Review

- Weighted voting is any voting system where different voters' votes matter differently

Review

- Weighted voting is any voting system where different voters' votes matter differently
- Examples: electoral colleges, shareholders' meetings, U.N. Security Council, parliaments

Review

- Weighted voting is any voting system where different voters' votes matter differently
- Examples: electoral colleges, shareholders' meetings, U.N. Security Council, parliaments
- Voter P_{i} 's vote has weight w_{i}

Review

- Weighted voting is any voting system where different voters' votes matter differently
- Examples: electoral colleges, shareholders' meetings, U.N. Security Council, parliaments
- Voter P_{i} 's vote has weight w_{i}
- Total number of votes is $V=w_{1}+w_{2}+\ldots+w_{N}$

Review

- Weighted voting is any voting system where different voters' votes matter differently
- Examples: electoral colleges, shareholders' meetings, U.N. Security Council, parliaments
- Voter P_{i} 's vote has weight w_{i}
- Total number of votes is $V=w_{1}+w_{2}+\ldots+w_{N}$
- There is a quota q
- Number of votes needed to pass a motion

Review

- Weighted voting is any voting system where different voters' votes matter differently
- Examples: electoral colleges, shareholders' meetings, U.N. Security Council, parliaments
- Voter P_{i} 's vote has weight w_{i}
- Total number of votes is $V=w_{1}+w_{2}+\ldots+w_{N}$
- There is a quota q
- Number of votes needed to pass a motion
- Notation for a weighted voting system is $\left[q: w_{1}, \ldots, w_{N}\right]$

Coalitions

- A coalition is any non-empty set of voters

Coalitions

- A coalition is any non-empty set of voters
- A winning coalition is a coalition whose weight is at least q

Coalitions

- A coalition is any non-empty set of voters
- A winning coalition is a coalition whose weight is at least q
- They have enough votes to win

Coalitions

- A coalition is any non-empty set of voters
- A winning coalition is a coalition whose weight is at least q
- They have enough votes to win
- Otherwise, the coalition is a losing coalition

Coalitions

- A coalition is any non-empty set of voters
- A winning coalition is a coalition whose weight is at least q
- They have enough votes to win
- Otherwise, the coalition is a losing coalition
- The set of all voters is called the grand coalition

Example

- Consider $[58 ; 30,30,25,20,5,1]$

Example

- Consider [58; 30, 30, 25, 20, 5, 1]
- $\left\{P_{2}, P_{3}, P_{5}\right\},\left\{P_{1}\right\}$ and $\left\{P_{1}, P_{4}, P_{5}, P_{6}\right\}$ are all coalitions

Example

- Consider $[58 ; 30,30,25,20,5,1]$
- $\left\{P_{2}, P_{3}, P_{5}\right\},\left\{P_{1}\right\}$ and $\left\{P_{1}, P_{4}, P_{5}, P_{6}\right\}$ are all coalitions
- $\left\{P_{2}, P_{3}, P_{5}\right\}$ is

Example

- Consider [58; 30, 30, 25, 20, 5, 1]
- $\left\{P_{2}, P_{3}, P_{5}\right\},\left\{P_{1}\right\}$ and $\left\{P_{1}, P_{4}, P_{5}, P_{6}\right\}$ are all coalitions
- $\left\{P_{2}, P_{3}, P_{5}\right\}$ is a winning coalition since $30+25+5=60>58$

Example

- Consider $[58 ; 30,30,25,20,5,1]$
- $\left\{P_{2}, P_{3}, P_{5}\right\},\left\{P_{1}\right\}$ and $\left\{P_{1}, P_{4}, P_{5}, P_{6}\right\}$ are all coalitions
- $\left\{P_{2}, P_{3}, P_{5}\right\}$ is a winning coalition since $30+25+5=60>58$
- $\left\{P_{1}, P_{4}, P_{5}, P_{6}\right\}$ is

Example

- Consider [58; 30, 30, 25, 20, 5, 1]
- $\left\{P_{2}, P_{3}, P_{5}\right\},\left\{P_{1}\right\}$ and $\left\{P_{1}, P_{4}, P_{5}, P_{6}\right\}$ are all coalitions
- $\left\{P_{2}, P_{3}, P_{5}\right\}$ is a winning coalition since $30+25+5=60>58$
- $\left\{P_{1}, P_{4}, P_{5}, P_{6}\right\}$ is a losing coalition since

$$
30+20+5+1=56<58
$$

Enumeration

Question: How many different possible coalitions are there?

