Administration

- New due dates:
- Homework \#10 is available now, and will be due on Monday, December 9.
- Final paper is due Wednesday, December 11.
- Homework \#11 will be due Friday, December 13.

Interest

- Savings bonds are being sold with 2% annual interest, compounded annually

Interest

- Savings bonds are being sold with 2% annual interest, compounded annually
- You purchase $\$ 1000$ worth of bonds

Interest

- Savings bonds are being sold with 2% annual interest, compounded annually
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?

Interest

- Savings bonds are being sold with 2% annual interest, compounded annually
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- \$1000 $\cdot(1+0.02)=\$ 1020$

Interest

- Savings bonds are being sold with 2% annual interest, compounded annually
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- \$1000 • $(1+0.02)=\$ 1020$
- How much is your investment worth after 2 years?

Interest

- Savings bonds are being sold with 2% annual interest, compounded annually
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- \$1000 • $(1+0.02)=\$ 1020$
- How much is your investment worth after 2 years?
- $\$ 1000 \cdot(1.02)^{2}=\$ 1040.40$

Interest

- Savings bonds are being sold with 2% annual interest, compounded annually
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- \$1000 • $(1+0.02)=\$ 1020$
- How much is your investment worth after 2 years?
- $\$ 1000 \cdot(1.02)^{2}=\$ 1040.40$
- How much is your investment worth after t years?

Interest

- Savings bonds are being sold with 2% annual interest, compounded annually
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- \$1000 • $(1+0.02)=\$ 1020$
- How much is your investment worth after 2 years?
- $\$ 1000 \cdot(1.02)^{2}=\$ 1040.40$
- How much is your investment worth after t years?
- \$1000 (1.02$)^{t}$

Interest

- Savings bonds are being sold with 2% annual interest, compounded annually
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- \$1000 • $(1+0.02)=\$ 1020$
- How much is your investment worth after 2 years?
- $\$ 1000 \cdot(1.02)^{2}=\$ 1040.40$
- How much is your investment worth after t years?
- \$1000 • (1.02) ${ }^{t}$
- This is an example of an exponential function (these look like $p \cdot a^{t}$ for constants p, a)

Interest

- Suppose that the savings bonds are being sold with 2% annual interest, compounded monthly

Interest

- Suppose that the savings bonds are being sold with 2% annual interest, compounded monthly
- This means that $\frac{1}{12}^{\text {th }}$ of the interest rate is applied 12 times a year

Interest

- Suppose that the savings bonds are being sold with 2% annual interest, compounded monthly
- This means that $\frac{1}{12}^{\text {th }}$ of the interest rate is applied 12 times a year
- You purchase $\$ 1000$ worth of bonds

Interest

- Suppose that the savings bonds are being sold with 2% annual interest, compounded monthly
- This means that $\frac{1}{12}^{\text {th }}$ of the interest rate is applied 12 times a year
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?

Interest

- Suppose that the savings bonds are being sold with 2% annual interest, compounded monthly
- This means that $\frac{1}{12}^{\text {th }}$ of the interest rate is applied 12 times a year
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- \$1000 $\cdot\left(1+\frac{0.02}{12}\right)^{12}=\$ 1020.18$

Interest

- Suppose that the savings bonds are being sold with 2% annual interest, compounded monthly
- This means that $\frac{1}{12}^{\text {th }}$ of the interest rate is applied 12 times a year
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- $\$ 1000 \cdot\left(1+\frac{0.02}{12}\right)^{12}=\$ 1020.18$
- How much is your investment worth after 2 years?

Interest

- Suppose that the savings bonds are being sold with 2% annual interest, compounded monthly
- This means that $\frac{1}{12}^{\text {th }}$ of the interest rate is applied 12 times a year
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- $\$ 1000 \cdot\left(1+\frac{0.02}{12}\right)^{12}=\$ 1020.18$
- How much is your investment worth after 2 years?
- $\$ 1000 \cdot\left(1+\frac{0.02}{12}\right)^{24}=\$ 1040.78$

Interest

- Suppose that the savings bonds are being sold with 2% annual interest, compounded monthly
- This means that $\frac{1}{12}^{\text {th }}$ of the interest rate is applied 12 times a year
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- \$1000 $\cdot\left(1+\frac{0.02}{12}\right)^{12}=\$ 1020.18$
- How much is your investment worth after 2 years?
- \$1000 • $\left(1+\frac{0.02}{12}\right)^{24}=\$ 1040.78$
- How much is your investment worth after t years?

