AMCS/MATH 609
 Problem set 1 due January 27, 2015
 Dr. Epstein

Reading: There are many excellent references for this material; I especially like Real Analysis by Elias Stein and Rami Shakarchi. Standard problems: The solutions to the following problems do not need to be handed in.

1. Let f be a measurable function defined in \mathbb{R}^{d} and define

$$
\begin{equation*}
\Gamma_{f}=\left\{(x, f(x)): x \in \mathbb{R}^{d}\right\} \tag{1}
\end{equation*}
$$

Show that Γ_{f} is a measurable set, and that $m\left(\Gamma_{f}\right)=0$.
2. Show that there does not exist a function $I \in L^{1}\left(\mathbb{R}^{d}\right)$ so that, for every $f \in L^{1}\left(\mathbb{R}^{d}\right)$,

$$
\begin{equation*}
f * I=f \tag{2}
\end{equation*}
$$

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Suppose that F is a closed set in \mathbb{R} whose complement has finite measure. Let $\delta(x)$ denote the distance to F :

$$
\begin{equation*}
\delta(x)=\inf \{|x-y|: y \in F\} \tag{3}
\end{equation*}
$$

and let

$$
\begin{equation*}
I(x)=\int_{\mathbb{R}} \frac{\delta(y) d y}{|x-y|^{2}} \tag{4}
\end{equation*}
$$

(a) Prove that δ is continuous, by showing that it satisfies the Lipschitz condition:

$$
\begin{equation*}
|\delta(x)-\delta(y)| \leq|x-y| \tag{5}
\end{equation*}
$$

(b) Show that $I(x)=\infty$ for each $x \notin F$.
(c) Show that $I(x)<\infty$ for a.e. $x \in F$. [Hint: Investigate $\int_{F} \delta(x) d x$.]
2. Let f be a measurable finite valued function defined on $[0,1]$, and suppose that $|f(x)-f(y)|$ is integrable over $[0,1] \times[0,1]$. Show that $f(x)$ is integrable over [0, 1].
3. Suppose that f and g are measurable functions on \mathbb{R}^{d}.
(a) Prove that $f(x-y) g(y)$ is measurable on $\mathbb{R}^{2 d}$.
(b) Show that if f and g are integrable on \mathbb{R}^{d}, then $f(x-y) g(y)$ is integrable on $\mathbb{R}^{2 d}$.
(c) Show that the convolution $f * g(x)$,

$$
\begin{equation*}
f * g(x)=\int_{\mathbb{R}^{d}} f(x-y) g(y) d y \tag{6}
\end{equation*}
$$

is well defined for a.e. $x \in \mathbb{R}^{d}$.
(d) Show that if f and g are integrable on \mathbb{R}^{d}, then

$$
\begin{equation*}
\|f * g\|_{L^{1}} \leq\|f\|_{L^{1}}\|g\|_{L^{1}} \tag{7}
\end{equation*}
$$

with equality if f and g are non-negative.
(e) The Fourier transform of an L^{1}-function is defined by

$$
\begin{equation*}
\hat{f}(\xi)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i x \xi} d x \tag{8}
\end{equation*}
$$

Show that $\hat{f}(\xi)$ is a bounded and continuous of ξ. If if f and g are integrable, then show that, for each ξ we have

$$
\begin{equation*}
\widehat{f * g}(\xi)=\hat{f}(\xi) \hat{g}(\xi) \tag{9}
\end{equation*}
$$

4. Let $K_{\delta}(x)=e^{-\pi|x|^{2} / \delta} \delta^{-\frac{d}{2}}$, and for $\epsilon>0$ define

$$
\begin{equation*}
f_{\epsilon}(x)=\int_{0}^{\infty} K_{\delta}(x) e^{-\pi \delta} \delta^{\epsilon-1} d \delta \tag{10}
\end{equation*}
$$

Use Fubini's theorem to show that $f_{\epsilon} \in L^{1}\left(\mathbb{R}^{d}\right)$ and show that

$$
\begin{equation*}
\hat{f}_{\epsilon}(\xi)=\int_{0}^{\infty} e^{-\pi \delta|\xi|^{2}} e^{-\pi \delta} \delta^{\epsilon-1} d \delta \tag{11}
\end{equation*}
$$

Finally show that there is a positive constant, C_{ϵ}, so that

$$
\begin{equation*}
\hat{f}_{\epsilon}(\xi)=\frac{C_{\epsilon}}{\left(1+|\xi|^{2}\right)^{\epsilon}} \tag{12}
\end{equation*}
$$

5. Suppose that f is a non-trivial element of $L^{1}\left(\mathbb{R}^{d}\right)$, and let f^{*} be its maximal function. Show that there is a constant $c>0$ so that

$$
\begin{equation*}
f^{*}(x) \geq \frac{c}{|x|^{d}} \text { for all }|x| \geq 1 \tag{13}
\end{equation*}
$$

and hence f^{*} is not integrable on \mathbb{R}^{d}.
6. Define the function on \mathbb{R} by

$$
f(x)= \begin{cases}\frac{1}{|x|(\log |x|)^{2}} & \text { for }|x| \leq \frac{1}{2} \tag{14}\\ 0 & \text { for }|x|>\frac{1}{2}\end{cases}
$$

Show that f is integrable, but there is a positive constant c so that

$$
\begin{equation*}
f^{*}(x) \geq \frac{c}{|x||\log | x| |} \text { for }|x| \leq \frac{1}{2} \tag{15}
\end{equation*}
$$

and therefore f^{*} is not locally integrable.

