prime}

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 1=78$ points
- B gets $10 \cdot 4+11 \cdot 3+8 \cdot 2=89$ points
- B^{\prime} gets $10 \cdot 3+11 \cdot 2+8 \cdot 1=60$ points

Cloning

- Now suppose that B is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	B^{\prime}	A
$3^{\text {rd }}$ choice	B^{\prime}	C	B
$4^{\text {th }}$ choice	C	A	B^{\prime}

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 1=78$ points
- B gets $10 \cdot 4+11 \cdot 3+8 \cdot 2=89$ points
- B^{\prime} gets $10 \cdot 3+11 \cdot 2+8 \cdot 1=60$ points
- C gets $8 \cdot 4+10 \cdot 2+11 \cdot 1=63$ points

Cloning

- Now suppose that B is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	B^{\prime}	A
$3^{\text {rd }}$ choice	B^{\prime}	C	B
$4^{\text {th }}$ choice	C	A	B^{\prime}

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 1=78$ points
- B gets $10 \cdot 4+11 \cdot 3+8 \cdot 2=89$ points
- B^{\prime} gets $10 \cdot 3+11 \cdot 2+8 \cdot 1=60$ points
- C gets $8 \cdot 4+10 \cdot 2+11 \cdot 1=63$ points
- Still B (by a larger margin)

Cloning

- Suppose instead that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

Cloning

- Suppose instead that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

- Who wins (using the Borda method)?

Cloning

- Suppose instead that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 2=88$ points

Cloning

- Suppose instead that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 2=88$ points
- A^{\prime} gets $11 \cdot 3+8 \cdot 2+10 \cdot 1=59$ points

Cloning

- Suppose instead that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 2=88$ points
- A^{\prime} gets $11 \cdot 3+8 \cdot 2+10 \cdot 1=59$ points
- B gets $10 \cdot 4+11 \cdot 2+8 \cdot 1=70$ points

Cloning

- Suppose instead that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 2=88$ points
- A^{\prime} gets $11 \cdot 3+8 \cdot 2+10 \cdot 1=59$ points
- B gets $10 \cdot 4+11 \cdot 2+8 \cdot 1=70$ points
- C gets $8 \cdot 4+10 \cdot 3+11 \cdot 1=73$ points

Cloning

- Suppose instead that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 2=88$ points
- A^{\prime} gets $11 \cdot 3+8 \cdot 2+10 \cdot 1=59$ points
- B gets $10 \cdot 4+11 \cdot 2+8 \cdot 1=70$ points
- C gets $8 \cdot 4+10 \cdot 3+11 \cdot 1=73$ points
- A is now winning

Cloning

- Suppose instead that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 2=88$ points
- A^{\prime} gets $11 \cdot 3+8 \cdot 2+10 \cdot 1=59$ points
- B gets $10 \cdot 4+11 \cdot 2+8 \cdot 1=70$ points
- C gets $8 \cdot 4+10 \cdot 3+11 \cdot 1=73$ points
- A is now winning
- Given enough clones, almost any candidate can win (so long as someone prefers them)

Cloning

- Suppose instead that A is cloned:

Number of Voters	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{8}$
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	A^{\prime}	C	A
$3^{\text {rd }}$ choice	B	A	A^{\prime}
$4^{\text {th }}$ choice	C	A^{\prime}	B

- Who wins (using the Borda method)?
- A gets $11 \cdot 4+8 \cdot 3+10 \cdot 2=88$ points
- A^{\prime} gets $11 \cdot 3+8 \cdot 2+10 \cdot 1=59$ points
- B gets $10 \cdot 4+11 \cdot 2+8 \cdot 1=70$ points
- C gets $8 \cdot 4+10 \cdot 3+11 \cdot 1=73$ points
- A is now winning
- Given enough clones, almost any candidate can win (so long as someone prefers them)
- The Borda method is said to be cloning postive

The Borda Method

- Suppose there are two voters with true preferences:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	B	C
$3^{\text {rd }}$ choice	C	A
$4^{\text {th }}$ choice	D	D

The Borda Method

- Suppose there are two voters with true preferences:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	B	C
$3^{\text {rd }}$ choice	C	A
$4^{\text {th }}$ choice	D	D

- If both vote their true preferences, who will win (using the Borda method)?

