AMCS/MATH 609

Problem set 8

Due April 7, 2015
Dr. Epstein

Reading: Read Chapters 8.1-3, 9.1, and 10.1-3 in Lax, Functional Analysis.
Standard problems: The following problems should be done, but do not have to be handed in:

1. Let $Y \subset X$, a normed linear space. Show that Y^{\perp} is a closed subspace of X^{\prime}.
2. Prove that $L^{2}([0,1])$, the closure of $C^{0}([0,1])$ with respect to

$$
\begin{equation*}
\|f\|_{2}^{2}=\int_{0}^{1}|f(x)|^{2} d x \tag{1}
\end{equation*}
$$

is a separable space.
3. Suppose that $(M, \Sigma, d \mu)$ is a measure space, with $\mu(M)=1$. Show that

$$
\begin{equation*}
\|f\|_{p}=\left[\int_{M}|f(m)|^{p} d \mu(m)\right]^{\frac{1}{p}} \tag{2}
\end{equation*}
$$

is an increasing function of p.
Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. For $f \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, show that $|f|$ has a weak derivative, which can be represented by a function $g(x)$ that satisfies

$$
\begin{equation*}
|g(x)| \leq\left|\partial_{x} f(x)\right| . \tag{3}
\end{equation*}
$$

The statement that the weak derivative is represented by g means that for all $\varphi \in$ $\mathscr{C}_{0}^{\infty}(\mathbb{R})$ we have

$$
\begin{equation*}
\int_{\mathbb{R}}|f(x)| \partial_{x} \varphi(x) d x=-\int_{\mathbb{R}} g(x) \varphi(x) d x . \tag{4}
\end{equation*}
$$

Hint: Consider $\sqrt{f^{2}(x)+\epsilon^{2}}$. Compute the weak derivative of $|x|$.
2. Suppose that we define a weak solution of the wave equation,

$$
\begin{equation*}
\partial_{x}^{2} u(x, t)-\partial_{t}^{2} u(x, t)=0 \tag{5}
\end{equation*}
$$

to be a function that is square integrable in $[-R, R] \times[-R, R]$ for any R, and such that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} u(x, t)\left(\partial_{x}^{2} \varphi(x, t)-\partial_{t}^{2} \varphi(x, t)\right) d x d t=0, \tag{6}
\end{equation*}
$$

for any function $\varphi \in \mathscr{C}_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. Show that if $f \in L^{2}(\mathbb{R})$, then

$$
\begin{equation*}
u(x, t)=f(x-t) \text { and } v(x, t)=f(x+t) \tag{7}
\end{equation*}
$$

are weak solutions of the wave equation. Hint: Approximate!
3. The space $H_{1}\left(D_{1}\right)$ is the closure of $\mathscr{C}^{\infty}\left(\overline{D_{1}}\right)$ with respect to the norm

$$
\begin{equation*}
\|u\|_{1}^{2}=\int_{D_{1}}\left[|u(x)|^{2}+|\nabla u(x)|^{2}\right] d x . \tag{8}
\end{equation*}
$$

In class we proved that the map $R: u \mapsto u \upharpoonright_{\partial D_{1}}$ has a continuous extension as a map $R: H_{1}\left(D_{1}\right) \rightarrow L^{2}\left(\partial D_{1}\right)$. Prove that there are functions $f \in L^{2}\left(\partial D_{1}\right)$ for which there does not exist a function $u \in H_{1}\left(D_{1}\right)$ for which $f=R(u)$. Hint: The argument given in class actually showed that $R(u)$ belongs to a subspace of $L^{2}\left(\partial D_{1}\right)$.
4. Let $Y \subset X$ be a closed subspace of a normed linear space. Show that

$$
\begin{equation*}
Y^{\perp}=\left\{\ell \in X^{\prime} \mid \ell(y)=y \text { for all } y \in Y\right\} \tag{9}
\end{equation*}
$$

is isometrically isomorphic to $(X / Y)^{\prime}$. Show that Y^{\prime} is isometrically isomorphic to X^{\prime} / Y^{\perp}.
5. Suppose that ℓ is a bounded linear functional on a Hilbert space, and $\left\{e_{j}\right\}$ is a collection of orthonormal vectors. Show that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \ell\left(e_{j}\right)=0 \tag{10}
\end{equation*}
$$

