AMCS 610 Problem set 5 due March 18, 2014 Dr. Epstein

Reading: Read Chapters 10 and 11 in Lax, *Functional Analysis*. You might also want to look at the sections in Royden, *Real Analysis*, or Rudin, *Real and Complex Analysis* on the Baire Category Theorem and the Uniform Boundedness Principle.

Standard problem: The following problems should be done, but do not have to be handed in.

- 1. Let (X, d) be a metric space and U, V open dense subsets of X. Show that $U \cap V$ is also dense.
- 2. Exercise 3 on page 101 of Lax.
- 3. Exercise 5 on page 104 of Lax.
- 4. Exercise 6 on page 106 of Lax.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

- 1. Let X be a complete, countable metric space. Show that X has a discrete subset Y so that $\overline{Y} = X$. A subset Y is discrete if for each $y \in Y$ the set $\{y\}$ is open as a subset of X.
- 2. Let $\{q_n\}$ be an enumeration of the $\mathbb{Q} \cap [0, 1]$. For each *m* we let

$$U_m = \bigcup_{n=1}^{\infty} (q_n - \frac{1}{m2^n}, q_n + \frac{1}{m2^n}) \cap [0, 1].$$
(1)

Is it true that

$$\bigcap_{m=1}^{\infty} U_m = \mathbb{Q} \cap [0, 1]?$$
⁽²⁾

Why or why not?

3. Prove: If $\langle x_n \rangle$ is a sequence in ℓ_1 that converges weakly to 0, then

$$\lim_{n \to \infty} \|x_n\|_1 = 0, \tag{3}$$

that is: $\langle x_n \rangle$ also converges strongly to zero. Hints: Argue by contradiction, choose an appropriate subsequence, and use the fact that $\ell_1^* = \ell_\infty$ is a very big vector space.

4. Suppose that $\langle b_j \rangle$ is a sequence of real numbers so that, for every real sequence $\langle a_j \rangle$, converging to zero, the limit

$$\ell(\boldsymbol{a}) = \lim_{N \to \infty} \sum_{j=1}^{N} a_j b_j \tag{4}$$

exists. Prove that

$$\sum_{j=1}^{\infty} |b_j| < \infty.$$
(5)

5. Let (a_{ij}) be an infinite matrix with complex entries, $1 \le i, j < \infty$. Suppose that for every convergent sequence $\langle s_j \rangle$, and $1 \le i$, we define

$$\sigma_i = \lim_{N \to \infty} \sum_{j=1}^N a_{ij} s_j, \tag{6}$$

if the limit exists.

Show that these limits exist, for all convergent sequences $\langle s_j \rangle$, and define a sequence $\langle \sigma_i \rangle$, with the same limit, if and only if the following conditions hold:

(a)

$$\lim_{i \to \infty} a_{ij} = 0 \text{ for each } j.$$

(b)

$$\sup_{1\leq i<\infty}\sum_{j=1}^{\infty}|a_{ij}|<\infty.$$

(c)

$$\lim_{i \to \infty} \sum_{j=1}^{\infty} a_{ij} = 1.$$

Give an example of such a matrix for which there exists a non-convergent sequence, $\langle s_j \rangle$, so that σ_j exists for every $j \in \mathbb{N}$, and the sequence $\langle \sigma_j \rangle$ is convergent.

- 6. Let $\{f_n\}$ be a sequence of continuous, real valued functions defined on [0, 1], such that $f(x) = \lim_{n \to \infty} f_n(x)$ exists for every $x \in [0, 1]$.
 - (a) Prove that there is a non-empty open set $V \subset [0, 1]$, and a number M such that

$$|f_n(x)| < M \text{ for all } x \in V.$$
(7)

(b) If ε > 0, show that there is a nonempty open set, V and an integer N so that if n ≥ N, then

$$|f(x) - f_n(x)| < \epsilon \text{ for all } x \in V.$$
(8)

Hint: For each N define $A_N = \{x : |f_n(x) - f_m(x)| \le \epsilon \text{ if } N \le n, m\}$, and consider $\bigcup_N A_N$.

7. If $1 \le p < q < \infty$, then $\ell_p \subset \ell_q$. For fixed p < q, and $n \in \mathbb{N}$, show that the set

$$B_n = \{(x_j) \in \ell_q : \sum_{j=1}^{\infty} |x_j|^p \le n\}$$
(9)

is closed and nowhere dense, as a subset of ℓ_q . Hence, as a subset of ℓ_q , ℓ_p is a set of first category.