

 Weighted voting is any voting system where different voters' votes matter differently

(ロ)、(型)、(E)、(E)、 E) の(の)

- Weighted voting is any voting system where different voters' votes matter differently
- Examples: electoral colleges, shareholders' meetings, U.N. Security Council, parliaments

- Weighted voting is any voting system where different voters' votes matter differently
- Examples: electoral colleges, shareholders' meetings, U.N. Security Council, parliaments

Voter P_i's vote has weight w_i

- Weighted voting is any voting system where different voters' votes matter differently
- Examples: electoral colleges, shareholders' meetings, U.N. Security Council, parliaments

- Voter P_i's vote has weight w_i
- Total number of votes is $V = w_1 + w_2 + \ldots + w_N$

- Weighted voting is any voting system where different voters' votes matter differently
- Examples: electoral colleges, shareholders' meetings, U.N. Security Council, parliaments

- Voter P_i's vote has weight w_i
- Total number of votes is $V = w_1 + w_2 + \ldots + w_N$
- There is a quota q
 - Number of votes needed to pass a motion

- Weighted voting is any voting system where different voters' votes matter differently
- Examples: electoral colleges, shareholders' meetings, U.N. Security Council, parliaments
- Voter P_i's vote has weight w_i
- Total number of votes is $V = w_1 + w_2 + \ldots + w_N$
- There is a quota q
 - Number of votes needed to pass a motion
- ▶ Notation for a weighted voting system is $[q: w_1, ..., w_N]$

A coalition is any non-empty set of voters

- A coalition is any non-empty set of voters
- ► A winning coalition is a coalition whose weight is at least q

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- A coalition is any non-empty set of voters
- ► A winning coalition is a coalition whose weight is at least q

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

They have enough votes to win

- A coalition is any non-empty set of voters
- ▶ A winning coalition is a coalition whose weight is at least q

・ロト・日本・モート モー うへぐ

- They have enough votes to win
- Otherwise, the coalition is a losing coalition

- A coalition is any non-empty set of voters
- ► A winning coalition is a coalition whose weight is at least q

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- They have enough votes to win
- Otherwise, the coalition is a losing coalition
- The set of all voters is called the grand coalition

Consider [58; 30, 30, 25, 20, 5, 1]

- Consider [58; 30, 30, 25, 20, 5, 1]
- ▶ $\{P_2, P_3, P_5\}$, $\{P_1\}$ and $\{P_1, P_4, P_5, P_6\}$ are all coalitions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Consider [58; 30, 30, 25, 20, 5, 1]
- ▶ $\{P_2, P_3, P_5\}$, $\{P_1\}$ and $\{P_1, P_4, P_5, P_6\}$ are all coalitions

▶ $\{P_2, P_3, P_5\}$ is

- Consider [58; 30, 30, 25, 20, 5, 1]
- $\{P_2, P_3, P_5\}, \{P_1\}$ and $\{P_1, P_4, P_5, P_6\}$ are all coalitions
- $\{P_2, P_3, P_5\}$ is a winning coalition since 30 + 25 + 5 = 60 > 58

- Consider [58; 30, 30, 25, 20, 5, 1]
- $\{P_2, P_3, P_5\}, \{P_1\}$ and $\{P_1, P_4, P_5, P_6\}$ are all coalitions
- $\{P_2, P_3, P_5\}$ is a winning coalition since 30 + 25 + 5 = 60 > 58

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\{P_1, P_4, P_5, P_6\}$ is

- Consider [58; 30, 30, 25, 20, 5, 1]
- $\{P_2, P_3, P_5\}, \{P_1\}$ and $\{P_1, P_4, P_5, P_6\}$ are all coalitions
- $\{P_2, P_3, P_5\}$ is a winning coalition since 30+25+5=60>58

► {P₁, P₄, P₅, P₆} is a losing coalition since 30 + 20 + 5 + 1 = 56 < 58</p>

Question: How many different possible coalitions are there? $\blacktriangleright N = 1$:

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Question: How many different possible coalitions are there?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

►
$$N = 1$$
:

• one coalition: $\{P_1\}$

Question: How many different possible coalitions are there?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Question: How many different possible coalitions are there?

