New Due Dates

- Partial rough draft: Monday, December 2
- Final paper: Wednesday, December 11

Tie Breaking

- Committee of 3 is holding a vote

Tie Breaking

- Committee of 3 is holding a vote
- If there is a tie, the chair casts the deciding vote

Tie Breaking

- Committee of 3 is holding a vote
- If there is a tie, the chair casts the deciding vote
- Chair seems to have an advantage

Tie Breaking

- Committee of 3 is holding a vote
- If there is a tie, the chair casts the deciding vote
- Chair seems to have an advantage
- Chair's preference loses only if other two agree
- Preference table:

	Chair	Voter 2	Voter 3
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

Tie Breaking

- Committee of 3 is holding a vote
- If there is a tie, the chair casts the deciding vote
- Chair seems to have an advantage
- Chair's preference loses only if other two agree
- Preference table:

	Chair	Voter 2	Voter 3
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- If voters are perfectly rational, who will win?

Tie Breaking

	Chair	Voter 2	Voter 3
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Voting for $1^{\text {st }}$ or $2^{\text {nd }}$ choice weakly dominates voting for $3^{\text {rd }}$ choice

Tie Breaking

	Chair	Voter 2	Voter 3
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Voting for $1^{\text {st }}$ or $2^{\text {nd }}$ choice weakly dominates voting for $3^{\text {rd }}$ choice
- For chair, voting for A weakly dominates voting for B

Tie Breaking

	Chair	Voter 2	Voter 3
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Voting for $1^{\text {st }}$ or $2^{\text {nd }}$ choice weakly dominates voting for $3^{\text {rd }}$ choice
- For chair, voting for A weakly dominates voting for B
- After eliminating strategies, Voter 3 will opt to vote for C (voting for C weakly dominates voting for A)

Tie Breaking

	Chair	Voter 2	Voter 3
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Voting for $1^{\text {st }}$ or $2^{\text {nd }}$ choice weakly dominates voting for $3^{\text {rd }}$ choice
- For chair, voting for A weakly dominates voting for B
- After eliminating strategies, Voter 3 will opt to vote for C (voting for C weakly dominates voting for A)
- After eliminating strategies, Voter 2 will vote for C (voting for C weakly dominates voting for B)

Tie Breaking

	Chair	Voter 2	Voter 3
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Voting for $1^{\text {st }}$ or $2^{\text {nd }}$ choice weakly dominates voting for $3^{\text {rd }}$ choice
- For chair, voting for A weakly dominates voting for B
- After eliminating strategies, Voter 3 will opt to vote for C (voting for C weakly dominates voting for A)
- After eliminating strategies, Voter 2 will vote for C (voting for C weakly dominates voting for B)
- Winner is C

Tie Breaking

	Chair	Voter 2	Voter 3
$1^{\text {st }}$ choice	A	B	C
$2^{\text {nd }}$ choice	B	C	A
$3^{\text {rd }}$ choice	C	A	B

- Voting for $1^{\text {st }}$ or $2^{\text {nd }}$ choice weakly dominates voting for $3^{\text {rd }}$ choice
- For chair, voting for A weakly dominates voting for B
- After eliminating strategies, Voter 3 will opt to vote for C (voting for C weakly dominates voting for A)
- After eliminating strategies, Voter 2 will vote for C (voting for C weakly dominates voting for B)
- Winner is C
- This is referred to as the Chair's Paradox

Weighted Voting

- Weighted voting is any voting system where different voters' votes matter differently

Weighted Voting

- Weighted voting is any voting system where different voters' votes matter differently
- Examples:

Weighted Voting

- Weighted voting is any voting system where different voters' votes matter differently
- Examples:
- Electoral colleges

Weighted Voting

- Weighted voting is any voting system where different voters' votes matter differently
- Examples:
- Electoral colleges
- Each state is given a number of electoral votes, allocated by population

Weighted Voting

- Weighted voting is any voting system where different voters' votes matter differently
- Examples:
- Electoral colleges
- Each state is given a number of electoral votes, allocated by population
- Most states give all of their electoral votes to the plurality winner for the state (not Maine and Nebraska)

Weighted Voting

- Weighted voting is any voting system where different voters' votes matter differently
- Examples:
- Electoral colleges
- Each state is given a number of electoral votes, allocated by population
- Most states give all of their electoral votes to the plurality winner for the state (not Maine and Nebraska)
- Pennsylvania has 20 electoral votes; Maryland has 10

Weighted Voting

- Weighted voting is any voting system where different voters' votes matter differently
- Examples:
- Electoral colleges
- Each state is given a number of electoral votes, allocated by population
- Most states give all of their electoral votes to the plurality winner for the state (not Maine and Nebraska)
- Pennsylvania has 20 electoral votes; Maryland has 10
- Is Pennsylvania's vote twice as powerful?

