AMCS 609
 Problem set 11 due May 5, 2015
 Dr. Epstein

Reading: Read Chapters 17, 21, and 22, in Lax, Functional Analysis.
Standard problem: The following problems should be done, but do not have to be handed in.

1. For (X, d) a complete metric space, prove that the following definitions of precompact set are equivalent: A set $S \subset X$ is precompact if
(a) Every sequence of points $<x_{n}>\subset S$ has a convergent subsequence;
(b) If for any $\epsilon>0, S$ can be covered by finitely many balls of radius ϵ;
2. Suppose that X is a Banach space. Prove the following statements
(a) If C_{1} and C_{2} are precompact, then $C_{1}+C_{2}$ is precompact.
(b) Let U be another Banach space and $M \in \mathscr{L}(X, U)$. If $C \subset X$ is precompact, then $M C \subset U$ is precompact.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Let X be a Banach space, and $K \subset X$ a precompact subset of X. Show that the convex hull of K is also precompact. Hint: Use the covering definition.
2. Let X be a Banach space and $\left\{P_{N}: N \in \mathbb{N}\right\}$ be a sequence of bounded, finite rank operators, which converge strongly to the identity, that is $\lim _{N \rightarrow \infty} P_{N} x=x$, for every $x \in X$. If $C: X \rightarrow X$ is a compact operator, then prove that $P_{N} C$ converges to C in the uniform norm. Show that if X is a Hilbert space, then any compact map $C: X \rightarrow X$ is the norm limit of a sequence of finite rank maps. Hint: If H is non-separable, then the sequence $<P_{N}>$ will not in general converge to the identity.
3. Suppose that X is a Hilbert space and $C: X \rightarrow X$ is a compact self adjoint operator, that is $\langle C x, y\rangle=\langle x, C y\rangle$, for all $x, y \in X$.
(a) Prove that for all $x \in X$, the function $F(x)=\langle C x, x\rangle$ is real valued.
(b) Suppose that for some $x, F(x)>0$; show that there is unit vector $x_{1} \in X$, so that

$$
\begin{equation*}
F\left(x_{1}\right)=\sup \{F(x): x \in X \text { with }\|x\|=1\} . \tag{1}
\end{equation*}
$$

(c) Prove that x_{1} is an eigenvector of C, that is, there is a real number λ_{1} so that $C x_{1}=\lambda_{1} x_{1}$.
(d) If we let $X_{1}=\left\{x \in X:\left\langle x, x_{1}\right\rangle=0\right\}$, then C maps X_{1} to itself, that is $C X_{1} \subset X_{1}$.
4. Let $X=L^{2}([0,1])$, and define the operator $M f(x)=x f(x)$. Recall that the spectrum of an operator A is the set

$$
\sigma(A)=\{\lambda \in \mathbb{C}:(A-\lambda \mathrm{Id}) \text { is not invertible }\}
$$

The complement of the $\sigma(A)$ is called the resolvent set.
(a) Prove that M is a bounded operator, but not a compact operator.
(b) Does there exist a $\lambda \in \mathbb{C}$ and $f \in X$ such that $(M-\lambda \mathrm{Id}) f=0$?
(c) What is the spectrum of M ? Give a formula for the resolvent operator $R(\lambda)=$ $(M-\lambda \mathrm{Id})^{-1}$. Where is it defined?
5. Let $k(s, t)$ be a C^{1}-function on $[0,1] \times[0,1]$. Define the operator K by

$$
\begin{equation*}
K f(s)=\int_{0}^{1} k(s, t) f(t) d t \tag{2}
\end{equation*}
$$

Show that $K: C^{0}([0,1]) \rightarrow C^{0}([0,1])$ and $K: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ are compact operators.