Interest

- Suppose that the savings bonds are being sold with 2% annual interest, compounded monthly
- This means that $\frac{1}{12}^{\text {th }}$ of the interest rate is applied 12 times a year
- You purchase $\$ 1000$ worth of bonds
- How much is your investment worth after 1 year?
- \$1000 $\cdot\left(1+\frac{0.02}{12}\right)^{12}=\$ 1020.18$
- How much is your investment worth after 2 years?
- \$1000 $\cdot\left(1+\frac{0.02}{12}\right)^{24}=\$ 1040.78$
- How much is your investment worth after t years?
- \$1000 $\cdot\left(1+\frac{0.02}{12}\right)^{12 t}$

Interest

- The interest rate could be applied weekly

Interest

- The interest rate could be applied weekly
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{52}\right)^{52 t}$

Interest

- The interest rate could be applied weekly
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{52}\right)^{52 t}$
- The interest rate could be applied daily

Interest

- The interest rate could be applied weekly
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{52}\right)^{52 t}$
- The interest rate could be applied daily
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{365}\right)^{365 t}$

Interest

- The interest rate could be applied weekly
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{52}\right)^{52 t}$
- The interest rate could be applied daily
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{365}\right)^{365 t}$
- If the interest is compounded n times a year, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{n}\right)^{n t}$

Interest

- The interest rate could be applied weekly
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{52}\right)^{52 t}$
- The interest rate could be applied daily
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{365}\right)^{365 t}$
- If the interest is compounded n times a year, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{n}\right)^{n t}$
- If we let n get arbitrarily large, the interest rate is said to be continuously compounded

Interest

- The interest rate could be applied weekly
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{52}\right)^{52 t}$
- The interest rate could be applied daily
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{365}\right)^{365 t}$
- If the interest is compounded n times a year, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{n}\right)^{n t}$
- If we let n get arbitrarily large, the interest rate is said to be continuously compounded
- If the interest is continuously compounded, the investment is worth $\$ 1000 \cdot e^{0.02 t}$

Interest

- The interest rate could be applied weekly
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{52}\right)^{52 t}$
- The interest rate could be applied daily
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{365}\right)^{365 t}$
- If the interest is compounded n times a year, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{n}\right)^{n t}$
- If we let n get arbitrarily large, the interest rate is said to be continuously compounded
- If the interest is continuously compounded, the investment is worth $\$ 1000 \cdot e^{0.02 t}$
- $e=2.718281828 \ldots$

Interest

- The interest rate could be applied weekly
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{52}\right)^{52 t}$
- The interest rate could be applied daily
- After t years, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{365}\right)^{365 t}$
- If the interest is compounded n times a year, the investment is worth $\$ 1000 \cdot\left(1+\frac{0.02}{n}\right)^{n t}$
- If we let n get arbitrarily large, the interest rate is said to be continuously compounded
- If the interest is continuously compounded, the investment is worth $\$ 1000 \cdot e^{0.02 t}$
- $e=2.718281828 \ldots$
- If you invest \$P with $k \%$ interest, compounded continuously, the investment is worth $P \cdot e^{k t}$

Present Value/Future Value

- Suppose an investment guarantees 5% interest, compounded annually

Present Value/Future Value

- Suppose an investment guarantees 5% interest, compounded annually
- You want the investment to be worth $\$ 1000$ in two years

Present Value/Future Value

- Suppose an investment guarantees 5% interest, compounded annually
- You want the investment to be worth $\$ 1000$ in two years
- How much should you invest?