- $N=1$:

Enumeration

Question: How many different possible coalitions are there?

- $N=1$:
- one coalition: $\left\{P_{1}\right\}$

Enumeration

Question: How many different possible coalitions are there?

- $N=1$:
- one coalition: $\left\{P_{1}\right\}$
- $N=2$:

Enumeration

Question: How many different possible coalitions are there?

- $N=1$:
- one coalition: $\left\{P_{1}\right\}$
- $N=2$:
- three coalitions: $\left\{P_{1}\right\},\left\{P_{2}\right\}$, and $\left\{P_{1}, P_{2}\right\}$

Enumeration

Question: How many different possible coalitions are there?

- $N=1$:
- one coalition: $\left\{P_{1}\right\}$
- $N=2$:
- three coalitions: $\left\{P_{1}\right\},\left\{P_{2}\right\}$, and $\left\{P_{1}, P_{2}\right\}$
- Arbitrary N :

Enumeration

Question: How many different possible coalitions are there?

- $N=1$:
- one coalition: $\left\{P_{1}\right\}$
- $N=2$:
- three coalitions: $\left\{P_{1}\right\},\left\{P_{2}\right\}$, and $\left\{P_{1}, P_{2}\right\}$
- Arbitrary N :
- There are 2 options of whether P_{i} is in a coalition or not

Enumeration

Question: How many different possible coalitions are there?

- $N=1$:
- one coalition: $\left\{P_{1}\right\}$
- $N=2$:
- three coalitions: $\left\{P_{1}\right\},\left\{P_{2}\right\}$, and $\left\{P_{1}, P_{2}\right\}$
- Arbitrary N :
- There are 2 options of whether P_{i} is in a coalition or not
- There are 2^{N} options for whether or not N voters are in a coalition

Enumeration

Question: How many different possible coalitions are there?

- $N=1$:
- one coalition: $\left\{P_{1}\right\}$
- $N=2$:
- three coalitions: $\left\{P_{1}\right\},\left\{P_{2}\right\}$, and $\left\{P_{1}, P_{2}\right\}$
- Arbitrary N :
- There are 2 options of whether P_{i} is in a coalition or not
- There are 2^{N} options for whether or not N voters are in a coalition
- The empty set is not a coalition

Enumeration

Question: How many different possible coalitions are there?

- $N=1$:
- one coalition: $\left\{P_{1}\right\}$
- $N=2$:
- three coalitions: $\left\{P_{1}\right\},\left\{P_{2}\right\}$, and $\left\{P_{1}, P_{2}\right\}$
- Arbitrary N :
- There are 2 options of whether P_{i} is in a coalition or not
- There are 2^{N} options for whether or not N voters are in a coalition
- The empty set is not a coalition
- There are $2^{N}-1$ coalitions

Example

Consider $[3 ; 2,1,1]$

Example

Consider $[3 ; 2,1,1]$

Coalition	\# of Votes	Winning/Losing
$\left\{P_{1}\right\}$	2	
$\left\{P_{2}\right\}$	1	
$\left\{P_{3}\right\}$	1	
$\left\{P_{1}, P_{2}\right\}$	3	
$\left\{P_{1}, P_{3}\right\}$	3	
$\left\{P_{2}, P_{3}\right\}$	2	
$\left\{P_{1}, P_{2}, P_{3}\right\}$	5	

Example

Consider $[3 ; 2,1,1]$

Coalition	\# of Votes	Winning/Losing
$\left\{P_{1}\right\}$	2	Losing
$\left\{P_{2}\right\}$	1	Losing
$\left\{P_{3}\right\}$	1	Losing
$\left\{P_{1}, P_{2}\right\}$	3	Winning
$\left\{P_{1}, P_{3}\right\}$	3	Winning
$\left\{P_{2}, P_{3}\right\}$	2	Losing
$\left\{P_{1}, P_{2}, P_{3}\right\}$	5	Winning