Weighted Voting

- Weighted voting is any voting system where different voters' votes matter differently
- Examples:
- Electoral colleges
- Each state is given a number of electoral votes, allocated by population
- Most states give all of their electoral votes to the plurality winner for the state (not Maine and Nebraska)
- Pennsylvania has 20 electoral votes; Maryland has 10
- Is Pennsylvania's vote twice as powerful?
- How can we quantify this?

Weighted Voting

- Weighted voting is any voting system where different voters' votes matter differently
- Examples:
- Electoral colleges
- Each state is given a number of electoral votes, allocated by population
- Most states give all of their electoral votes to the plurality winner for the state (not Maine and Nebraska)
- Pennsylvania has 20 electoral votes; Maryland has 10
- Is Pennsylvania's vote twice as powerful?
- How can we quantify this?
- Shareholders' meetings

Weighted Voting

- Weighted voting is any voting system where different voters' votes matter differently
- Examples:
- Electoral colleges
- Each state is given a number of electoral votes, allocated by population
- Most states give all of their electoral votes to the plurality winner for the state (not Maine and Nebraska)
- Pennsylvania has 20 electoral votes; Maryland has 10
- Is Pennsylvania's vote twice as powerful?
- How can we quantify this?
- Shareholders' meetings
- Shareholder's vote is weighted by their number of shares

Weighted Voting

Examples:

- U.N. Security Council

Weighted Voting

Examples:

- U.N. Security Council
- 5 permanent members:
- China, France, Russia, United Kingdom, United States

Weighted Voting

Examples:

- U.N. Security Council
- 5 permanent members:
- China, France, Russia, United Kingdom, United States
- 10 non-permanent members:
- Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo

Weighted Voting

Examples:

- U.N. Security Council
- 5 permanent members:
- China, France, Russia, United Kingdom, United States
- 10 non-permanent members:
- Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo
- Each member has one vote

Weighted Voting

Examples:

- U.N. Security Council
- 5 permanent members:
- China, France, Russia, United Kingdom, United States
- 10 non-permanent members:
- Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo
- Each member has one vote
- Permanent members have veto power

Weighted Voting

Examples:

- U.N. Security Council
- 5 permanent members:
- China, France, Russia, United Kingdom, United States
- 10 non-permanent members:
- Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo
- Each member has one vote
- Permanent members have veto power
- How can we quantify the difference in power?

Notation

- Every voter's vote has a weight w_{i}

Notation

- Every voter's vote has a weight w_{i}
- Total number of votes is $V=w_{1}+w_{2}+\ldots+w_{n}$

Notation

- Every voter's vote has a weight w_{i}
- Total number of votes is $V=w_{1}+w_{2}+\ldots+w_{n}$
- There is a quota q

Notation

- Every voter's vote has a weight w_{i}
- Total number of votes is $V=w_{1}+w_{2}+\ldots+w_{n}$
- There is a quota q
- Number of votes needed to pass a motion

Notation

- Every voter's vote has a weight w_{i}
- Total number of votes is $V=w_{1}+w_{2}+\ldots+w_{n}$
- There is a quota q
- Number of votes needed to pass a motion
- $\frac{V}{2}<q \leq V$

Notation

- Every voter's vote has a weight w_{i}
- Total number of votes is $V=w_{1}+w_{2}+\ldots+w_{n}$
- There is a quota q
- Number of votes needed to pass a motion
- $\frac{V}{2}<q \leq V$
- Notation is $\left[q: w_{1}, \ldots, w_{n}\right]$

Example

- Consider [7: 4, 4, 3, 1]

Example

- Consider [7:4, 4, 3, 1]
- Motion needs 7 votes to pass

Example

- Consider [7:4, 4, 3, 1]
- Motion needs 7 votes to pass
- A gets 4 votes; B gets 4 votes; C gets 3 votes; D gets 1 vote

Example

- Consider [7:4, 4, 3, 1]
- Motion needs 7 votes to pass
- A gets 4 votes; B gets 4 votes; C gets 3 votes; D gets 1 vote
- Note:

Example

- Consider [7:4, 4, 3, 1]
- Motion needs 7 votes to pass
- A gets 4 votes; B gets 4 votes; C gets 3 votes; D gets 1 vote
- Note:
- D's vote does not affect the outcome

Example

- Consider [7:4, 4, 3, 1]
- Motion needs 7 votes to pass
- A gets 4 votes; B gets 4 votes; C gets 3 votes; D gets 1 vote
- Note:
- D's vote does not affect the outcome
- D's vote is a dummy vote

Example

- Consider [7:4, 4, 3, 1]
- Motion needs 7 votes to pass
- A gets 4 votes; B gets 4 votes; C gets 3 votes; D gets 1 vote
- Note:
- D's vote does not affect the outcome
- D's vote is a dummy vote
- A, B, and C all have the same power

