Review

- The current exchange rate is $€ 1=\$ 1$

Review

- The current exchange rate is $€ 1=\$ 1$
- You want $€ 1000$ in one month

Review

- The current exchange rate is $€ 1=\$ 1$
- You want $€ 1000$ in one month
- You can't currently afford the euros

Review

- The current exchange rate is $€ 1=\$ 1$
- You want $€ 1000$ in one month
- You can't currently afford the euros
- In one month, the exchange rate will change by $\pm 5 \%$

Review

- The current exchange rate is $€ 1=\$ 1$
- You want $€ 1000$ in one month
- You can't currently afford the euros
- In one month, the exchange rate will change by $\pm 5 \%$
- If the rate drops to $€ 1=\$ 0.95$, you're good

Review

- The current exchange rate is $€ 1=\$ 1$
- You want $€ 1000$ in one month
- You can't currently afford the euros
- In one month, the exchange rate will change by $\pm 5 \%$
- If the rate drops to $€ 1=\$ 0.95$, you're good
- If the rate goes up to $€ 1=\$ 1.05$, you not so good

Review

- The current exchange rate is $€ 1=\$ 1$
- You want $€ 1000$ in one month
- You can't currently afford the euros
- In one month, the exchange rate will change by $\pm 5 \%$
- If the rate drops to $€ 1=\$ 0.95$, you're good
- If the rate goes up to $€ 1=\$ 1.05$, you not so good
- Can borrow from bank at rate of 1% per month

Review

- The current exchange rate is $€ 1=\$ 1$
- You want $€ 1000$ in one month
- You can't currently afford the euros
- In one month, the exchange rate will change by $\pm 5 \%$
- If the rate drops to $€ 1=\$ 0.95$, you're good
- If the rate goes up to $€ 1=\$ 1.05$, you not so good
- Can borrow from bank at rate of 1% per month
- Bank unwilling to lend you money

Options

- An option trader offers an option:

Options

- An option trader offers an option:
- In one month you have the option to buy $€ 1000$ for $\$ 1000$

Options

- An option trader offers an option:
- In one month you have the option to buy $€ 1000$ for $\$ 1000$
- Buying the option will cost you \$29.70

Options

- An option trader offers an option:
- In one month you have the option to buy €1000 for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$, you can buy the euros on the market for $\$ 950$

Options

- An option trader offers an option:
- In one month you have the option to buy €1000 for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$, you can buy the euros on the market for $\$ 950$
- Total expense is $\$ 980$

Options

- An option trader offers an option:
- In one month you have the option to buy €1000 for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$, you can buy the euros on the market for $\$ 950$
- Total expense is $\$ 980$
- If the rate increase to $€ 1=\$ 1.05$, you can exercise your option, and buy the euros for $\$ 1000$ from the option trader

Options

- An option trader offers an option:
- In one month you have the option to buy €1000 for $\$ 1000$
- Buying the option will cost you $\$ 29.70$
- If the rate drops to $€ 1=\$ 0.95$, you can buy the euros on the market for $\$ 950$
- Total expense is $\$ 980$
- If the rate increase to $€ 1=\$ 1.05$, you can exercise your option, and buy the euros for $\$ 1000$ from the option trader
- Total Expense is $\$ 1030$

Pricing an Option

- Question: how does the option trader price the option?

Pricing an Option

- Question: how does the option trader price the option?
- They will setup a portfolio that is worth:

Pricing an Option

- Question: how does the option trader price the option?
- They will setup a portfolio that is worth:
- $\$ 50$ if rate increases to $€ 1=\$ 1.05$

Pricing an Option

- Question: how does the option trader price the option?
- They will setup a portfolio that is worth:
- $\$ 50$ if rate increases to $€ 1=\$ 1.05$
- \$0 if rate decreases to $€ 1=\$ 0.95$

Pricing an Option

- Question: how does the option trader price the option?
- They will setup a portfolio that is worth:
- $\$ 50$ if rate increases to $€ 1=\$ 1.05$
- \$0 if rate decreases to $€ 1=\$ 0.95$
- Options for portfolio:

Pricing an Option

- Question: how does the option trader price the option?
- They will setup a portfolio that is worth:
- $\$ 50$ if rate increases to $€ 1=\$ 1.05$
- \$0 if rate decreases to $€ 1=\$ 0.95$
- Options for portfolio:
- Invest in euros

Pricing an Option

- Question: how does the option trader price the option?
- They will setup a portfolio that is worth:
- $\$ 50$ if rate increases to $€ 1=\$ 1.05$
- \$0 if rate decreases to $€ 1=\$ 0.95$
- Options for portfolio:
- Invest in euros
- Borrow from bank (risk-free)