The Borda Method

- Suppose there are two voters with true preferences:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	B	C
$3^{\text {rd }}$ choice	C	A
$4^{\text {th }}$ choice	D	D

- If both vote their true preferences, who will win (using the Borda method)?
- B

The Borda Method

- Suppose there are two voters with true preferences:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	B	C
$3^{\text {rd }}$ choice	C	A
$4^{\text {th }}$ choice	D	D

- If both vote their true preferences, who will win (using the Borda method)?
- B
- Can Voter 1 change their vote so that A wins?

The Borda Method

- Voter 1 can alter their preferences to:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	$B C$	C
$3^{\text {rd }}$ choice	$\in D$	A
$4^{\text {th }}$ choice	$\oplus B$	D

The Borda Method

- Voter 1 can alter their preferences to:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	$B C$	C
$3^{\text {rd }}$ choice	$\in D$	A
$4^{\text {th }}$ choice	$\oplus B$	D

- Who will win (using the Borda method)?

The Borda Method

- Voter 1 can alter their preferences to:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	$B C$	C
$3^{\text {rd }}$ choice	$\in D$	A
$4^{\text {th }}$ choice	$Đ B$	D

- Who will win (using the Borda method)?
- A and C tie (don't know how to deal with ties)

The Borda Method

- Voter 1 can alter their preferences to:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	$B C$	C
$3^{\text {rd }}$ choice	$\in D$	A
$4^{\text {th }}$ choice	$Đ B$	D

- Who will win (using the Borda method)?
- A and C tie (don't know how to deal with ties)
- One more attempt:

The Borda Method

- Voter 1 can alter their preferences to:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	$B \in D$	C
$3^{\text {rd }}$ choice	$\in Đ C$	A
$4^{\text {th }}$ choice	$Đ B$	D

The Borda Method

- Voter 1 can alter their preferences to:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	$B \in D$	C
$3^{\text {rd }}$ choice	$\in Ð C$	A
$4^{\text {th }}$ choice	$Đ B$	D

- Who will win (using the Borda method)?

The Borda Method

- Voter 1 can alter their preferences to:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	$B \in D$	C
$3^{\text {rd }}$ choice	$\in Ð C$	A
$4^{\text {th }}$ choice	$Đ B$	D

- Who will win (using the Borda method)?
- B

The Borda Method

- Voter 1 can alter their preferences to:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	$B \in D$	C
$3^{\text {rd }}$ choice	$\in Ð C$	A
$4^{\text {th }}$ choice	$Đ B$	D

- Who will win (using the Borda method)?
- B
- An example of strategic voting

The Borda Method

- Voter 1 can alter their preferences to:

	Voter 1	Voter 2
$1^{\text {st }}$ choice	A	B
$2^{\text {nd }}$ choice	$B \in D$	C
$3^{\text {rd }}$ choice	$\in Ð C$	A
$4^{\text {th }}$ choice	$\oplus B$	D

- Who will win (using the Borda method)?
- B
- An example of strategic voting
- This is called burying a candidate

Strategic Voting

- Suppose that the U.S. presidential election used the Borda method

Strategic Voting

- Suppose that the U.S. presidential election used the Borda method
- 51% prefer Obama

Strategic Voting

- Suppose that the U.S. presidential election used the Borda method
- 51\% prefer Obama
- 47\% prefer Romney

Strategic Voting

- Suppose that the U.S. presidential election used the Borda method
- 51\% prefer Obama
- 47\% prefer Romney
- 2\% prefer Johnson

Strategic Voting

- Suppose that the U.S. presidential election used the Borda method
- 51\% prefer Obama
- 47\% prefer Romney
- 2\% prefer Johnson
- Suppose everyone voting Democrat or Republican voted strategically

\% of Voters	51	47	2
$1^{\text {st }}$ choice	Obama	Romney	Johnson
$2^{\text {nd }}$ choice	Johnson	Johnson	Romney
$3^{\text {rd }}$ choice	Romney	Obama	Obama

Strategic Voting

- Suppose that the U.S. presidential election used the Borda method
- 51\% prefer Obama
- 47\% prefer Romney
- 2\% prefer Johnson
- Suppose everyone voting Democrat or Republican voted strategically

$\%$ of Voters	$\mathbf{5 1}$	$\mathbf{4 7}$	$\mathbf{2}$
$1^{\text {st }}$ choice	Obama	Romney	Johnson
$2^{\text {nd }}$ choice	Johnson	Johnson	Romney
$3^{r d}$ choice	Romney	Obama	Obama

