AMCS/MATH 609 Problem set 6 due March 17, 2015 Dr. Epstein

Reading: Read Chapters 3.2-3.3 (especially the proof of Theorem 8), 4.2, 5.1-5.2, 6.1-6.3 in Lax, *Functional Analysis*.

Standard problem: The following problems should be done, but do not have to be handed in.

- 1. Prove Theorem 4 in §3.2 of Lax.
- 2. Suppose that (X, d) is a metric space. Show that if $\lim_{n\to\infty} x_n = x^*$, then, for any $x \in X$, we also have that $\lim_{n\to\infty} d(x, x_n) = d(x, x^*)$.
- 3. Prove that in any real normed linear space $(X, \|\cdot\|)$, the open and closed unit balls

$$B_1 = \{ x \in X : \|x\| < 1 \}, \quad \overline{B}_1 = \{ x \in X : \|x\| \le 1 \}$$
(1)

are convex and have non-empty interior. The unit ball is *strictly convex*, if, whenever ||x|| = ||y|| = 1 and $x \neq y$, then

$$\left\|\frac{x+y}{2}\right\| < 1. \tag{2}$$

Show that the unit ball in ℓ_2 is strictly convex, but the unit ball in ℓ_1 is not.

4. Let $Y \subset \ell_{\infty}$ be the subspace of sequences that are eventually zero (only finitely many terms non-zero). Find the closure of *Y* with respect to the ℓ_{∞} -norm.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

- 1. Prove that every finite dimensional subspace of a normed vector space is closed. Hint: Use the fact that all norms on a finite dimensional vector space are equivalent to show that every finite dimensional subspace is complete.
- 2. Let *V* be a vector space, possibly infinite dimensional.
 - (a) Show that if $\mathscr{X} = \{x_{\alpha} : \alpha \in \mathscr{A}\} \subset V$ is a set of linearly independent vectors, then there is a basis for *V* of the form $\{x_{\alpha} : \alpha \in \mathscr{A}\} \cup \{y_{\beta} : \beta \in \mathscr{B}\}$. Hint: Let \mathscr{W} consists of sets of linearly independent vectors in *V*, with the partial ordered defined by inclusion, then apply Zorn's lemma to prove this assertion.

(b) Use this result to show that if $U \subset V$ is a subspace of V, then there exists another subspace W of V so that $V = U \oplus W$, and an isomorphism

$$\varphi: W \longrightarrow V/U. \tag{3}$$

3. [This problem assumes an elementary knowledge of holomorphic functions of one complex variable.]

 $L^2(D_1)$ is defined as the closure of $C^0(\overline{D}_1)$ with respect to the L^2 -norm. Note that the points of $L^2(D_1)$ are equivalence classes of functions, equal almost everywhere. The norm on $L^2(D_1)$ is

$$\|f\|_{2}^{2} = \int_{D_{1}} |f(x, y)|^{2} dx dy = \lim_{r \to 1^{+}} \iint_{D_{r}} |f(x, y)|^{2} dx dy < \infty.$$
(4)

Let $\mathscr{H}^2(D_1)$ denote the closure, with respect to the L^2 -norm, of holomorphic functions on the unit disk that are in $\mathscr{C}^0(\overline{D}_1)$.

- (a) Show that $\mathcal{H}^2(D_1)$ is a closed subspace of $L^2(D_1)$ and that $f \in \mathcal{H}^2(D_1)$ is holomorphic in int D_1 . That is, every element of $\mathcal{H}^2(D_1)$ has a representative that is holomorphic in int D_1 .
- (b) Show that if f is a square integrable function in D_1 , which is holomorphic in the interior of D_1 , then $f \in \mathcal{H}^2(D_1)$. (You need to show that f is an L^2 -limit of functions in $C^0(\overline{D}_1)$.
- (c) Give an orthonormal basis for $\mathcal{H}^2(D_1)$. Let $P : L^2(D_1) \to \mathcal{H}^2(D_1)$ denote the nearest neighbor map, or orthogonal projection onto $\mathcal{H}^2(D_1)$. Find an expression for Pf in terms of the orthonormal basis. Can you prove that

$$Pf(z) = \int_{D_1} \frac{f(w, \bar{w}) dx dy}{\pi (1 - z\bar{w})^2}$$
(5)

(d) Prove that for any $k \in \mathbb{N}$, there is a bounded linear functional ℓ_k defined on $L^2(D_1)$, so that if $f \in \mathcal{H}^2(D_1)$, then

$$\ell_k(f) = \partial_z^k f(0). \tag{6}$$

4. A bounded sequence $\langle c_i \rangle$ is Cesaro summable if

$$\lim_{n \to \infty} \frac{c_1 + \dots + c_n}{n} \text{ exists.}$$
(7)

Show that a Banach limit LIM can be defined on ℓ_{∞} so that if $\langle c_j \rangle$ is Cesaro summable then

$$\lim_{j \to \infty} c_j = \lim_{n \to \infty} \frac{c_1 + \dots + c_n}{n}.$$
 (8)

Let 𝒫 denote the subspace of 𝔅⁰([0, 1]) defined by polynomials restricted to [0, 1].
 Suppose that ℓ : 𝒫 → ℝ is a linear function with the property that

$$p(x) \ge 0 \text{ for } x \in [0, 1] \Rightarrow \ell(p) \ge 0.$$
(9)

Show that ℓ extends to define a linear functional , $\tilde{\ell}$, on all of $\mathscr{C}^0([0, 1])$, satisfying an estimate of the form

$$|\tilde{\ell}(f)| \le C \|f\|_{\infty}.$$
(10)

Can you find a closed form expression for C?

6. Prove that ℓ_1 has a countable dense subset, but ℓ_∞ does not. Recall that:

$$\ell_1 = \left\{ (a_1, a_2, \dots) : \|a\|_1 = \sum_j |a_j| < \infty \right\}$$

and

$$\ell_{\infty} = \{(a_1, a_2, \ldots) : \|a\|_{\infty} = \sup\{|a_j| : j = 1, 2, \ldots\} < \infty\}.$$