Present Value/Future Value

- Suppose an investment guarantees 5% interest, compounded annually
- You want the investment to be worth $\$ 1000$ in two years
- How much should you invest?
- $($ Present Value $) \cdot(1.05)^{2}=($ Future Value $)$

Present Value/Future Value

- Suppose an investment guarantees 5% interest, compounded annually
- You want the investment to be worth $\$ 1000$ in two years
- How much should you invest?
- $($ Present Value $) \cdot(1.05)^{2}=($ Future Value $)$
- $\mathrm{PV}=\$ \frac{1000}{(1.05)^{2}}=\$ 907.03$

Present Value/Future Value

- Suppose an investment guarantees 5% interest, compounded annually
- You want the investment to be worth $\$ 1000$ in two years
- How much should you invest?
- $($ Present Value $) \cdot(1.05)^{2}=($ Future Value $)$
- $\mathrm{PV}=\$ \frac{1000}{(1.05)^{2}}=\$ 907.03$
- After t years, have:

Present Value/Future Value

- Suppose an investment guarantees 5% interest, compounded annually
- You want the investment to be worth $\$ 1000$ in two years
- How much should you invest?
- $($ Present Value $) \cdot(1.05)^{2}=($ Future Value $)$
- $\mathrm{PV}=\$ \frac{1000}{(1.05)^{2}}=\$ 907.03$
- After t years, have:
- $\mathrm{FV}=\mathrm{PV} \cdot(1.05)^{t}$

Present Value/Future Value

- Suppose an investment guarantees 5% interest, compounded annually
- You want the investment to be worth $\$ 1000$ in two years
- How much should you invest?
- $($ Present Value $) \cdot(1.05)^{2}=($ Future Value $)$
- $\mathrm{PV}=\$ \frac{1000}{(1.05)^{2}}=\$ 907.03$
- After t years, have:
- $\mathrm{FV}=\mathrm{PV} \cdot(1.05)^{t}$
- $\mathrm{PV}=\frac{\mathrm{FV}}{(1.05)^{t}}$

Traveling to Europe

- You are traveling to Europe in one month

Traveling to Europe

- You are traveling to Europe in one month
- You want $€ 1000$ before leaving

Traveling to Europe

- You are traveling to Europe in one month
- You want $€ 1000$ before leaving
- The current exchange rate is $€ 1=\$ 1$.

Traveling to Europe

- You are traveling to Europe in one month
- You want $€ 1000$ before leaving
- The current exchange rate is $€ 1=\$ 1$.
- Slight problem: you currently only have $\$ 40$

Traveling to Europe

- You are traveling to Europe in one month
- You want $€ 1000$ before leaving
- The current exchange rate is $€ 1=\$ 1$.
- Slight problem: you currently only have $\$ 40$
- By the end of the month, you'll have $\$ 1000+\$ 40=\$ 1040$

Traveling to Europe

- You are traveling to Europe in one month
- You want $€ 1000$ before leaving
- The current exchange rate is $€ 1=\$ 1$.
- Slight problem: you currently only have $\$ 40$
- By the end of the month, you'll have $\$ 1000+\$ 40=\$ 1040$
- Potential problem: the exchange rate might change

Traveling to Europe

- For convenience, we'll assume that the exchange rate will change by precisely 5% (up or down)

Traveling to Europe

- For convenience, we'll assume that the exchange rate will change by precisely 5% (up or down)
- If the rate drops to $€ 1=\$ 0.95$, you're good

Traveling to Europe

- For convenience, we'll assume that the exchange rate will change by precisely 5% (up or down)
- If the rate drops to $€ 1=\$ 0.95$, you're good
- Can buy euros for $\$ 950$

Traveling to Europe

- For convenience, we'll assume that the exchange rate will change by precisely 5% (up or down)
- If the rate drops to $€ 1=\$ 0.95$, you're good
- Can buy euros for $\$ 950$
- If the rate goes up to $€ 1=\$ 1.05$, you can't buy the euros

Traveling to Europe

- For convenience, we'll assume that the exchange rate will change by precisely 5% (up or down)
- If the rate drops to $€ 1=\$ 0.95$, you're good
- Can buy euros for $\$ 950$
- If the rate goes up to $€ 1=\$ 1.05$, you can't buy the euros
- Would need $\$ 1050$

Traveling to Europe

- For convenience, we'll assume that the exchange rate will change by precisely 5% (up or down)
- If the rate drops to $€ 1=\$ 0.95$, you're good
- Can buy euros for $\$ 950$
- If the rate goes up to $€ 1=\$ 1.05$, you can't buy the euros
- Would need $\$ 1050$
- One possibility: borrow $\$ 960$ from the bank (at 1% monthly, compounded monthly)