Example

- Consider [7:4, 4, 3, 1]
- Motion needs 7 votes to pass
- A gets 4 votes; B gets 4 votes; C gets 3 votes; D gets 1 vote
- Note:
- D's vote does not affect the outcome
- D's vote is a dummy vote
- A, B, and C all have the same power
- Decision goes to which ever two agree

Example

- Consider [10: 11, 3, 3, 3]

Example

- Consider [10: 11, 3, 3, 3]
- Motion needs 10 votes to pass

Example

- Consider [10: 11, 3, 3, 3]
- Motion needs 10 votes to pass
- A gets 11 votes; B gets 3 votes; C gets 3 votes; D gets 3 vote

Example

- Consider [10: 11, 3, 3, 3]
- Motion needs 10 votes to pass
- A gets 11 votes; B gets 3 votes; C gets 3 votes; D gets 3 vote
- Note:

Example

- Consider [10: 11, 3, 3, 3]
- Motion needs 10 votes to pass
- A gets 11 votes; B gets 3 votes; C gets 3 votes; D gets 3 vote
- Note:
- A decides the outcome

Example

- Consider [10: 11, 3, 3, 3]
- Motion needs 10 votes to pass
- A gets 11 votes; B gets 3 votes; C gets 3 votes; D gets 3 vote
- Note:
- A decides the outcome
- A is a dictator (their vote determines the outcome)

Example

- Consider [10: 11, 3, 3, 3]
- Motion needs 10 votes to pass
- A gets 11 votes; B gets 3 votes; C gets 3 votes; D gets 3 vote
- Note:
- A decides the outcome
- A is a dictator (their vote determines the outcome)
- B, C, and D are necessarily dummy votes

Example

- Consider [16: 8, 7, 3, 2]

Example

- Consider [16: 8, 7, 3, 2]
- Motion needs 16 votes to pass

Example

- Consider [16: 8, 7, 3, 2]
- Motion needs 16 votes to pass
- A gets 8 votes; B gets 7 votes; C gets 3 votes; D gets 2 vote

Example

- Consider [16: 8, 7, 3, 2]
- Motion needs 16 votes to pass
- A gets 8 votes; B gets 7 votes; C gets 3 votes; D gets 2 vote
- Note:

Example

- Consider [16: 8, 7, 3, 2]
- Motion needs 16 votes to pass
- A gets 8 votes; B gets 7 votes; C gets 3 votes; D gets 2 vote
- Note:
- A is not a dictator

Example

- Consider [16: 8, 7, 3, 2]
- Motion needs 16 votes to pass
- A gets 8 votes; B gets 7 votes; C gets 3 votes; D gets 2 vote
- Note:
- A is not a dictator
- However, A has veto power

Example

- Consider [16: 8, 7, 3, 2]
- Motion needs 16 votes to pass
- A gets 8 votes; B gets 7 votes; C gets 3 votes; D gets 2 vote
- Note:
- A is not a dictator
- However, A has veto power
- Voter i has veto power if $V-w_{i}<q$

Example

- Consider [16: 8, 7, 3, 2]
- Motion needs 16 votes to pass
- A gets 8 votes; B gets 7 votes; C gets 3 votes; D gets 2 vote
- Note:
- A is not a dictator
- However, A has veto power
- Voter i has veto power if $V-w_{i}<q$
- B also has veto power

Example

- Consider [16: 8, 7, 3, 2]
- Motion needs 16 votes to pass
- A gets 8 votes; B gets 7 votes; C gets 3 votes; D gets 2 vote
- Note:
- A is not a dictator
- However, A has veto power
- Voter i has veto power if $V-w_{i}<q$
- B also has veto power
- C and D are not dummy votes

The Shapley-Shubik Power Index

- The Shapley-Shubik power index is meant to determine how powerful one's vote is

The Shapley-Shubik Power Index

- The Shapley-Shubik power index is meant to determine how powerful one's vote is
- Consider all orderings of voters

The Shapley-Shubik Power Index

- The Shapley-Shubik power index is meant to determine how powerful one's vote is
- Consider all orderings of voters
- The pivotal voter is the first voter in the list who, if everyone before them voted "yes", could pass the motion

The Shapley-Shubik Power Index

- The Shapley-Shubik power index is meant to determine how powerful one's vote is
- Consider all orderings of voters
- The pivotal voter is the first voter in the list who, if everyone before them voted "yes", could pass the motion
- The Shapley-Shubik power index of a voter is the ratio of how often they are pivotal to the total number of orderings

The Shapley-Shubik Power Index

- The Shapley-Shubik power index is meant to determine how powerful one's vote is
- Consider all orderings of voters
- The pivotal voter is the first voter in the list who, if everyone before them voted "yes", could pass the motion
- The Shapley-Shubik power index of a voter is the ratio of how often they are pivotal to the total number of orderings
- For n voters, there are $n!=n \cdot(n-1) \cdot \ldots \cdot 1$ orderings

