AMCS 610
 Problem set 6 due April 1, 2014
 Dr. Epstein

Reading: Read Chapters 15 and 16 in Lax, Functional Analysis.
Standard problem: The following problem should be done, but do not have to be handed in.

1. Let X, Y, W be Banach spaces, with sequences $<S_{n}>\in \mathscr{L}(Y, W),<T_{n}>\in$ $\mathscr{L}(X, Y)$.
(a) If $S_{n} \rightarrow S$ and $T_{n} \rightarrow T$ strongly, then $S_{n} T_{n} \rightarrow S T$ strongly.
(b) Suppose that S_{n} converges weakly to S and T_{n} converges strongly to T; show that $S_{n} T_{n}$ converges weakly to $S T$.
(c) Find examples of $\left.\left\langle S_{n}\right\rangle,<T_{n}\right\rangle$ both of which converge weakly to zero, but such that $S_{n} T_{n}$ does not. Hint: Look at the shift operator on bi-infinite square summable sequences: $S\left(x_{j}\right)=\left(x_{j+1}\right)$.
2. Show that if

$$
\begin{equation*}
\int_{-\infty}^{\infty}|\phi(x)| d x<\infty \tag{1}
\end{equation*}
$$

then the operator

$$
\begin{equation*}
K_{\phi} f(x)=\int_{-\infty}^{\infty} \phi(x-y) f(y) d y \tag{2}
\end{equation*}
$$

is bounded from $L^{2}(\mathbb{R})$ to itself.
3. Lax page 165 , exercise 3 .
4. Lax page 166, exercise 7 .
5. Lax page 168 , exercise 9 .
6. Lax page 172 , exercise 13 .

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Prove that if $g \in L^{1}([-\pi, \pi])$, and we define

$$
\begin{equation*}
a_{n}=\int_{-\pi}^{\pi} g(x) e^{-i n x} d x \tag{3}
\end{equation*}
$$

then $\lim _{n \rightarrow \pm \infty} a_{n}=0$. Hint: Approximate g in the L^{1}-norm by functions for which this is obvious and then use a continuity estimate for the maps $g \mapsto a_{n}, n \in \mathbb{Z}$.
2. Let $M: X \rightarrow Y$ be linear. Show that the range of M is dense if and only if $\operatorname{ker} M^{\prime}=\{0\}$.
3. Let X be a Banach space and $T \in \mathscr{L}(X, X)$ with $|T|<1$.
(a) Prove that $S_{n}=\sum_{j=0}^{n} T^{j}$ is a norm convergent sequence in $\mathscr{L}(X, X)$. Let S denote the limit.
(b) Prove that for every $y \in X$ we have

$$
\begin{equation*}
(\operatorname{Id}-T) S y=y \tag{4}
\end{equation*}
$$

and conclude that $(\operatorname{Id}-T)$ is boundedly invertible. Give a estimate for $|S|$ in terms of $|T|$.
(c) Show that if $M \in \mathscr{L}(X, X)$ is invertible, then there is an $\epsilon>0$ so that every $N \in \mathscr{L}(X, X)$ with $|M-N|<\epsilon$ is also invertible. Briefly, invertibility is an open property in the operator topology.
(d) If $M \in \mathscr{L}(X, X)$, then we define the reolvent set of M to be

$$
\begin{equation*}
\rho(M)=\{\lambda \in \mathbb{C}:(M-\lambda \text { Id }) \text { is invertible }\} . \tag{5}
\end{equation*}
$$

Prove that $\rho(M)$ is an open subset of \mathbb{C}.
4. Suppose that X, Y are Banach spaces and $M: X \rightarrow Y$ is a surjective, bounded linear map. Show that there is a constant $c>0$, so that for every $y \in Y$, there exists an $x \in X$ with

$$
\begin{equation*}
M x=y \text { and }\|x\|<c\|y\| . \tag{6}
\end{equation*}
$$

5. Let H be a Hilbert space with $\left\{u_{n}\right\}$ an orthonormal basis.
(a) Define $T_{k}: H \rightarrow H$ by

$$
\begin{equation*}
T_{k}\left(\sum_{j=1}^{\infty} a_{j} u_{j}\right)=a_{k} u_{k} \tag{7}
\end{equation*}
$$

Prove that T_{k} converges to 0 in the strong sense, but not in the operator norm.
(b) Define $S_{k}: H \rightarrow H$ by

$$
\begin{equation*}
S_{k}\left(\sum_{j=1}^{\infty} a_{j} u_{j}\right)=\sum_{j=1}^{\infty} a_{j} u_{j+k} \tag{8}
\end{equation*}
$$

Show that S_{k} converges to 0 in the weak sense, but not in the strong sense.
6. Let X be a separable Banach space with $\left\{x_{n}\right\}$ a countable dense subset of the unit ball. We define a map $T: \ell_{1} \rightarrow X$, by setting:

$$
\begin{equation*}
T(\boldsymbol{a})=\sum_{j=1}^{\infty} a_{j} x_{j} \tag{9}
\end{equation*}
$$

(a) Prove that T is bounded.
(b) Prove that T is surjective. Hint: you should find a direct argument.
(c) Show that X is isomorphic to a quotient space of ℓ_{1}.
7. Let $S \subset C^{0}([0,1])$, which is closed with respect to the L^{2}-norm. This means that if $<f_{n}>\subset S$, and there is a function $f \in L^{2}[0,1]$ such that $\left\|f_{n}-f\right\|_{L^{2}} \rightarrow 0$, then f can be represented by a function in S.
(a) Show that S is also closed as a subspace of C^{0}.
(b) Show that there is a constant M so that, for $f \in S$, we have

$$
\begin{equation*}
\|f\|_{\infty}<M\|f\|_{2} \tag{10}
\end{equation*}
$$

Hint: use the closed graph theorem.
(c) Show that for each $y \in[0,1]$ there is a function $k_{y} \in L^{2}([0,1])$ so that

$$
\begin{equation*}
f(y)=\int_{0}^{1} f(x) k_{y}(x) d x \tag{11}
\end{equation*}
$$

8. (a) Suppose that X and Y are Banach spaces, and $D \subset X$ is a linear subspace, which may not be closed. Suppose that $T: D \rightarrow Y$ has a closed graph, and is $1-1$ and onto. If D is not closed, then T need not be continuous. Prove, however, that $T^{-1}: Y \rightarrow X$ is continuous.
(b) Let X denote continuous functions on $[0,1]$ that vanish at $0 ; Y=C^{0}([0,1])$; and $D \subset X$, those functions with a continuous first derivative. Show that $T f=\partial_{x} f$ has a closed graph, and is a 1-1, onto map from D to Y. What is T^{-1} ? Give an elementary proof that it is bounded as a map from $Y \rightarrow X$.
9. Suppose that $k(s, t)$ is a measureable function on $S \times T$ such that

$$
\begin{align*}
& M_{1}=\sup _{s \in S} \int_{T}|k(s, t)| d n(t)<\infty \text { and } \\
& M_{2}=\sup _{t \in T} \int_{S}|k(s, t)| d m(s)<\infty \tag{12}
\end{align*}
$$

Show that for every $1<p<\infty$ the operator

$$
\begin{equation*}
K f(s)=\int_{T} k(s, t) f(t) d n(t) \tag{13}
\end{equation*}
$$

is bounded from $L^{p}(T ; d n) \rightarrow L^{p}(S ; d m)$ with $\|K\|_{L^{p} \rightarrow L^{p}} \leq M_{1}^{\frac{1}{q}} M_{2}^{\frac{1}{p}}$. Here $p^{-1}+q^{-1}=1$.