- ► *N* = 1:
 - one coalition: $\{P_1\}$
- ► *N* = 2:
 - three coalitions: $\{P_1\}$, $\{P_2\}$, and $\{P_1, P_2\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question: How many different possible coalitions are there?

- ► *N* = 1:
 - one coalition: $\{P_1\}$
- ► *N* = 2:
 - three coalitions: $\{P_1\}$, $\{P_2\}$, and $\{P_1, P_2\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Arbitrary N:

Question: How many different possible coalitions are there?

- ► *N* = 1:
 - one coalition: $\{P_1\}$
- ► *N* = 2:
 - three coalitions: $\{P_1\}$, $\{P_2\}$, and $\{P_1, P_2\}$
- Arbitrary N:
 - There are 2 options of whether P_i is in a coalition or not

Question: How many different possible coalitions are there?

- ► *N* = 1:
 - one coalition: $\{P_1\}$
- ► *N* = 2:
 - three coalitions: $\{P_1\}$, $\{P_2\}$, and $\{P_1, P_2\}$
- Arbitrary N:
 - There are 2 options of whether P_i is in a coalition or not
 - ► There are 2^N options for whether or not N voters are in a coalition

Question: How many different possible coalitions are there?

- $\blacktriangleright N = 1:$
 - one coalition: $\{P_1\}$
- ► *N* = 2:
 - three coalitions: $\{P_1\}$, $\{P_2\}$, and $\{P_1, P_2\}$
- Arbitrary N:
 - There are 2 options of whether P_i is in a coalition or not
 - ► There are 2^N options for whether or not N voters are in a coalition

The empty set is not a coalition

Question: How many different possible coalitions are there?

- ► *N* = 1:
 - one coalition: $\{P_1\}$
- ► *N* = 2:
 - three coalitions: $\{P_1\}$, $\{P_2\}$, and $\{P_1, P_2\}$
- Arbitrary N:
 - There are 2 options of whether P_i is in a coalition or not
 - ► There are 2^N options for whether or not N voters are in a coalition

- The empty set is not a coalition
- There are $2^N 1$ coalitions

$Consider \; [3;2,1,1]$

<□> <@> < 글> < 글> < 글> < 글 <) < <

$Consider \; [3; 2, 1, 1]$

Coalition	# of Votes	Winning/Losing
$\{P_1\}$	2	
$\{P_2\}$	1	
{ <i>P</i> ₃ }	1	
$\{P_1, P_2\}$	3	
$\{P_1, P_3\}$	3	
$\{P_2, P_3\}$	2	
$\{P_1, P_2, P_3\}$	5	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$Consider \; [3; 2, 1, 1]$

Coalition	# of Votes	Winning/Losing	
$\{P_1\}$	2	Losing	
$\{P_2\}$	1	Losing	
$\{P_3\}$	1	Losing	
$\{P_1, P_2\}$	3	Winning	
$\{P_1, P_3\}$	3	Winning	
$\{P_2, P_3\}$	2	Losing	
$\{P_1, P_2, P_3\}$	5	Winning	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$Consider \ [3;2,1,1]$

Coalition	# of Votes	Winning/Losing	
$\{P_1\}$	2	Losing	
$\{P_2\}$	1	Losing	
$\{P_3\}$	1	Losing	
$\{P_1, P_2\}$	3	Winning	
$\{P_1, P_3\}$	3	Winning	
$\{P_2, P_3\}$	2	Losing	
$\{P_1, P_2, P_3\}$	5	Winning	

Note that P_1 has veto power (it is in every winning coalition)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider [10; 5, 5, 4] and [60; 44, 22, 11]

Consider [10; 5, 5, 4] and [60; 44, 22, 11]

