AMCS 610 Problem set 6 due April 1, 2014 Dr. Epstein

Reading: Read Chapters 15 and 16 in Lax, *Functional Analysis*. **Standard problem:** The following problem should be done, but do not have to be handed in.

- 1. Let X, Y, W be Banach spaces, with sequences $\langle S_n \rangle \in \mathcal{L}(Y, W), \langle T_n \rangle \in \mathcal{L}(X, Y).$
 - (a) If $S_n \to S$ and $T_n \to T$ strongly, then $S_n T_n \to ST$ strongly.
 - (b) Suppose that S_n converges weakly to S and T_n converges strongly to T; show that S_nT_n converges weakly to ST.
 - (c) Find examples of $\langle S_n \rangle$, $\langle T_n \rangle$ both of which converge weakly to zero, but such that S_nT_n does not. Hint: Look at the shift operator on bi-infinite square summable sequences: $S(x_i) = (x_{i+1})$.
- 2. Show that if

$$\int_{-\infty}^{\infty} |\phi(x)| dx < \infty, \tag{1}$$

then the operator

$$K_{\phi}f(x) = \int_{-\infty}^{\infty} \phi(x - y)f(y)dy$$
(2)

is bounded from $L^2(\mathbb{R})$ to itself.

- 3. Lax page 165, exercise 3.
- 4. Lax page 166, exercise 7.
- 5. Lax page 168, exercise 9.
- 6. Lax page 172, exercise 13.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Prove that if $g \in L^1([-\pi, \pi])$, and we define

$$a_n = \int_{-\pi}^{\pi} g(x)e^{-inx}dx,$$
(3)

then $\lim_{n\to\pm\infty} a_n = 0$. Hint: Approximate g in the L¹-norm by functions for which this is obvious and then use a continuity estimate for the maps $g \mapsto a_n$, $n \in \mathbb{Z}$.

- 2. Let $M : X \to Y$ be linear. Show that the range of M is dense if and only if $\ker M' = \{0\}$.
- 3. Let X be a Banach space and $T \in \mathcal{L}(X, X)$ with |T| < 1.
 - (a) Prove that $S_n = \sum_{j=0}^n T^j$ is a norm convergent sequence in $\mathcal{L}(X, X)$. Let S denote the limit.
 - (b) Prove that for every $y \in X$ we have

$$(\mathrm{Id} - T)Sy = y \tag{4}$$

and conclude that (Id - T) is boundedly invertible. Give a estimate for |S| in terms of |T|.

- (c) Show that if $M \in \mathcal{L}(X, X)$ is invertible, then there is an $\epsilon > 0$ so that every $N \in \mathcal{L}(X, X)$ with $|M N| < \epsilon$ is also invertible. Briefly, invertibility is an open property in the operator topology.
- (d) If $M \in \mathcal{L}(X, X)$, then we define the reolvent set of *M* to be

$$\rho(M) = \{\lambda \in \mathbb{C} : (M - \lambda \operatorname{Id}) \text{ is invertible }\}.$$
(5)

Prove that $\rho(M)$ is an open subset of \mathbb{C} .

4. Suppose that X, Y are Banach spaces and $M : X \to Y$ is a surjective, bounded linear map. Show that there is a constant c > 0, so that for every $y \in Y$, there exists an $x \in X$ with

$$Mx = y \text{ and } ||x|| < c ||y||.$$
 (6)

5. Let *H* be a Hilbert space with $\{u_n\}$ an orthonormal basis.

(a) Define $T_k : H \to H$ by

$$T_k(\sum_{j=1}^{\infty} a_j u_j) = a_k u_k.$$
(7)

Prove that T_k converges to 0 in the strong sense, but not in the operator norm.

(b) Define $S_k : H \to H$ by

$$S_k(\sum_{j=1}^{\infty} a_j u_j) = \sum_{j=1}^{\infty} a_j u_{j+k}.$$
 (8)

Show that S_k converges to 0 in the weak sense, but not in the strong sense.

6. Let *X* be a separable Banach space with $\{x_n\}$ a countable dense subset of the unit ball. We define a map $T : \ell_1 \to X$, by setting:

$$T(\boldsymbol{a}) = \sum_{j=1}^{\infty} a_j x_j.$$
(9)

- (a) Prove that T is bounded.
- (b) Prove that T is surjective. Hint: you should find a direct argument.
- (c) Show that X is isomorphic to a quotient space of ℓ_1 .
- 7. Let $S \subset C^0([0, 1])$, which is closed with respect to the L^2 -norm. This means that if $\langle f_n \rangle \subset S$, and there is a function $f \in L^2[0, 1]$ such that $||f_n f||_{L^2} \to 0$, then f can be represented by a function in S.
 - (a) Show that S is also closed as a subspace of C^0 .
 - (b) Show that there is a constant M so that, for $f \in S$, we have

$$\|f\|_{\infty} < M \|f\|_{2}. \tag{10}$$

Hint: use the closed graph theorem.

(c) Show that for each $y \in [0, 1]$ there is a function $k_y \in L^2([0, 1])$ so that

$$f(y) = \int_{0}^{1} f(x)k_{y}(x)dx.$$
 (11)

- 8. (a) Suppose that X and Y are Banach spaces, and D ⊂ X is a linear subspace, which may not be closed. Suppose that T : D → Y has a closed graph, and is 1-1 and onto. If D is not closed, then T need not be continuous. Prove, however, that T⁻¹ : Y → X is continuous.
 - (b) Let X denote continuous functions on [0, 1] that vanish at 0; $Y = C^0([0, 1])$; and $D \subset X$, those functions with a continuous first derivative. Show that $Tf = \partial_x f$ has a closed graph, and is a 1-1, onto map from D to Y. What is T^{-1} ? Give an *elementary* proof that it is bounded as a map from $Y \to X$.
- 9. Suppose that k(s, t) is a measureable function on $S \times T$ such that

$$M_{1} = \sup_{s \in S} \int_{T} |k(s, t)| dn(t) < \infty \text{ and}$$

$$M_{2} = \sup_{t \in T} \int_{S} |k(s, t)| dm(s) < \infty.$$
(12)

Show that for every 1 the operator

$$Kf(s) = \int_{T} k(s,t)f(t)dn(t)$$
(13)

is bounded from $L^{p}(T; dn) \to L^{p}(S; dm)$ with $||K||_{L^{p} \to L^{p}} \leq M_{1}^{\frac{1}{q}} M_{2}^{\frac{1}{p}}$. Here $p^{-1} + q^{-1} = 1$.