Example

Consider $[3 ; 2,1,1]$

Coalition	\# of Votes	Winning/Losing
$\left\{P_{1}\right\}$	2	Losing
$\left\{P_{2}\right\}$	1	Losing
$\left\{P_{3}\right\}$	1	Losing
$\left\{P_{1}, P_{2}\right\}$	3	Winning
$\left\{P_{1}, P_{3}\right\}$	3	Winning
$\left\{P_{2}, P_{3}\right\}$	2	Losing
$\left\{P_{1}, P_{2}, P_{3}\right\}$	5	Winning

Note that P_{1} has veto power (it is in every winning coalition)

Examples

Consider $[10 ; 5,5,4]$ and $[60 ; 44,22,11]$

Examples

Consider [10; 5, 5, 4] and [$60 ; 44,22,11$]
Want to consider how power is distributed among the three voters

Coalition	\# of Votes $[10 ; 5,5,4]$	\mathbf{W} / \mathbf{L}		\# of Votes $\mathbf{~ W}$ W4,2,11]
$\left\{P_{1}\right\}$	5			
$\left\{P_{2}\right\}$	5			
$\left\{P_{3}\right\}$	4			
$\left\{P_{1}, P_{2}\right\}$	10			
$\left\{P_{1}, P_{3}\right\}$	9			
$\left\{P_{2}, P_{3}\right\}$	9			
$\left\{P_{1}, P_{2}, P_{3}\right\}$	14			

Examples

Consider [10; 5, 5, 4] and [$60 ; 44,22,11$]
Want to consider how power is distributed among the three voters

Coalition	$[10 ; 5,5,4]$		$[60 ; 44,22,11]$	
\# of Votes	\mathbf{W} / \mathbf{L}	\# of Votes \mathbf{W} / \mathbf{L}		
$\left\{P_{1}\right\}$	5	Losing		
$\left\{P_{2}\right\}$	5	Losing		
$\left\{P_{3}\right\}$	4	Losing		
$\left\{P_{1}, P_{2}\right\}$	10	Winning		
$\left\{P_{1}, P_{3}\right\}$	9	Losing		
$\left\{P_{2}, P_{3}\right\}$	9	Losing		
$\left\{P_{1}, P_{2}, P_{3}\right\}$	14	Winning		

Examples

Consider [10; 5, 5, 4] and [$60 ; 44,22,11$]
Want to consider how power is distributed among the three voters

Coalition	[10;5,5,4]		$[60 ; 44,22,11]$	
\# Votes	\mathbf{W} / \mathbf{L}	\# of Votes \mathbf{W} / \mathbf{L}		
$\left\{P_{1}\right\}$	5	Losing	44	
$\left\{P_{2}\right\}$	5	Losing	22	
$\left\{P_{3}\right\}$	4	Losing	11	
$\left\{P_{1}, P_{2}\right\}$	10	Winning	66	
$\left\{P_{1}, P_{3}\right\}$	9	Losing	55	
$\left\{P_{2}, P_{3}\right\}$	9	Losing	33	
$\left\{P_{1}, P_{2}, P_{3}\right\}$	14	Winning	77	

Examples

Consider [10; 5, 5, 4] and [$60 ; 44,22,11$]
Want to consider how power is distributed among the three voters

	$[10 ; 5,5,4]$		$[60 ; 44,22,11]$	
Coalition	\# of Votes	\mathbf{W} / \mathbf{L}	\# of Votes	\mathbf{W} / \mathbf{L}
$\left\{P_{1}\right\}$	5	Losing	44	Losing
$\left\{P_{2}\right\}$	5	Losing	22	Losing
$\left\{P_{3}\right\}$	4	Losing	11	Losing
$\left\{P_{1}, P_{2}\right\}$	10	Winning	66	Winning
$\left\{P_{1}, P_{3}\right\}$	9	Losing	55	Losing
$\left\{P_{2}, P_{3}\right\}$	9	Losing	33	Losing
$\left\{P_{1}, P_{2}, P_{3}\right\}$	14	Winning	77	Winning