	[10;5,5,4]		[60;44,22,11]	
Coalition	# of Votes	W/L	# of Votes	W/L
{ <i>P</i> ₁ }	5			
$\{P_2\}$	5			
{ <i>P</i> ₃ }	4			
$\{P_1, P_2\}$	10			
$\{P_1, P_3\}$	9			
$\{P_2, P_3\}$	9			
$\{P_1, P_2, P_3\}$	14			

Consider [10; 5, 5, 4] and [60; 44, 22, 11]

	[10;5,5,4]		[10;5,5,4] [60;44,22,11		2,11]
Coalition	# of Votes	W/L	# of Votes	W/L	
{ <i>P</i> ₁ }	5	Losing			
$\{P_2\}$	5	Losing			
{ <i>P</i> ₃ }	4	Losing			
$\{P_1, P_2\}$	10	Winning			
$\{P_1, P_3\}$	9	Losing			
$\{P_2, P_3\}$	9	Losing			
$\{P_1, P_2, P_3\}$	14	Winning			

Consider [10; 5, 5, 4] and [60; 44, 22, 11]

	[10;5,5,4]		[60;44,22,11]	
Coalition	# of Votes	W/L	# of Votes	W/L
{ <i>P</i> ₁ }	5	Losing	44	
$\{P_2\}$	5	Losing	22	
{ <i>P</i> ₃ }	4	Losing	11	
$\{P_1, P_2\}$	10	Winning	66	
$\{P_1, P_3\}$	9	Losing	55	
$\{P_2, P_3\}$	9	Losing	33	
$\{P_1, P_2, P_3\}$	14	Winning	77	

Consider [10; 5, 5, 4] and [60; 44, 22, 11]

	[10;5,5,4]		[60;44,22,11]	
Coalition	# of Votes	W/L	# of Votes	W/L
$\{P_1\}$	5	Losing	44	Losing
$\{P_2\}$	5	Losing	22	Losing
{ <i>P</i> ₃ }	4	Losing	11	Losing
$\{P_1, P_2\}$	10	Winning	66	Winning
$\{P_1, P_3\}$	9	Losing	55	Losing
$\{P_2, P_3\}$	9	Losing	33	Losing
$\{P_1, P_2, P_3\}$	14	Winning	77	Winning

Consider [10; 5, 5, 4] and [60; 44, 22, 11]

Want to consider how power is distributed among the three voters

	[10;5,5,4]		[60;44,22,11]	
Coalition	# of Votes	W/L	# of Votes	W/L
{ <i>P</i> ₁ }	5	Losing	44	Losing
$\{P_2\}$	5	Losing	22	Losing
{ <i>P</i> ₃ }	4	Losing	11	Losing
$\{P_1, P_2\}$	10	Winning	66	Winning
$\{P_1, P_3\}$	9	Losing	55	Losing
$\{P_2, P_3\}$	9	Losing	33	Losing
$\{P_1, P_2, P_3\}$	14	Winning	77	Winning

The weighted voting systems have the same winning coalitions

Consider [10; 5, 5, 4] and [60; 44, 22, 11]

Want to consider how power is distributed among the three voters

	[10;5,5,4]		[60;44,22,11]	
Coalition	# of Votes	W/L	# of Votes	W/L
{ <i>P</i> ₁ }	5	Losing	44	Losing
$\{P_2\}$	5	Losing	22	Losing
{ <i>P</i> ₃ }	4	Losing	11	Losing
$\{P_1, P_2\}$	10	Winning	66	Winning
$\{P_1, P_3\}$	9	Losing	55	Losing
$\{P_2, P_3\}$	9	Losing	33	Losing
$\{P_1, P_2, P_3\}$	14	Winning	77	Winning

The weighted voting systems have the same winning coalitions These weighted voting systems are said to be **equivalent**

• How can we tell if P_1 is a dictator?