Hedging Strategy

- Suppose the trader:

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros
- The trader charges you $\$ P=\$ x-y$
- Have equations:

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros
- The trader charges you $\$ P=\$ x-y$
- Have equations:
- $50=1.05 x-1.01 y$

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros
- The trader charges you $\$ P=\$ x-y$
- Have equations:
- $50=1.05 x-1.01 y$
- $0=0.95 x-1.01 y$

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros
- The trader charges you $\$ P=\$ x-y$
- Have equations:
- $50=1.05 x-1.01 y$
- $0=0.95 x-1.01 y$
- Solve to get $x=500, y=470.30$

Hedging Strategy

- Suppose the trader:
- Borrows \$y from the bank (at 1\%)
- Invests $\$ x$ in euros
- The trader charges you $\$ P=\$ x-y$
- Have equations:
- $50=1.05 x-1.01 y$
- $0=0.95 x-1.01 y$
- Solve to get $x=500, y=470.30$
- The trader charges you $\$ 29.70$

Risk-Neutral Pricing

- Want to establish \$P more easily

Risk-Neutral Pricing

- Want to establish \$P more easily
- Key idea: the portfolio doesn't care about the probability that the exchange rate goes up or down

Risk-Neutral Pricing

- Want to establish \$P more easily
- Key idea: the portfolio doesn't care about the probability that the exchange rate goes up or down
- So, make up probabilities so that the computation is easier

Risk-Neutral Pricing

- Want to establish \$P more easily
- Key idea: the portfolio doesn't care about the probability that the exchange rate goes up or down
- So, make up probabilities so that the computation is easier
- If you invest $\$ 1$ in the bank (at 1%), what is the expected value at the end of the month?

Risk-Neutral Pricing

- Want to establish \$P more easily
- Key idea: the portfolio doesn't care about the probability that the exchange rate goes up or down
- So, make up probabilities so that the computation is easier
- If you invest $\$ 1$ in the bank (at 1%), what is the expected value at the end of the month?
- \$1.01

Risk-Neutral Pricing

- Want to establish \$P more easily
- Key idea: the portfolio doesn't care about the probability that the exchange rate goes up or down
- So, make up probabilities so that the computation is easier
- If you invest $\$ 1$ in the bank (at 1%), what is the expected value at the end of the month?
- \$1.01
- If you invest $\$ 1$ in euros, what is the expected value at the end of the month?

Risk-Neutral Pricing

- Want to establish \$P more easily
- Key idea: the portfolio doesn't care about the probability that the exchange rate goes up or down
- So, make up probabilities so that the computation is easier
- If you invest $\$ 1$ in the bank (at 1%), what is the expected value at the end of the month?
- \$1.01
- If you invest $\$ 1$ in euros, what is the expected value at the end of the month?
- Say that the probability that the rate increases is p

Risk-Neutral Pricing

- Want to establish \$P more easily
- Key idea: the portfolio doesn't care about the probability that the exchange rate goes up or down
- So, make up probabilities so that the computation is easier
- If you invest $\$ 1$ in the bank (at 1%), what is the expected value at the end of the month?
- \$1.01
- If you invest $\$ 1$ in euros, what is the expected value at the end of the month?
- Say that the probability that the rate increases is p
- $\$(1.05) p+(.95)(1-p)$

Risk-Neutral Pricing

- Note that $(1.05) p+(.95)(1-p)=1.01$ when $p=.6$

Risk-Neutral Pricing

- Note that $(1.05) p+(.95)(1-p)=1.01$ when $p=.6$
- Note that $p=1.01-.95$

Risk-Neutral Pricing

- Note that $(1.05) p+(.95)(1-p)=1.01$ when $p=.6$
- Note that $p=1.01-.95$
- And $1-p=1.05-1.01$

Risk-Neutral Pricing

- Note that $(1.05) p+(.95)(1-p)=1.01$ when $p=.6$
- Note that $p=1.01-.95$
- And $1-p=1.05-1.01$
- Why do we care?