Examples

Consider [10; 5, 5, 4] and [$60 ; 44,22,11$]
Want to consider how power is distributed among the three voters

	$[10 ; 5,5,4]$		$[60 ; 44,22,11]$	
Coalition	\# of Votes	\mathbf{W} / \mathbf{L}	\# of Votes	\mathbf{W} / \mathbf{L}
$\left\{P_{1}\right\}$	5	Losing	44	Losing
$\left\{P_{2}\right\}$	5	Losing	22	Losing
$\left\{P_{3}\right\}$	4	Losing	11	Losing
$\left\{P_{1}, P_{2}\right\}$	10	Winning	66	Winning
$\left\{P_{1}, P_{3}\right\}$	9	Losing	55	Losing
$\left\{P_{2}, P_{3}\right\}$	9	Losing	33	Losing
$\left\{P_{1}, P_{2}, P_{3}\right\}$	14	Winning	77	Winning

The weighted voting systems have the same winning coalitions

Examples

Consider [10; 5, 5, 4] and [$60 ; 44,22,11$]
Want to consider how power is distributed among the three voters

	$[10 ; 5,5,4]$		$[60 ; 44,22,11]$	
Coalition	\# of Votes	\mathbf{W} / \mathbf{L}	\# of Votes	\mathbf{W} / \mathbf{L}
$\left\{P_{1}\right\}$	5	Losing	44	Losing
$\left\{P_{2}\right\}$	5	Losing	22	Losing
$\left\{P_{3}\right\}$	4	Losing	11	Losing
$\left\{P_{1}, P_{2}\right\}$	10	Winning	66	Winning
$\left\{P_{1}, P_{3}\right\}$	9	Losing	55	Losing
$\left\{P_{2}, P_{3}\right\}$	9	Losing	33	Losing
$\left\{P_{1}, P_{2}, P_{3}\right\}$	14	Winning	77	Winning

The weighted voting systems have the same winning coalitions These weighted voting systems are said to be equivalent

Coalitions

- How can we tell if P_{1} is a dictator?

Coalitions

- How can we tell if P_{1} is a dictator?
- How can we tell if P_{N} is a dummy voter?

Coalitions

- How can we tell if P_{1} is a dictator?
- How can we tell if P_{N} is a dummy voter?
- Consider [5; 5, 2, 2]

Coalitions

- How can we tell if P_{1} is a dictator?
- How can we tell if P_{N} is a dummy voter?
- Consider [5; 5, 2, 2]

Coalition	\# of Votes	Winning/Losing
$\left\{P_{1}\right\}$	5	
$\left\{P_{2}\right\}$	2	
$\left\{P_{3}\right\}$	2	
$\left\{P_{1}, P_{2}\right\}$	7	
$\left\{P_{1}, P_{3}\right\}$	7	
$\left\{P_{2}, P_{3}\right\}$	4	
$\left\{P_{1}, P_{2}, P_{3}\right\}$	9	

Coalitions

- How can we tell if P_{1} is a dictator?
- How can we tell if P_{N} is a dummy voter?
- Consider [5; 5, 2, 2]

Coalition	\# of Votes	Winning/Losing
$\left\{P_{1}\right\}$	5	Winning
$\left\{P_{2}\right\}$	2	Losing
$\left\{P_{3}\right\}$	2	Losing
$\left\{P_{1}, P_{2}\right\}$	7	Winning
$\left\{P_{1}, P_{3}\right\}$	7	Winning
$\left\{P_{2}, P_{3}\right\}$	4	Losing
$\left\{P_{1}, P_{2}, P_{3}\right\}$	9	Winning

Coalitions

- How can we tell if P_{1} is a dictator?
- How can we tell if P_{N} is a dummy voter?
- Consider [5; 5, 2, 2]

Coalition	\# of Votes	Winning/Losing
$\left\{P_{1}\right\}$	5	Winning
$\left\{P_{2}\right\}$	2	Losing
$\left\{P_{3}\right\}$	2	Losing
$\left\{P_{1}, P_{2}\right\}$	7	Winning
$\left\{P_{1}, P_{3}\right\}$	7	Winning
$\left\{P_{2}, P_{3}\right\}$	4	Losing
$\left\{P_{1}, P_{2}, P_{3}\right\}$	9	Winning