The Shapley-Shubik Power Index

- Consider [6:5,3,1]

The Shapley-Shubik Power Index

- Consider [6:5, 3, 1]
- Motion needs 6 votes to pass

The Shapley-Shubik Power Index

- Consider [6:5, 3, 1]
- Motion needs 6 votes to pass
- A gets 5 votes; B gets 3 votes; C gets 1 vote

The Shapley-Shubik Power Index

- Consider $[6: 5,3,1]$
- Motion needs 6 votes to pass
- A gets 5 votes; B gets 3 votes; C gets 1 vote
$\left.\begin{array}{|c|c|c|}\hline \text { Orderings } & \text { Pivot } \\ \hline A & B & C \\ A & C & B \\ B & A & C \\ B & C & A \\ C & A & B \\ C & B & A\end{array}\right) A$

The Shapley-Shubik Power Index

- Consider $[6: 5,3,1]$
- Motion needs 6 votes to pass
- A gets 5 votes; B gets 3 votes; C gets 1 vote
$\left.\begin{array}{|c|c|c|}\hline \text { Orderings } & \text { Pivot } \\ \hline A & B & C \\ A & C & B \\ B & A & C \\ B & C & A \\ C & A & B \\ C & B & A\end{array}\right) A$
- A 's index is $\frac{4}{6}$

The Shapley-Shubik Power Index

- Consider $[6: 5,3,1]$
- Motion needs 6 votes to pass
- A gets 5 votes; B gets 3 votes; C gets 1 vote
$\left.\begin{array}{|c|c|c|}\hline \text { Orderings } & \text { Pivot } \\ \hline A & B & C \\ A & C & B \\ B & A & C \\ B & C & A \\ C & A & A \\ C & B & A\end{array}\right) A$
- A's index is $\frac{4}{6}$
- B's index is $\frac{1}{6}$

The Shapley-Shubik Power Index

- Consider $[6: 5,3,1]$
- Motion needs 6 votes to pass
- A gets 5 votes; B gets 3 votes; C gets 1 vote
$\left.\begin{array}{|c|c|c|}\hline \text { Orderings } & \text { Pivot } \\ \hline A & B & C \\ A & C & B \\ B & A & C \\ B & C & A \\ C & A & B \\ C & B & A\end{array}\right) A$
- A's index is $\frac{4}{6}$
- B's index is $\frac{1}{6}$
- C's index is $\frac{1}{6}$

The Shapley-Shubik Power Index

- Consider $[6: 5,3,1]$
- Motion needs 6 votes to pass
- A gets 5 votes; B gets 3 votes; C gets 1 vote
$\left.\begin{array}{|c|c|c|}\hline \text { Orderings } & \text { Pivot } \\ \hline A & B & C \\ A & C & B \\ B & A & C \\ B & C & A \\ C & A & B \\ C & B & A\end{array}\right) A$
- A's index is $\frac{4}{6}$
- B's index is $\frac{1}{6}$
- C's index is $\frac{1}{6}$
- B and C have the same power

The Shapley-Shubik Power Index

Consider $[5 ; 5,2,1]$

The Shapley-Shubik Power Index

Consider $[5 ; 5,2,1]$

Orderings	Pivot	
A	B	C
A	C	B
B	A	C
B	A	A
C	A	B
C	B	A

The Shapley-Shubik Power Index

Consider $[5 ; 5,2,1]$

Orderings	Pivot	
A	B	C
A	C	B
B	A	C
B	A	A
C	A	B
C	B	A

- So A has index 1 , and B and C have index 0

The Shapley-Shubik Power Index

Consider $[5 ; 5,2,1]$

Orderings	Pivot	
A	B	C
A	C	B
B	A	C
B	A	A
C	A	B
C	B	A

- So A has index 1 , and B and C have index 0
- Dictator's have index 1

The Shapley-Shubik Power Index

Consider $[5 ; 5,2,1]$

Orderings	Pivot	
A	B	C
A	C	B
B	A	C
B	A	A
C	A	B
C	B	A

- So A has index 1 , and B and C have index 0
- Dictator's have index 1
- Dummy voters have index 0

The Shapley-Shubik Power Index

- Nevada's (5) index is . 90%

The Shapley-Shubik Power Index

- Nevada's (5) index is . 90%
- Maryland's (10) index is 1.82%

The Shapley-Shubik Power Index

- Nevada's (5) index is . 90%
- Maryland's (10) index is 1.82%
- Pennsylvania's (20) index is 3.91\%

The Shapley-Shubik Power Index

- Nevada's (5) index is .90\%
- Maryland's (10) index is 1.82%
- Pennsylvania's (20) index is 3.91\%
- Texas' (38) index is 6.50%