- Obama gets $51 \cdot 3+49 \cdot 1=202$ points

Strategic Voting

- Suppose that the U.S. presidential election used the Borda method
- 51\% prefer Obama
- 47\% prefer Romney
- 2\% prefer Johnson
- Suppose everyone voting Democrat or Republican voted strategically

$\%$ of Voters	$\mathbf{5 1}$	$\mathbf{4 7}$	$\mathbf{2}$
$1^{\text {st }}$ choice	Obama	Romney	Johnson
$2^{\text {nd }}$ choice	Johnson	Johnson	Romney
$3^{r d}$ choice	Romney	Obama	Obama

- Obama gets $51 \cdot 3+49 \cdot 1=202$ points
- Romney gets $47 \cdot 3+2 \cdot 2+51 \cdot 1=196$ points

Strategic Voting

- Suppose that the U.S. presidential election used the Borda method
- 51\% prefer Obama
- 47\% prefer Romney
- 2\% prefer Johnson
- Suppose everyone voting Democrat or Republican voted strategically

$\%$ of Voters	$\mathbf{5 1}$	$\mathbf{4 7}$	$\mathbf{2}$
$1^{\text {st }}$ choice	Obama	Romney	Johnson
$2^{\text {nd }}$ choice	Johnson	Johnson	Romney
$3^{r d}$ choice	Romney	Obama	Obama

- Obama gets $51 \cdot 3+49 \cdot 1=202$ points
- Romney gets $47 \cdot 3+2 \cdot 2+51 \cdot 1=196$ points
- Johnson gets $2 \cdot 3+98 \cdot 2=202$ points

Strategic Voting

- Suppose that the U.S. presidential election used the Borda method
- 51\% prefer Obama
- 47\% prefer Romney
- 2\% prefer Johnson
- Suppose everyone voting Democrat or Republican voted strategically

$\%$ of Voters	$\mathbf{5 1}$	$\mathbf{4 7}$	$\mathbf{2}$
$1^{\text {st }}$ choice	Obama	Romney	Johnson
$2^{\text {nd }}$ choice	Johnson	Johnson	Romney
$3^{r d}$ choice	Romney	Obama	Obama

- Obama gets $51 \cdot 3+49 \cdot 1=202$ points
- Romney gets $47 \cdot 3+2 \cdot 2+51 \cdot 1=196$ points
- Johnson gets $2 \cdot 3+98 \cdot 2=202$ points
- Election is a nail-biter between Obama and Johnson

The Borda Method

- Borda: "My scheme is only intended for honest men!"

The Borda Method

- Borda: "My scheme is only intended for honest men!"
- A voting system is manipulable if there exists two lists of preferences such that:

The Borda Method

- Borda: "My scheme is only intended for honest men!"
- A voting system is manipulable if there exists two lists of preferences such that:
- neither election results in a tie

The Borda Method

- Borda: "My scheme is only intended for honest men!"
- A voting system is manipulable if there exists two lists of preferences such that:
- neither election results in a tie
- only one ballot differs between the preference lists (the manipulator's)

The Borda Method

- Borda: "My scheme is only intended for honest men!"
- A voting system is manipulable if there exists two lists of preferences such that:
- neither election results in a tie
- only one ballot differs between the preference lists (the manipulator's)
- The first list of preferences contains the manipulator's true preference

The Borda Method

- Borda: "My scheme is only intended for honest men!"
- A voting system is manipulable if there exists two lists of preferences such that:
- neither election results in a tie
- only one ballot differs between the preference lists (the manipulator's)
- The first list of preferences contains the manipulator's true preference
- The manipulator prefers the outcome of the second list

Manipulating an Instant Runoff

- Suppose a preference list was as follows:

Number of Voters	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$
$1^{\text {st }}$ choice	A	C	B
$2^{\text {nd }}$ choice	B	A	C
$3^{\text {rd }}$ choice	C	B	A

Manipulating an Instant Runoff

- Suppose a preference list was as follows:

Number of Voters	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$
$1^{\text {st }}$ choice	A	C	B
$2^{\text {nd }}$ choice	B	A	C
$3^{r d}$ choice	C	B	A

- In an instant runoff vote, who would win?