P_{1} is a dictator if $\left\{P_{1}\right\}$ is a winning strategy

Coalitions

- How can we tell if P_{1} is a dictator?
- How can we tell if P_{N} is a dummy voter?
- Consider $[5 ; 5,2,2]$

Coalition	\# of Votes	Winning/Losing
$\left\{P_{1}\right\}$	5	Winning
$\left\{P_{2}\right\}$	2	Losing
$\left\{P_{3}\right\}$	2	Losing
$\left\{P_{1}, P_{2}\right\}$	7	Winning
$\left\{P_{1}, P_{3}\right\}$	7	Winning
$\left\{P_{2}, P_{3}\right\}$	4	Losing
$\left\{P_{1}, P_{2}, P_{3}\right\}$	9	Winning

P_{1} is a dictator if $\left\{P_{1}\right\}$ is a winning strategy
P_{N} is a dummy voter if their removal from any winning coalition is still a winning coalition

Critical Members

- P_{i} is a critical member of a coalition if:

Critical Members

- P_{i} is a critical member of a coalition if:
- it is a winning coalition

Critical Members

- P_{i} is a critical member of a coalition if:
- it is a winning coalition
- if P_{i} leaves, it is a losing coalition

Critical Members

- P_{i} is a critical member of a coalition if:
- it is a winning coalition
- if P_{i} leaves, it is a losing coalition
- Consider [10; 7, 5, 4]

Coalition	\# of Votes	W/L	Crit. Members
$\left\{P_{1}\right\}$	7		
$\left\{P_{2}\right\}$	5		
$\left\{P_{3}\right\}$	4		
$\left\{P_{1}, P_{2}\right\}$	12		
$\left\{P_{1}, P_{3}\right\}$	11		
$\left\{P_{2}, P_{3}\right\}$	9		
$\left\{P_{1}, P_{2}, P_{3}\right\}$	16		

Critical Members

- P_{i} is a critical member of a coalition if:
- it is a winning coalition
- if P_{i} leaves, it is a losing coalition
- Consider [10; 7, 5, 4]

Coalition	\# of Votes	W/L	Crit. Members
$\left\{P_{1}\right\}$	7	Losing	
$\left\{P_{2}\right\}$	5	Losing	
$\left\{P_{3}\right\}$	4	Losing	
$\left\{P_{1}, P_{2}\right\}$	12	Winning	
$\left\{P_{1}, P_{3}\right\}$	11	Winning	
$\left\{P_{2}, P_{3}\right\}$	9	Losing	
$\left\{P_{1}, P_{2}, P_{3}\right\}$	16	Winning	

Critical Members

- P_{i} is a critical member of a coalition if:
- it is a winning coalition
- if P_{i} leaves, it is a losing coalition
- Consider [10; 7, 5, 4]

Coalition	\# of Votes	W/L	Crit. Members
$\left\{P_{1}\right\}$	7	Losing	
$\left\{P_{2}\right\}$	5	Losing	
$\left\{P_{3}\right\}$	4	Losing	
$\left\{P_{1}, P_{2}\right\}$	12	Winning	P_{1}, P_{2}
$\left\{P_{1}, P_{3}\right\}$	11	Winning	P_{1}, P_{3}
$\left\{P_{2}, P_{3}\right\}$	9	Losing	
$\left\{P_{1}, P_{2}, P_{3}\right\}$	16	Winning	P_{1}

Banzhaf Power Index

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"

Banzhaf Power Index

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"

Banzhaf Power Index

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"
- Banzhaf wanted to quantify that the Nassau County Board's voting system was unfair

Banzhaf Power Index

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"
- Banzhaf wanted to quantify that the Nassau County Board's voting system was unfair
- Districts were given a weighted vote based on their population

Banzhaf Power Index

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"
- Banzhaf wanted to quantify that the Nassau County Board's voting system was unfair
- Districts were given a weighted vote based on their population
- The voting system was $[16 ; 9,9,7,3,1,1]$