Traveling to Europe

- For convenience, we'll assume that the exchange rate will change by precisely 5% (up or down)
- If the rate drops to $€ 1=\$ 0.95$, you're good
- Can buy euros for $\$ 950$
- If the rate goes up to $€ 1=\$ 1.05$, you can't buy the euros
- Would need $\$ 1050$
- One possibility: borrow $\$ 960$ from the bank (at 1% monthly, compounded monthly)
- At end of the month, you owe the bank $\$ 969.60$

Traveling to Europe

- For convenience, we'll assume that the exchange rate will change by precisely 5% (up or down)
- If the rate drops to $€ 1=\$ 0.95$, you're good
- Can buy euros for $\$ 950$
- If the rate goes up to $€ 1=\$ 1.05$, you can't buy the euros
- Would need $\$ 1050$
- One possibility: borrow $\$ 960$ from the bank (at 1% monthly, compounded monthly)
- At end of the month, you owe the bank $\$ 969.60$
- Problem: the bank is unwilling to lend you money

Options

- Along comes an option trader

Options

- Along comes an option trader
- The option trader offers an option:

Options

- Along comes an option trader
- The option trader offers an option:
- In one month you have the option to buy $€ 1000$ for $\$ 1000$

Options

- Along comes an option trader
- The option trader offers an option:
- In one month you have the option to buy €1000 for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$,

Options

- Along comes an option trader
- The option trader offers an option:
- In one month you have the option to buy $€ 1000$ for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$, you can buy the euros on the market for $\$ 950$

Options

- Along comes an option trader
- The option trader offers an option:
- In one month you have the option to buy $€ 1000$ for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$,you can buy the euros on the market for \$950
- Total expense is $\$ 980$

Options

- Along comes an option trader
- The option trader offers an option:
- In one month you have the option to buy $€ 1000$ for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$,you can buy the euros on the market for $\$ 950$
- Total expense is $\$ 980$
- If the rate increase to $€ 1=\$ 1.05$, you can exercise your option, and buy the euros for $\$ 1000$ from the option trader

Options

- Along comes an option trader
- The option trader offers an option:
- In one month you have the option to buy $€ 1000$ for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$,you can buy the euros on the market for $\$ 950$
- Total expense is $\$ 980$
- If the rate increase to $€ 1=\$ 1.05$, you can exercise your option, and buy the euros for $\$ 1000$ from the option trader
- Total Expense is $\$ 1030$

Options

- Along comes an option trader
- The option trader offers an option:
- In one month you have the option to buy $€ 1000$ for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$,you can buy the euros on the market for $\$ 950$
- Total expense is $\$ 980$
- If the rate increase to $€ 1=\$ 1.05$, you can exercise your option, and buy the euros for $\$ 1000$ from the option trader
- Total Expense is $\$ 1030$
- There is also a type of contract where you agree to buy $€ 1000$ for $\$ 1000$, regardless of whether the rate drops or increases

Options

- Along comes an option trader
- The option trader offers an option:
- In one month you have the option to buy $€ 1000$ for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$,you can buy the euros on the market for $\$ 950$
- Total expense is $\$ 980$
- If the rate increase to $€ 1=\$ 1.05$, you can exercise your option, and buy the euros for $\$ 1000$ from the option trader
- Total Expense is $\$ 1030$
- There is also a type of contract where you agree to buy $€ 1000$ for $\$ 1000$, regardless of whether the rate drops or increases
- This is called a future

Pricing an Option

- Question: how does the option trader price the option?

