AMCS/MATH 609 Problem set 7 due March 31, 2015 Dr. Epstein

Reading: Read Chapters 5, 8.1-3, and 9.1 in Lax, *Functional Analysis*. **Standard problem:** The following problems should be done, but do not have to be handed in.

- 1. Exercises 1 and 2 on page 76 of Lax.
- 2. Let $\{V_1, \ldots, V_N\}$ be linearly independent vectors in a complex inner product space $(X, \langle \cdot, \cdot \rangle)$.
 - (a) Show that the matrix

$$G_{ij} = \langle V_i, V_j \rangle, \tag{1}$$

is Hermitian symmetric that is $G_{ij} = \overline{G_{ji}}$.

(b) Prove that for (v_1, \ldots, v_n) , $(w_1, \ldots, w_N) \in \mathbb{C}^N$, we have

$$\left|\sum_{i,j=1}^{N} G_{ij} v_i \overline{w}_j\right| \le \sqrt{\sum_{i,j=1}^{N} G_{ij} v_i \overline{v}_j} \sqrt{\sum_{i,j=1}^{N} G_{ij} w_i \overline{w}_j}$$
(2)

(c) Without using computation, provide a conceptual proof that G_{ij} positive definite, i.e., there is a positive constant C so that for $(v_1, \ldots, v_n) \in \mathbb{C}^N$, we have

$$\sum_{i,j=1}^{N} G_{ij} v_i \overline{v}_j \ge C \sum_{j=1}^{N} |v_j|^2.$$
(3)

(d) Show that G_{ij} is invertible.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Suppose that X is a Banach space and $Y \subset X$ is a closed subspace. Show that the quotient space X/Y, with the quotient norm

$$\|[x]\|_{X/Y} = \inf_{x \in [x]} \|x\|_X, \tag{4}$$

is complete.

2. A bounded sequence $\langle c_j \rangle$ is Cesaro summable if

$$\lim_{n \to \infty} \frac{c_1 + \dots + c_n}{n} \text{ exists.}$$
(5)

Show that a Banach limit LIM can be defined on ℓ_{∞} so that if $\langle c_j \rangle$ is Cesaro summable then

$$\lim_{j \to \infty} c_j = \lim_{n \to \infty} \frac{c_1 + \dots + c_n}{n}.$$
 (6)

3. Let LIM be as defined in the previous exercise. Show that there does not exist a vector $\boldsymbol{b} \in \ell_1$ so that

$$\lim_{j \to \infty} c_j = \langle \boldsymbol{c}, \boldsymbol{b} \rangle.$$
⁽⁷⁾

4. Let $\{w_1, \ldots, w_N\}$ be distinct points in the open unit disk, and $\{a_1, \ldots, a_N\}$ complex numbers. We define the affine subspace $Y_a \subset \mathcal{H}^2(D_1)$, to be

$$Y_{a} = \{ f \in \mathcal{H}^{2}(D_{1}) : f(w_{j}) = a_{j} \}.$$
(8)

Show that $Y_a \neq \emptyset$. Define

$$m(a) = \inf\{\|f\|_2 : f \in Y_a\}.$$
 (9)

Prove that there is a unique function $f_1 \in Y_a$ with $m(a) = ||f_1||$. Let $g_w \in \mathcal{H}^2(D_1)$ be the unique function so that, for all $f \in \mathcal{H}^2(D_1)$,

$$f(w) = \iint_{D_1} f(z)\overline{g_w(z)}dxdy$$
(10)

Prove that we can choose $(\lambda_1, \ldots, \lambda_N)$ so that

$$F_1 = \sum_{j=1}^N \lambda_j g_{w_j} \in Y_a.$$
(11)

Let Y_0 be the subspace of $\mathcal{H}^2(D_1)$ consisting of functions that vanish at $\{w_j\}$. Prove $\langle F_1, F_0 \rangle = 0$ for all $F_0 \in Y_0$ and explain why this shows that

$$m(\boldsymbol{a}) = \sqrt{\sum_{j,k=1}^{N} \langle g_{w_j}, g_{w_k} \rangle \lambda_j \overline{\lambda}_k} = \sqrt{\sum_{j=1}^{N} a_j \overline{\lambda}_j}.$$
 (12)

Hence F_1 is the unique function in Y_a with

$$||F_1||_2 = m(a).$$
(13)

5. Suppose that $f \in C^0([0, 1])$ and for every function $\varphi \in \mathscr{C}^\infty_0((0, 1))$, we have

$$\int_{0}^{1} f(x)\varphi(x)dx = 0,$$
(14)

prove that f = 0 in $C^0([0, 1])$. Now show that if $f \in L^2([0, 1])$ and this condition holds for all $\varphi \in \mathscr{C}^{\infty}_0((0, 1))$, then f = 0 in $L^2([0, 1])$. Remember that $L^2([0, 1])$ is the closure of $C^0([0, 1])$ with respect to the L^2 -norm. The proofs are completely different in the two cases!

6. A function *u*, which belongs to $L^2([-R, R])$ for all R > 0, is weakly constant if $\int u(x)\partial_x \varphi(x) = 0 \tag{15}$

for every $\varphi \in \mathscr{C}_0^{\infty}(\mathbb{R})$. Show that a weakly constant function is smooth and constant, or more accurately: has a smooth representative, which is constant. Hint: Show that if u(x) is weakly constant then so is au(x - y) for all $a, y \in \mathbb{R}$.

7. Let D be a connected open subset of \mathbb{C} . A function $f \in L^2(D)$ is weakly holomorphic if

$$\iint_{D} f \partial_{\bar{z}} \varphi dx dy = 0, \tag{16}$$

for all $\varphi \in \mathscr{C}^{\infty}_{c}(D)$. Show that a weakly holomorphic function is smooth in the interior of *D* and is a classical solution to the PDE $\partial_{\bar{z}} f = 0$. Note: Use the definition of weakly holomorphic given here, which differs from that given last semester. In particular, a weakly holomorphic function is not known, a priori, to be continuous.

- 8. Let $Y = \{u \in \mathscr{C}^{\infty}(\overline{D}_1) : \Delta u = 0\}.$
 - (a) We let \overline{Y} denote the closure of Y with respect to the L^2 -norm on the unit disk:

$$\|u\|_{2}^{2} = \iint_{D_{1}} |u(x, y)|^{2} dx dy.$$
(17)

Show that if $v \in \overline{Y}$ then v has representative that is smooth in the interior of the unit disk and that $\Delta v = 0$, in the interior of D_1 . Hint: Use the Poisson formula.

(b) Describe the radial functions in Y^{\perp} , that is functions of $r = \sqrt{x^2 + y^2}$ that are orthogonal to \overline{Y} .