Banzhaf Power Index

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"
- Banzhaf wanted to quantify that the Nassau County Board's voting system was unfair
- Districts were given a weighted vote based on their population
- The voting system was $[16 ; 9,9,7,3,1,1]$
- Banzhaf argued that 16% of the population had 0% of the power

Banzhaf Power Index

- The Banzhaf Power Index was originally developed by Penrose (1946) "The Elementary Statistics of Majority Voting"
- Reinvented by Banzhaf, a law professor (1965) "Weighted Voting Doesn't Work"
- Banzhaf wanted to quantify that the Nassau County Board's voting system was unfair
- Districts were given a weighted vote based on their population
- The voting system was [16;9, 9, 7, 3, 1, 1]
- Banzhaf argued that 16% of the population had 0% of the power
- The Banzhaf Index of P_{i} is

$$
\beta\left(P_{i}\right)=\frac{\# \text { of times } P_{i} \text { is crit. }}{\# \text { of crit. members over all coalitions }}
$$

Example

- Consider $[10 ; 7,5,4]$ again

Example

- Consider [10; 7, 5, 4] again

Coalition	\# of Votes	W/L	Crit. Members
$\left\{P_{1}\right\}$	7	Losing	
$\left\{P_{2}\right\}$	5	Losing	
$\left\{P_{3}\right\}$	4	Losing	
$\left\{P_{1}, P_{2}\right\}$	12	Winning	P_{1}, P_{2}
$\left\{P_{1}, P_{3}\right\}$	11	Winning	P_{1}, P_{3}
$\left\{P_{2}, P_{3}\right\}$	9	Losing	
$\left\{P_{1}, P_{2}, P_{3}\right\}$	16	Winning	P_{1}

Example

- Consider [10; 7, 5, 4] again

Coalition	\# of Votes	W/L	Crit. Members
$\left\{P_{1}\right\}$	7	Losing	
$\left\{P_{2}\right\}$	5	Losing	
$\left\{P_{3}\right\}$	4	Losing	
$\left\{P_{1}, P_{2}\right\}$	12	Winning	P_{1}, P_{2}
$\left\{P_{1}, P_{3}\right\}$	11	Winning	P_{1}, P_{3}
$\left\{P_{2}, P_{3}\right\}$	9	Losing	
$\left\{P_{1}, P_{2}, P_{3}\right\}$	16	Winning	P_{1}

- $\beta\left(P_{1}\right)=\frac{3}{5}$

Example

- Consider [10; 7, 5, 4] again

Coalition	\# of Votes	W/L	Crit. Members
$\left\{P_{1}\right\}$	7	Losing	
$\left\{P_{2}\right\}$	5	Losing	
$\left\{P_{3}\right\}$	4	Losing	
$\left\{P_{1}, P_{2}\right\}$	12	Winning	P_{1}, P_{2}
$\left\{P_{1}, P_{3}\right\}$	11	Winning	P_{1}, P_{3}
$\left\{P_{2}, P_{3}\right\}$	9	Losing	
$\left\{P_{1}, P_{2}, P_{3}\right\}$	16	Winning	P_{1}

- $\beta\left(P_{1}\right)=\frac{3}{5}$
- $\beta\left(P_{2}\right)=\frac{1}{5}$

Example

- Consider [10; 7, 5, 4] again

Coalition	\# of Votes	W/L	Crit. Members
$\left\{P_{1}\right\}$	7	Losing	
$\left\{P_{2}\right\}$	5	Losing	
$\left\{P_{3}\right\}$	4	Losing	
$\left\{P_{1}, P_{2}\right\}$	12	Winning	P_{1}, P_{2}
$\left\{P_{1}, P_{3}\right\}$	11	Winning	P_{1}, P_{3}
$\left\{P_{2}, P_{3}\right\}$	9	Losing	
$\left\{P_{1}, P_{2}, P_{3}\right\}$	16	Winning	P_{1}

- $\beta\left(P_{1}\right)=\frac{3}{5}$
- $\beta\left(P_{2}\right)=\frac{1}{5}$
- $\beta\left(P_{3}\right)=\frac{1}{5}$