- ▶ How can we tell if *P*¹ is a dictator?
- How can we tell if P_N is a dummy voter?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ▶ How can we tell if *P*¹ is a dictator?
- How can we tell if P_N is a dummy voter?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ Consider [5; 5, 2, 2]

- ▶ How can we tell if *P*¹ is a dictator?
- How can we tell if P_N is a dummy voter?
- ▶ Consider [5; 5, 2, 2]

Coalition	# of Votes	Winning/Losing
{ <i>P</i> ₁ }	5	
$\{P_2\}$	2	
{ <i>P</i> ₃ }	2	
$\{P_1, P_2\}$	7	
$\{P_1, P_3\}$	7	
$\{P_2, P_3\}$	4	
$\{P_1, P_2, P_3\}$	9	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ How can we tell if *P*¹ is a dictator?
- How can we tell if P_N is a dummy voter?
- ▶ Consider [5; 5, 2, 2]

Coalition	# of Votes	Winning/Losing
$\{P_1\}$	5	Winning
$\{P_2\}$	2	Losing
{ <i>P</i> ₃ }	2	Losing
$\{P_1, P_2\}$	7	Winning
$\{P_1, P_3\}$	7	Winning
$\{P_2, P_3\}$	4	Losing
$\{P_1, P_2, P_3\}$	9	Winning

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ How can we tell if *P*¹ is a dictator?
- How can we tell if P_N is a dummy voter?
- ▶ Consider [5; 5, 2, 2]

Coalition	# of Votes	Winning/Losing
$\{P_1\}$	5	Winning
$\{P_2\}$	2	Losing
$\{P_3\}$	2	Losing
$\{P_1, P_2\}$	7	Winning
$\{P_1, P_3\}$	7	Winning
$\{P_2, P_3\}$	4	Losing
$\{P_1, P_2, P_3\}$	9	Winning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 P_1 is a dictator if $\{P_1\}$ is a winning strategy

- ▶ How can we tell if *P*¹ is a dictator?
- How can we tell if P_N is a dummy voter?
- ▶ Consider [5; 5, 2, 2]

Coalition	# of Votes	Winning/Losing
$\{P_1\}$	5	Winning
$\{P_2\}$	2	Losing
$\{P_3\}$	2	Losing
$\{P_1, P_2\}$	7	Winning
$\{P_1, P_3\}$	7	Winning
$\{P_2, P_3\}$	4	Losing
$\{P_1, P_2, P_3\}$	9	Winning

 P_1 is a dictator if $\{P_1\}$ is a winning strategy

 ${\cal P}_{\cal N}$ is a dummy voter if their removal from any winning coalition is still a winning coalition

P_i is a **critical member** of a coalition if:

► *P_i* is a **critical member** of a coalition if:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

it is a winning coalition

- ► *P_i* is a **critical member** of a coalition if:
 - it is a winning coalition
 - if P_i leaves, it is a losing coalition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

P_i is a **critical member** of a coalition if:

- it is a winning coalition
- if P_i leaves, it is a losing coalition
- Consider [10; 7, 5, 4]

Coalition	# of Votes	W/L	Crit. Members
$\{P_1\}$	7		
$\{P_2\}$	5		
{ <i>P</i> ₃ }	4		
$\{P_1, P_2\}$	12		
$\{P_1, P_3\}$	11		
$\{P_2, P_3\}$	9		
$\{P_1, P_2, P_3\}$	16		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

P_i is a critical member of a coalition if:

- it is a winning coalition
- if P_i leaves, it is a losing coalition
- Consider [10; 7, 5, 4]

Coalition	# of Votes	W/L	Crit. Members
$\{P_1\}$	7	Losing	
$\{P_2\}$	5	Losing	
$\{P_3\}$	4	Losing	
$\{P_1, P_2\}$	12	Winning	
$\{P_1, P_3\}$	11	Winning	
$\{P_2, P_3\}$	9	Losing	
$\{P_1, P_2, P_3\}$	16	Winning	

P_i is a critical member of a coalition if:

- it is a winning coalition
- if P_i leaves, it is a losing coalition
- Consider [10; 7, 5, 4]

Coalition	# of Votes	W/L	Crit. Members
$\{P_1\}$	7	Losing	
$\{P_2\}$	5	Losing	
$\{P_3\}$	4	Losing	
$\{P_1, P_2\}$	12	Winning	P_1, P_2
$\{P_1, P_3\}$	11	Winning	P_{1}, P_{3}
$\{P_2, P_3\}$	9	Losing	
$\{P_1, P_2, P_3\}$	16	Winning	P_1

The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"
- Banzhaf wanted to quantify that the Nassau County Board's voting system was unfair

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"
- Banzhaf wanted to quantify that the Nassau County Board's voting system was unfair
 - Districts were given a weighted vote based on their population

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"
- Banzhaf wanted to quantify that the Nassau County Board's voting system was unfair
 - Districts were given a weighted vote based on their population

▶ The voting system was [16; 9, 9, 7, 3, 1, 1]

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"
- Banzhaf wanted to quantify that the Nassau County Board's voting system was unfair
 - Districts were given a weighted vote based on their population

- The voting system was [16; 9, 9, 7, 3, 1, 1]
- Banzhaf argued that 16% of the population had 0% of the power

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"
- Banzhaf wanted to quantify that the Nassau County Board's voting system was unfair
 - Districts were given a weighted vote based on their population
 - The voting system was [16; 9, 9, 7, 3, 1, 1]
 - Banzhaf argued that 16% of the population had 0% of the power
- The Banzhaf Index of P_i is

 $\beta(P_i) = \frac{\# \text{ of times } P_i \text{ is crit.}}{\# \text{ of crit. members over all coalitions}}$

▶ Consider [10; 7, 5, 4] again

▶ Consider [10; 7, 5, 4] again

Coalition	# of Votes	W/L	Crit. Members
$\{P_1\}$	7	Losing	
$\{P_2\}$	5	Losing	
$\{P_3\}$	4	Losing	
$\{P_1, P_2\}$	12	Winning	P_{1}, P_{2}
$\{P_1, P_3\}$	11	Winning	P_{1}, P_{3}
$\{P_2, P_3\}$	9	Losing	
$\{P_1, P_2, P_3\}$	16	Winning	P_1

Consider [10; 7, 5, 4] again

Coalition	# of Votes	W/L	Crit. Members
$\{P_1\}$	7	Losing	
$\{P_2\}$	5	Losing	
$\{P_3\}$	4	Losing	
$\{P_1, P_2\}$	12	Winning	P_{1}, P_{2}
$\{P_1, P_3\}$	11	Winning	P_{1}, P_{3}
$\{P_2, P_3\}$	9	Losing	
$\{P_1, P_2, P_3\}$	16	Winning	P_1

 $\blacktriangleright \ \beta(P_1) = \frac{3}{5}$

Consider [10; 7, 5, 4] again

Coalition	# of Votes	W/L	Crit. Members
$\{P_1\}$	7	Losing	
$\{P_2\}$	5	Losing	
$\{P_3\}$	4	Losing	
$\{P_1, P_2\}$	12	Winning	P_{1}, P_{2}
$\{P_1, P_3\}$	11	Winning	P_{1}, P_{3}
$\{P_2, P_3\}$	9	Losing	
$\{P_1, P_2, P_3\}$	16	Winning	P_1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\beta(P_1) = \frac{3}{5}$ $\beta(P_2) = \frac{1}{5}$

Consider [10; 7, 5, 4] again

Coalition	# of Votes	W/L	Crit. Members
$\{P_1\}$	7	Losing	
$\{P_2\}$	5	Losing	
$\{P_3\}$	4	Losing	
$\{P_1, P_2\}$	12	Winning	P_{1}, P_{2}
$\{P_1, P_3\}$	11	Winning	P_{1}, P_{3}
$\{P_2, P_3\}$	9	Losing	
$\{P_1, P_2, P_3\}$	16	Winning	P_1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• $\beta(P_1) = \frac{3}{5}$ • $\beta(P_2) = \frac{1}{5}$ • $\beta(P_3) = \frac{1}{5}$