Risk-Neutral Pricing

- Note that $(1.05) p+(.95)(1-p)=1.01$ when $p=.6$
- Note that $p=1.01-.95$
- And $1-p=1.05-1.01$
- Why do we care?
- With these probabilities, the expected value of any portfolio of $\$$ and $€$ has expected increase of 1%

Risk-Neutral Pricing

- Note that $(1.05) p+(.95)(1-p)=1.01$ when $p=.6$
- Note that $p=1.01-.95$
- And $1-p=1.05-1.01$
- Why do we care?
- With these probabilities, the expected value of any portfolio of $\$$ and $€$ has expected increase of 1%
- Then, the hedging portfolio has expected value:

$$
\$ 0.6 \cdot 50+0.4 \cdot 0=\$ 30
$$

Risk-Neutral Pricing

- Note that $(1.05) p+(.95)(1-p)=1.01$ when $p=.6$
- Note that $p=1.01-.95$
- And $1-p=1.05-1.01$
- Why do we care?
- With these probabilities, the expected value of any portfolio of $\$$ and $€$ has expected increase of 1%
- Then, the hedging portfolio has expected value:

$$
\$ 0.6 \cdot 50+0.4 \cdot 0=\$ 30
$$

- The present-day value is $\$ \frac{30}{1.01}=\$ 29.70$

Risk-Neutral Pricing

- Note that $(1.05) p+(.95)(1-p)=1.01$ when $p=.6$
- Note that $p=1.01-.95$
- And $1-p=1.05-1.01$
- Why do we care?
- With these probabilities, the expected value of any portfolio of $\$$ and $€$ has expected increase of 1%
- Then, the hedging portfolio has expected value:

$$
\$ 0.6 \cdot 50+0.4 \cdot 0=\$ 30
$$

- The present-day value is $\$ \frac{30}{1.01}=\$ 29.70$
- This is referred to as risk-neutral pricing

Example

- Suppose that the $€ 1=\$ \frac{1.05}{.95}$

Example

- Suppose that the $€ 1=\$ \frac{1.05}{.95}$
- Exchange rate will either go up to $\$ \frac{(1.05)^{2}}{.95}$ or down to $\$ 1.05$

Example

- Suppose that the $€ 1=\$ \frac{1.05}{.95}$
- Exchange rate will either go up to $\$ \frac{(1.05)^{2}}{.95}$ or down to $\$ 1.05$
- How much will an option to buy $€ 1000$ for $\$ 1000$ cost?

Example

- Suppose that the $€ 1=\$ \frac{1.05}{.95}$
- Exchange rate will either go up to $\$ \frac{(1.05)^{2}}{.95}$ or down to $\$ 1.05$
- How much will an option to buy $€ 1000$ for $\$ 1000$ cost?
- If the exchange rate goes up, the portfolio needs to be worth

$$
\$ \frac{(1.05)^{2}}{.95} 1000-1000=\$ 160.53
$$

Example

- Suppose that the $€ 1=\$ \frac{1.05}{.95}$
- Exchange rate will either go up to $\$ \frac{(1.05)^{2}}{.95}$ or down to $\$ 1.05$
- How much will an option to buy $€ 1000$ for $\$ 1000$ cost?
- If the exchange rate goes up, the portfolio needs to be worth $\$ \frac{(1.05)^{2}}{.95} 1000-1000=\$ 160.53$
- If the exchange rate goes down, the portfolio needs to be worth $\$(1.05) 1000-1000=\$ 50$

Example

- Suppose that the $€ 1=\$ \frac{1.05}{.95}$
- Exchange rate will either go up to $\$ \frac{(1.05)^{2}}{.95}$ or down to $\$ 1.05$
- How much will an option to buy $€ 1000$ for $\$ 1000$ cost?
- If the exchange rate goes up, the portfolio needs to be worth $\$ \frac{(1.05)^{2}}{.95} 1000-1000=\$ 160.53$
- If the exchange rate goes down, the portfolio needs to be worth $\$(1.05) 1000-1000=\$ 50$
- The initial value of the portfolio is

$$
\$ \frac{0.6 \cdot 160.53+0.4 \cdot 50}{1.01}=\$ 115.17
$$

Hedging Portfolio

- Still need to determine the portfolio itself

Hedging Portfolio

- Still need to determine the portfolio itself
- Fact: if two portfolios have the same difference (in outputs), they have the same number of euros

Hedging Portfolio

- Still need to determine the portfolio itself
- Fact: if two portfolios have the same difference (in outputs), they have the same number of euros
- The difference for the hedging portfolio is $\$ 50$

Hedging Portfolio

- Still need to determine the portfolio itself
- Fact: if two portfolios have the same difference (in outputs), they have the same number of euros
- The difference for the hedging portfolio is $\$ 50$
- The difference for a portfolio with $\$ x$ invested in euros is $\$ 0.1 x$

Hedging Portfolio

- Still need to determine the portfolio itself
- Fact: if two portfolios have the same difference (in outputs), they have the same number of euros
- The difference for the hedging portfolio is $\$ 50$
- The difference for a portfolio with $\$ x$ invested in euros is $\$ 0.1 x$
- So $x=500$

