AMCS 610
 Problem set 3 due February 18, 2014
 Dr. Epstein

Reading: Read Chapters 8.1-3, and 9.1 in Lax, Functional Analysis. Standard problem: The following problems should be done, but do not have to be handed in.

1. Exercises 1 and 2 on page 76 of Lax.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Let $\left\{V_{1}, \ldots, V_{N}\right\}$ be linearly independent vectors in a complex inner product space $(X,\langle\cdot, \cdot\rangle)$.
(a) Show that the matrix

$$
\begin{equation*}
G_{i j}=\left\langle V_{i}, V_{j}\right\rangle, \tag{1}
\end{equation*}
$$

is Hermitian symmetric that is $G_{i j}=\overline{G_{j i}}$.
(b) Prove that for $\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{N}\right) \in \mathbb{C}^{N}$, we have

$$
\begin{equation*}
\left|\sum_{i, j=1}^{N} G_{i j} v_{i} \bar{w}_{j}\right| \leq \sqrt{\sum_{i, j=1}^{N} G_{i j} v_{i} \bar{v}_{j}} \sqrt{\sum_{i, j=1}^{N} G_{i j} w_{i} \bar{w}_{j}} \tag{2}
\end{equation*}
$$

(c) Without using computation, provide a conceptual proof that $G_{i j}$ positive definite, i.e., there is a positive constant C so that for $\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{C}^{N}$, we have

$$
\begin{equation*}
\sum_{i, j=1}^{N} G_{i j} v_{i} \bar{v}_{j} \geq C \sum_{j=1}^{N}\left|v_{j}\right|^{2} \tag{3}
\end{equation*}
$$

(d) Show that $G_{i j}$ is invertible.
2. Suppose that $f \in C^{0}([0,1])$ and for every function $\varphi \in \mathscr{C}_{0}^{\infty}((0,1))$, we have

$$
\begin{equation*}
\int_{0}^{1} f(x) \varphi(x) d x=0 \tag{4}
\end{equation*}
$$

prove that $f=0$ in $C^{0}([0,1])$. Now show that if $f \in L^{2}([0,1])$ and this condition holds for all $\varphi \in \mathscr{C}_{0}^{\infty}((0,1))$, then $f=0$ in $L^{2}([0,1])$. Remember that $L^{2}([0,1])$ is the closure of $C^{0}([0,1])$ with respect to the L^{2}-norm. The proofs are completely different in the two cases!
3. Let $Y=\left\{u \in \mathscr{C}^{\infty}\left(\bar{D}_{1}\right): \Delta u=0\right\}$.
(a) We let \bar{Y} denote the closure of Y with respect to the L^{2}-norm on the unit disk:

$$
\begin{equation*}
\|u\|_{2}^{2}=\int_{D_{1}}|u(x, y)|^{2} d x d y \tag{5}
\end{equation*}
$$

Show that if $v \in \bar{Y}$ then v has representative that is smooth in the interior of the unit disk and that $\Delta v=0$, in the interior of D_{1}. Hint: Use the Poisson formula.
(b) Describe the radial functions in Y^{\perp}, that is functions of $r=\sqrt{x^{2}+y^{2}}$ that are orthogonal to \bar{Y}.
4. A function u, which belongs to $L^{2}([-R, R])$ for all $R>0$, is weakly constant if

$$
\begin{equation*}
\int u(x) \partial_{x} \varphi(x)=0 \tag{6}
\end{equation*}
$$

for every $\varphi \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$. Show that a weakly constant function is smooth and constant, or more accurately: has a smooth representative, which is constant. Hint: Show that if $u(x)$ is weakly constant then so is $a u(x-y)$ for all $a, y \in \mathbb{R}$.
5. For $f \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, show that $|f|$ has a weak derivative, which can be represented by a function $g(x)$ that satisfies

$$
\begin{equation*}
|g(x)| \leq\left|\partial_{x} f(x)\right| \tag{7}
\end{equation*}
$$

The statement that the weak derivative is represented by g means that for all $\varphi \in$ $\mathscr{C}_{0}^{\infty}(\mathbb{R})$ we have

$$
\begin{equation*}
\int_{\mathbb{R}}|f(x)| \partial_{x} \varphi(x) d x=-\int_{\mathbb{R}} g(x) \varphi(x) d x \tag{8}
\end{equation*}
$$

Hint: Consider $\sqrt{f^{2}(x)+\epsilon^{2}}$. Compute the weak derivative of $|x|$.
6. Suppose that we define a weak solution of the wave equation,

$$
\begin{equation*}
\partial_{x}^{2} u(x, t)-\partial_{t}^{2} u(x, t)=0 \tag{9}
\end{equation*}
$$

to be a function that is square integrable in $[-R, R] \times[-R, R]$ for any R, and such that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} u(x, t)\left(\partial_{x}^{2} \varphi(x, t)-\partial_{t}^{2} \varphi(x, t)\right) d x d t=0 \tag{10}
\end{equation*}
$$

for any function $\varphi \in \mathscr{C}_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. Show that if $f \in L^{2}(\mathbb{R})$, then

$$
\begin{equation*}
u(x, t)=f(x-t) \text { and } v(x, t)=f(x+t) \tag{11}
\end{equation*}
$$

are weak solutions of the wave equation. Hint: Approximate!