Examples:

U.N. Security Council

Examples:

- U.N. Security Council
 - ▶ 5 permanent members:
 - China, France, Russia, United Kingdom, United States

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples:

- U.N. Security Council
 - 5 permanent members:
 - China, France, Russia, United Kingdom, United States
 - ▶ 10 non-permanent members:
 - Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo

Examples:

- U.N. Security Council
 - 5 permanent members:
 - China, France, Russia, United Kingdom, United States
 - 10 non-permanent members:
 - Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo

Each member has one vote

Examples:

- U.N. Security Council
 - 5 permanent members:
 - China, France, Russia, United Kingdom, United States
 - 10 non-permanent members:
 - Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo

- Each member has one vote
- Require nine votes to pass a motion

Examples:

- U.N. Security Council
 - 5 permanent members:
 - China, France, Russia, United Kingdom, United States
 - 10 non-permanent members:
 - Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo

- Each member has one vote
- Require nine votes to pass a motion
- Permanent members have veto power

Want to compute Banzhaf Indices

Want to compute Banzhaf Indices

• Slight problem: there are $2^{15} - 1 = 32,767$ coalitions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Want to compute Banzhaf Indices
 - Slight problem: there are $2^{15} 1 = 32,767$ coalitions

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Only count winning coalitions

- Want to compute Banzhaf Indices
 - Slight problem: there are $2^{15} 1 = 32,767$ coalitions
- Only count winning coalitions
- Winning coalitions are comprised of all 5 permanent members, and at least 4 of the 10 non-permanent members

- Want to compute Banzhaf Indices
 - Slight problem: there are $2^{15} 1 = 32,767$ coalitions
- Only count winning coalitions
- Winning coalitions are comprised of all 5 permanent members, and at least 4 of the 10 non-permanent members

There are 848 winning coalitions

- Want to compute Banzhaf Indices
 - Slight problem: there are $2^{15} 1 = 32,767$ coalitions
- Only count winning coalitions
- Winning coalitions are comprised of all 5 permanent members, and at least 4 of the 10 non-permanent members

- There are 848 winning coalitions
- Permanent members are critical members of all winning coalitions

- Want to compute Banzhaf Indices
 - Slight problem: there are $2^{15} 1 = 32,767$ coalitions
- Only count winning coalitions
- Winning coalitions are comprised of all 5 permanent members, and at least 4 of the 10 non-permanent members

- There are 848 winning coalitions
- Permanent members are critical members of all winning coalitions
- Non-permanent member if they, and exactly 3 other non-permanent members are in the coalition

- Want to compute Banzhaf Indices
 - Slight problem: there are $2^{15} 1 = 32,767$ coalitions
- Only count winning coalitions
- Winning coalitions are comprised of all 5 permanent members, and at least 4 of the 10 non-permanent members

- There are 848 winning coalitions
- Permanent members are critical members of all winning coalitions
- Non-permanent member if they, and exactly 3 other non-permanent members are in the coalition
 - 84 such coalitions

Permanent members have Banzhaf Index

 $\frac{848}{5\cdot 848 + 10\cdot 84} = \frac{848}{5080} \approx 16.69\%$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Permanent members have Banzhaf Index

$$\frac{848}{5\cdot848+10\cdot84} = \frac{848}{5080} \approx 16.69\%$$

Non-permanent members have Banzhaf Index

$$\frac{84}{5080}\approx 1.65\%$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Electoral Votes

Electoral votes of certain states:

Electoral votes of certain states:

State	# of E.V.	% of E.V.	SS Index	B Index
Nevada	5	0.93%	0.93%	0.90%
Maryland	10	1.86%	1.86%	1.82%
Pennsylvania	20	3.72%	3.72%	3.91%
Texas	38	7.06%	6.39%	6.50%