U.N. Security Council

Examples:

- U.N. Security Council

U.N. Security Council

Examples:

- U.N. Security Council
- 5 permanent members:
- China, France, Russia, United Kingdom, United States

U.N. Security Council

Examples:

- U.N. Security Council
- 5 permanent members:
- China, France, Russia, United Kingdom, United States
- 10 non-permanent members:
- Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo

U.N. Security Council

Examples:

- U.N. Security Council
- 5 permanent members:
- China, France, Russia, United Kingdom, United States
- 10 non-permanent members:
- Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo
- Each member has one vote

U.N. Security Council

Examples:

- U.N. Security Council
- 5 permanent members:
- China, France, Russia, United Kingdom, United States
- 10 non-permanent members:
- Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo
- Each member has one vote
- Require nine votes to pass a motion

U.N. Security Council

Examples:

- U.N. Security Council
- 5 permanent members:
- China, France, Russia, United Kingdom, United States
- 10 non-permanent members:
- Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pakistan, Rwanda, South Korea, Togo
- Each member has one vote
- Require nine votes to pass a motion
- Permanent members have veto power

U.N. Security Council

- Want to compute Banzhaf Indices

U.N. Security Council

- Want to compute Banzhaf Indices
- Slight problem: there are $2^{15}-1=32,767$ coalitions

U.N. Security Council

- Want to compute Banzhaf Indices
- Slight problem: there are $2^{15}-1=32,767$ coalitions
- Only count winning coalitions

U.N. Security Council

- Want to compute Banzhaf Indices
- Slight problem: there are $2^{15}-1=32,767$ coalitions
- Only count winning coalitions
- Winning coalitions are comprised of all 5 permanent members, and at least 4 of the 10 non-permanent members

U.N. Security Council

- Want to compute Banzhaf Indices
- Slight problem: there are $2^{15}-1=32,767$ coalitions
- Only count winning coalitions
- Winning coalitions are comprised of all 5 permanent members, and at least 4 of the 10 non-permanent members
- There are 848 winning coalitions

U.N. Security Council

- Want to compute Banzhaf Indices
- Slight problem: there are $2^{15}-1=32,767$ coalitions
- Only count winning coalitions
- Winning coalitions are comprised of all 5 permanent members, and at least 4 of the 10 non-permanent members
- There are 848 winning coalitions
- Permanent members are critical members of all winning coalitions

U.N. Security Council

- Want to compute Banzhaf Indices
- Slight problem: there are $2^{15}-1=32,767$ coalitions
- Only count winning coalitions
- Winning coalitions are comprised of all 5 permanent members, and at least 4 of the 10 non-permanent members
- There are 848 winning coalitions
- Permanent members are critical members of all winning coalitions
- Non-permanent member if they, and exactly 3 other non-permanent members are in the coalition

U.N. Security Council

- Want to compute Banzhaf Indices
- Slight problem: there are $2^{15}-1=32,767$ coalitions
- Only count winning coalitions
- Winning coalitions are comprised of all 5 permanent members, and at least 4 of the 10 non-permanent members
- There are 848 winning coalitions
- Permanent members are critical members of all winning coalitions
- Non-permanent member if they, and exactly 3 other non-permanent members are in the coalition
- 84 such coalitions

U.N. Security Council

- Permanent members have Banzhaf Index

$$
\frac{848}{5 \cdot 848+10 \cdot 84}=\frac{848}{5080} \approx 16.69 \%
$$

U.N. Security Council

- Permanent members have Banzhaf Index

$$
\frac{848}{5 \cdot 848+10 \cdot 84}=\frac{848}{5080} \approx 16.69 \%
$$

- Non-permanent members have Banzhaf Index

$$
\frac{84}{5080} \approx 1.65 \%
$$

Electoral Votes

Electoral votes of certain states:

Electoral Votes

Electoral votes of certain states:

State	\# of E.V.	\% of E.V.	SS Index	B Index
Nevada	5	0.93%	0.93%	0.90%
Maryland	10	1.86%	1.86%	1.82%
Pennsylvania	20	3.72%	3.72%	3.91%
Texas	38	7.06%	6.39%	6.50%