Manipulating an Instant Runoff

- Suppose a preference list was as follows:

Number of Voters	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$
$1^{\text {st }}$ choice	A	C	B
$2^{\text {nd }}$ choice	B	A	C
$3^{r d}$ choice	C	B	A

- In an instant runoff vote, who would win?
- C

Manipulating an Instant Runoff

- Suppose a preference list was as follows:

Number of Voters	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$
$1^{\text {st }}$ choice	A	C	B
$2^{\text {nd }}$ choice	B	A	C
$3^{r d}$ choice	C	B	A

- In an instant runoff vote, who would win?
- C
- Can one of the first voters alter their vote to get a more preferential outcome?

Manipulating an Instant Runoff

- Suppose one of the first voters altered their preferences as follows:

Number of Voters	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$
$1^{\text {st }}$ choice	$A B$	A	C	B
$2^{\text {nd }}$ choice	$B A$	B	A	C
$3^{\text {rd }}$ choice	C	C	B	A

Manipulating an Instant Runoff

- Suppose one of the first voters altered their preferences as follows:

Number of Voters	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$
$1^{\text {st }}$ choice	$A B$	A	C	B
$2^{\text {nd }}$ choice	$B A$	B	A	C
$3^{\text {rd }}$ choice	C	C	B	A

- Now who wins?

Manipulating an Instant Runoff

- Suppose one of the first voters altered their preferences as follows:

Number of Voters	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$
$1^{\text {st }}$ choice	$A B$	A	C	B
$2^{\text {nd }}$ choice	$B A$	B	A	C
$3^{\text {rd }}$ choice	C	C	B	A

- Now who wins?
- B

Manipulating an Instant Runoff

- Suppose one of the first voters altered their preferences as follows:

Number of Voters	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$
$1^{\text {st }}$ choice	$A B$	A	C	B
$2^{\text {nd }}$ choice	$B A$	B	A	C
$3^{r d}$ choice	C	C	B	A

- Now who wins?
- B
- So the instant runoff is manipulable

Manipulating a Plurality Vote

- Is the purality method manipulable?

Manipulating a Plurality Vote

- Is the purality method manipulable?
- Not the way we've defined it (single person changing the vote; no tie)

Manipulating a Plurality Vote

- Is the purality method manipulable?
- Not the way we've defined it (single person changing the vote; no tie)
- It is group manipulable

Manipulating a Plurality Vote

- Is the purality method manipulable?
- Not the way we've defined it (single person changing the vote; no tie)
- It is group manipulable
- Alternatively, we can add rules for how to deal with ties

Manipulating a Plurality Vote

- Is the purality method manipulable?
- Not the way we've defined it (single person changing the vote; no tie)
- It is group manipulable
- Alternatively, we can add rules for how to deal with ties
- It is impossible to add a tie-breaking rule, and keep the method from being manipulable:

Manipulating a Plurality Vote

- Is the purality method manipulable?
- Not the way we've defined it (single person changing the vote; no tie)
- It is group manipulable
- Alternatively, we can add rules for how to deal with ties
- It is impossible to add a tie-breaking rule, and keep the method from being manipulable:

Givvard-Satterthwaite Theorem
There is no preference-based voting method that satisfies:

Manipulating a Plurality Vote

- Is the purality method manipulable?
- Not the way we've defined it (single person changing the vote; no tie)
- It is group manipulable
- Alternatively, we can add rules for how to deal with ties
- It is impossible to add a tie-breaking rule, and keep the method from being manipulable:

Givvard-Satterthwaite Theorem
There is no preference-based voting method that satisfies:

- it always produces a winner

Manipulating a Plurality Vote

- Is the purality method manipulable?
- Not the way we've defined it (single person changing the vote; no tie)
- It is group manipulable
- Alternatively, we can add rules for how to deal with ties
- It is impossible to add a tie-breaking rule, and keep the method from being manipulable:

Givvard-Satterthwaite Theorem
There is no preference-based voting method that satisfies:

- it always produces a winner
- satisfies the Pareto condition
(if everyone prefers A over B, then B cannot win)

Manipulating a Plurality Vote

- Is the purality method manipulable?
- Not the way we've defined it (single person changing the vote; no tie)
- It is group manipulable
- Alternatively, we can add rules for how to deal with ties
- It is impossible to add a tie-breaking rule, and keep the method from being manipulable:

Givvard-Satterthwaite Theorem
There is no preference-based voting method that satisfies:

- it always produces a winner
- satisfies the Pareto condition
(if everyone prefers A over B, then B cannot win)
- is not manipulable