Hedging Portfolio

- Still need to determine the portfolio itself
- Fact: if two portfolios have the same difference (in outputs), they have the same number of euros
- The difference for the hedging portfolio is $\$ 50$
- The difference for a portfolio with $\$ x$ invested in euros is $\$ 0.1 x$
- So $x=500$
- Since we know x and $P=x-y$, we also know y

2 months

- Now suppose that you want euro1000 in two months

2 months

- Now suppose that you want euro1000 in two months
- Current exchange rate is $€ 1=\$ \frac{1}{.95}$

2 months

- Now suppose that you want euro1000 in two months
- Current exchange rate is $€ 1=\$ \frac{1}{.95}$
- Options trader will adjust the portfolio at the end of one month

2 months

- Now suppose that you want euro1000 in two months
- Current exchange rate is $€ 1=\$ \frac{1}{.95}$
- Options trader will adjust the portfolio at the end of one month
- After one month, the exchange rate is either:

2 months

- Now suppose that you want euro1000 in two months
- Current exchange rate is $€ 1=\$ \frac{1}{.95}$
- Options trader will adjust the portfolio at the end of one month
- After one month, the exchange rate is either:
- $\$ \frac{1.05}{.95}$ or $\$ 1$

2 months

- Now suppose that you want euro1000 in two months
- Current exchange rate is $€ 1=\$ \frac{1}{.95}$
- Options trader will adjust the portfolio at the end of one month
- After one month, the exchange rate is either:
- $\$ \frac{1.05}{95}$ or $\$ 1$
- These are the initial exchange rates of the previous examples

2 months

- Now suppose that you want euro1000 in two months
- Current exchange rate is $€ 1=\$ \frac{1}{.95}$
- Options trader will adjust the portfolio at the end of one month
- After one month, the exchange rate is either:
- $\$ \frac{1.05}{.95}$ or $\$ 1$
- These are the initial exchange rates of the previous examples
- Final potential prices of the portfolio are $\$ 160.53$, $\$ 50$, or $\$ 0$

2 months

- Now suppose that you want euro1000 in two months
- Current exchange rate is $€ 1=\$ \frac{1}{.95}$
- Options trader will adjust the portfolio at the end of one month
- After one month, the exchange rate is either:
- $\$ \frac{1.05}{.95}$ or $\$ 1$
- These are the initial exchange rates of the previous examples
- Final potential prices of the portfolio are $\$ 160.53$, $\$ 50$, or $\$ 0$
- Using risk-neutral pricing, the price of the portfolio will be

$$
\$ \frac{0.36 \cdot 160.53+0.48 \cdot 50+0.16 \cdot 0}{(1.02)^{2}}=\$ 78.61
$$

Black Scholes Model

- To get better models, we can split one month into two "ticks"

Black Scholes Model

- To get better models, we can split one month into two "ticks"
- Or N ticks...

Black Scholes Model

- To get better models, we can split one month into two "ticks"
- Or N ticks. . .and let N go to ∞

Black Scholes Model

- To get better models, we can split one month into two "ticks"
- Or N ticks. . and let N go to ∞
- Assume interest rate changes by $\pm \frac{5 \%}{N}$ every tick

Black Scholes Model

- To get better models, we can split one month into two "ticks"
- Or N ticks...and let N go to ∞
- Assume interest rate changes by $\pm \frac{5 \%}{N}$ every tick
- Assuming that exchange rate in one month will lie on a bell curve

Black Scholes Model

- To get better models, we can split one month into two "ticks"
- Or N ticks. . .and let N go to ∞
- Assume interest rate changes by $\pm \frac{5 \%}{N}$ every tick
- Assuming that exchange rate in one month will lie on a bell curve
- Can examine "limit" of price function and portfolio

Black Scholes Model

- To get better models, we can split one month into two "ticks"
- Or N ticks. . .and let N go to ∞
- Assume interest rate changes by $\pm \frac{5 \%}{N}$ every tick
- Assuming that exchange rate in one month will lie on a bell curve
- Can examine "limit" of price function and portfolio
- This is the Black-Scholes Model

Black Scholes Model

- To get better models, we can split one month into two "ticks"
- Or N ticks. . .and let N go to ∞
- Assume interest rate changes by $\pm \frac{5 \%}{N}$ every tick
- Assuming that exchange rate in one month will lie on a bell curve
- Can examine "limit" of price function and portfolio
- This is the Black-Scholes Model
- Merton and Scholes won the 1997 Nobel Prize in Economics for this model

