AMCS/MATH 609 Problem set 4 due February 24, 2015 Dr. Epstein

Reading: There are many excellent references for this material; I especially like *Real Analysis* by Elias Stein and Rami Shakarchi. **Standard problems:** The solutions to the following problems do not need to be handed in.

1. Suppose that $L : \mathbb{R}^d \to \mathbb{R}^d$ is a linear transformation. Show that if *E* is a Lebesgue measurable set then so is L(E). Hint: Show that *L* maps sets of measure zero to sets of measure zero. Prove that

$$m(L(E)) = |\det(L)|m(E).$$
(1)

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

- 1. Suppose that ν , ν_1 , ν_2 are signed measures on (X, \mathcal{M}) and μ is a positive measure. Prove the following assertions:
 - (a) If $v_1 \perp \mu$ and $v_2 \perp \mu$, then $(v_1 + v_2) \perp \mu$.
 - (b) If $v_1 \ll \mu$ and $v_2 \ll \mu$, then $(v_1 + v_2) \ll \mu$.
 - (c) If $v_1 \perp v_2$ implies that $|v_1| \perp |v_2|$.
 - (d) $\nu << |\nu|$.
 - (e) If $\nu \perp \mu$ and $\nu \ll \mu$, then $\nu = 0$.
- 2. If $\nu \ll \mu$, with μ a positive, σ -finite measure, then we let $\frac{d\nu}{d\mu}$ denote the Radon-Nikodym derivative, so that

$$\int_{E} d\nu = \int_{E} \left[\frac{d\nu}{d\mu} \right] d\mu.$$
⁽²⁾

(a) If $\nu \ll \mu$ and f is a non-negative measureable function, then

$$\int_{X} f(x)d\nu(x) = \int_{X} f(x) \left[\frac{d\nu}{d\mu}\right](x)d\mu(x).$$
(3)

(b) If $v_1 \ll \mu$ and $v_2 \ll \mu$, then

$$\frac{d(v_1 + v_2)}{d\mu} = \frac{dv_1}{d\mu} + \frac{dv_2}{d\mu}$$
(4)

(c) If $\lambda \ll \nu \ll \mu$, with ν and μ positive measures, then

$$\frac{d\lambda}{d\mu} = \frac{d\lambda}{d\nu} \cdot \frac{d\nu}{d\mu}.$$
(5)

(d) If $\nu \ll \mu$, and $\mu \ll \nu$, with both measures positive, then

$$\frac{dv}{d\mu} = \left[\frac{d\mu}{dv}\right]^{-1} \tag{6}$$

3. In this problem we give an example to show that the σ-finiteness of μ cannot be omitted from the hypotheses of the Radon-Nikodym theorem. Let X = [0, 1] and M be the class of Lebesgue measurable subsets of [0, 1]. Let v be Lebesgue measure restricted to X and μ be the counting measure on subsets of X. Clearly v << μ, but show that there is no measurable function f such that</p>

$$\nu(E) = \int_{E} f(x)d\mu(x).$$
(7)

4. Suppose that μ_1 , ν_1 are σ -finite measures on (X_1, \mathcal{M}_1) and μ_2 , ν_2 are σ -finite measures on (X_2, \mathcal{M}_2) , with μ_1 and μ_2 positive measures. Show that if $\nu_1 \ll \mu_1$ and $\nu_2 \ll \mu_2$, then $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ and

$$\frac{d(v_1 \times v_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{dv_1}{d\mu_1}(x_1) \cdot \frac{dv_2}{d\mu_2}(x_2).$$
(8)

 Let f : R → R be a monotone increasing, continuously differentiable function. Show that f maps Borel measureable sets to Borel measurable sets. Define a Borel measure by setting

$$\mu(E) = m(f(E)),\tag{9}$$

where *m* is Lebesgue measure. Show that $\mu \ll m$, and compute the Radon-Nikodym derivative $\frac{d\mu}{dm}$.

6. Let (X, \mathcal{M}, μ) be a σ -finite measure space, and \mathcal{N} a sub- σ -algebra of \mathcal{M} , also σ -finite. We let $\nu = \mu \upharpoonright_{\mathcal{N}}$.

(a) Show that for any $f \in L^1(X; d\mu)$ there is a function $g \in L^1(X; d\nu)$ (which is therefore \mathcal{N} -measurable) so that for any set $E \in \mathcal{N}$, we have

$$\int_{E} f(x)d\mu(x) = \int_{E} g(x)d\nu(x).$$
(10)

The point here is that g is measurable with respect to \mathcal{N} , while in general f is not. Show that g is unique modulo sets of ν measure zero.

(b) Suppose that \mathcal{M} is the Lebesgue measurable subsets of \mathbb{R} and \mathcal{N} is the σ -algebra generated by the sets $\{(n, n + 1] : n \in \mathbb{Z}\}$. Give a formula for g in terms of f.