Pricing an Option

- Question: how does the option trader price the option?
- Want a portfolio that is worth:

Pricing an Option

- Question: how does the option trader price the option?
- Want a portfolio that is worth:
- \$50 if rate increases to $€ 1=\$ 1.05$

Pricing an Option

- Question: how does the option trader price the option?
- Want a portfolio that is worth:
- \$50 if rate increases to $€ 1=\$ 1.05$
- \$0 if rate decreases to $€ 1=\$ 0.95$

Pricing an Option

- Question: how does the option trader price the option?
- Want a portfolio that is worth:
- \$50 if rate increases to $€ 1=\$ 1.05$
- \$0 if rate decreases to $€ 1=\$ 0.95$
- Options for portfolio:

Pricing an Option

- Question: how does the option trader price the option?
- Want a portfolio that is worth:
- \$50 if rate increases to $€ 1=\$ 1.05$
- \$0 if rate decreases to $€ 1=\$ 0.95$
- Options for portfolio:
- Invest in euros

Pricing an Option

- Question: how does the option trader price the option?
- Want a portfolio that is worth:
- \$50 if rate increases to $€ 1=\$ 1.05$
- \$0 if rate decreases to $€ 1=\$ 0.95$
- Options for portfolio:
- Invest in euros
- Borrow from bank

Hedging Strategy

- Suppose the trader:

Hedging Strategy

- Suppose the trader:
- Charges you \$29.70

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys €500 for $\$ 500$

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$
- Suppose that the rate increases to $€ 1=\$ 1.05$

Hedging Strategy

- Suppose the trader:
- Charges you \$29.70
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$
- Suppose that the rate increases to $€ 1=\$ 1.05$
- Euros are worth $\$ 525$

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$
- Suppose that the rate increases to $€ 1=\$ 1.05$
- Euros are worth $\$ 525$
- Owes bank $\$ 475$

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$
- Suppose that the rate increases to $€ 1=\$ 1.05$
- Euros are worth $\$ 525$
- Owes bank $\$ 475$
- Has $\$ 50$ extra to pay for the option

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$
- Suppose that the rate increases to $€ 1=\$ 1.05$
- Euros are worth $\$ 525$
- Owes bank $\$ 475$
- Has $\$ 50$ extra to pay for the option
- Cash flow is $\$ 0$

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$
- Suppose that the rate decreases to $€ 1=\$ 0.95$

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$
- Suppose that the rate decreases to $€ 1=\$ 0.95$
- Euros are worth $\$ 475$

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$
- Suppose that the rate decreases to $€ 1=\$ 0.95$
- Euros are worth $\$ 475$
- Owes bank $\$ 475$

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$
- Suppose that the rate decreases to $€ 1=\$ 0.95$
- Euros are worth $\$ 475$
- Owes bank $\$ 475$
- You don't exercise your option

Hedging Strategy

- Suppose the trader:
- Charges you $\$ 29.70$
- Borrows $\$ 470.30$ from bank
- Buys $€ 500$ for $\$ 500$
- Their cash flow is $\$ 0$
- Suppose that the rate decreases to $€ 1=\$ 0.95$
- Euros are worth $\$ 475$
- Owes bank $\$ 475$
- You don't exercise your option
- Cash flow is $\$ 0$

Hedging Strategy

- Suppose the trader:

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros
- The trader has spent $\$ x-y$ out of pocket

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros
- The trader has spent $\$ x-y$ out of pocket
- Have equations:

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros
- The trader has spent $\$ x-y$ out of pocket
- Have equations:
- $50=1.05 x-1.01 y$

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros
- The trader has spent $\$ x-y$ out of pocket
- Have equations:
- $50=1.05 x-1.01 y$
- $0=0.95 x-1.01 y$

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros
- The trader has spent $\$ x-y$ out of pocket
- Have equations:
- $50=1.05 x-1.01 y$
- $0=0.95 x-1.01 y$
- Solve to get $x=500, y=470.30$

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests \$x in euros
- The trader has spent $\$ x-y$ out of pocket
- Have equations:
- $50=1.05 x-1.01 y$
- $0=0.95 x-1.01 y$
- Solve to get $x=500, y=470.30$
- The trader is out $\$ 29.70$

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests \$x in euros
- The trader has spent $\$ x-y$ out of pocket
- Have equations:
- $50=1.05 x-1.01 y$
- $0=0.95 x-1.01 y$
- Solve to get $x=500, y=470.30$
- The trader is out $\$ 29.70$
- The price they charged you

For Next Time:

- Want an easier way to establish portfolios

For Next Time:

- Want an easier way to establish portfolios
- What happens if we have multiple Bernoulli trials?

