AMCS 610
 Problem set 5 due March 18, 2014
 Dr. Epstein

Reading: Read Chapters 10 and 11 in Lax, Functional Analysis. You might also want to look at the sections in Royden, Real Analysis, or Rudin, Real and Complex Analysis on the Baire Category Theorem and the Uniform Boundedness Principle.
Standard problem: The following problems should be done, but do not have to be handed in.

1. Let (X, d) be a metric space and U, V open dense subsets of X. Show that $U \cap V$ is also dense.
2. Exercise 3 on page 101 of Lax.
3. Exercise 5 on page 104 of Lax.
4. Exercise 6 on page 106 of Lax.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Let X be a complete, countable metric space. Show that X has a discrete subset Y so that $\bar{Y}=X$. A subset Y is discrete if for each $y \in Y$ the set $\{y\}$ is open as a subset of X.
2. Let $\left\{q_{n}\right\}$ be an enumeration of the $\mathbb{Q} \cap[0,1]$. For each m we let

$$
\begin{equation*}
U_{m}=\bigcup_{n=1}^{\infty}\left(q_{n}-\frac{1}{m 2^{n}}, q_{n}+\frac{1}{m 2^{n}}\right) \cap[0,1] . \tag{1}
\end{equation*}
$$

Is it true that

$$
\begin{equation*}
\bigcap_{m=1}^{\infty} U_{m}=\mathbb{Q} \cap[0,1] ? \tag{2}
\end{equation*}
$$

Why or why not?
3. Prove: If $<x_{n}>$ is a sequence in ℓ_{1} that converges weakly to 0 , then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{1}=0 \tag{3}
\end{equation*}
$$

that is: $\left\langle x_{n}\right\rangle$ also converges strongly to zero. Hints: Argue by contradiction, choose an appropriate subsequence, and use the fact that $\ell_{1}^{*}=\ell_{\infty}$ is a very big vector space.
4. Suppose that $\left.<b_{j}\right\rangle$ is a sequence of real numbers so that, for every real sequence $\left.<a_{j}\right\rangle$, converging to zero, the limit

$$
\begin{equation*}
\ell(\boldsymbol{a})=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} a_{j} b_{j} \tag{4}
\end{equation*}
$$

exists. Prove that

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|b_{j}\right|<\infty \tag{5}
\end{equation*}
$$

5. Let $\left(a_{i j}\right)$ be an infinite matrix with complex entries, $1 \leq i, j<\infty$. Suppose that for every convergent sequence $\left\langle s_{j}\right\rangle$, and $1 \leq i$, we define

$$
\begin{equation*}
\sigma_{i}=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} a_{i j} s_{j} \tag{6}
\end{equation*}
$$

if the limit exists.
Show that these limits exist, for all convergent sequences $\left\langle s_{j}\right\rangle$, and define a sequence $\left\langle\sigma_{i}\right\rangle$, with the same limit, if and only if the following conditions hold:
(a)

$$
\lim _{i \rightarrow \infty} a_{i j}=0 \text { for each } j
$$

(b)

$$
\sup _{1 \leq i<\infty} \sum_{j=1}^{\infty}\left|a_{i j}\right|<\infty
$$

(c)

$$
\lim _{i \rightarrow \infty} \sum_{j=1}^{\infty} a_{i j}=1
$$

Give an example of such a matrix for which there exists a non-convergent sequence, $\left.<s_{j}\right\rangle$, so that σ_{j} exists for every $j \in \mathbb{N}$, and the sequence $\left.<\sigma_{j}\right\rangle$ is convergent.
6. Let $\left\{f_{n}\right\}$ be a sequence of continuous, real valued functions defined on $[0,1]$, such that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ exists for every $x \in[0,1]$.
(a) Prove that there is a non-empty open set $V \subset[0,1]$, and a number M such that

$$
\begin{equation*}
\left|f_{n}(x)\right|<M \text { for all } x \in V \tag{7}
\end{equation*}
$$

(b) If $\epsilon>0$, show that there is a nonempty open set, V and an integer N so that if $n \geq N$, then

$$
\begin{equation*}
\left|f(x)-f_{n}(x)\right|<\epsilon \text { for all } x \in V \tag{8}
\end{equation*}
$$

Hint: For each N define $A_{N}=\left\{x:\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon\right.$ if $\left.N \leq n, m\right\}$, and consider $\cup_{N} A_{N}$.
7. If $1 \leq p<q<\infty$, then $\ell_{p} \subset \ell_{q}$. For fixed $p<q$, and $n \in \mathbb{N}$, show that the set

$$
\begin{equation*}
B_{n}=\left\{\left(x_{j}\right) \in \ell_{q}: \sum_{j=1}^{\infty}\left|x_{j}\right|^{p} \leq n\right\} \tag{9}
\end{equation*}
$$

is closed and nowhere dense, as a subset of ℓ_{q}. Hence, as a subset of ℓ_{q}, ℓ_{p} is a set of first category.

