AMCS 610 Problem set 7 due April 8, 2014 Dr. Epstein

Reading: Read Chapters 16 and 21 in Lax, *Functional Analysis*. **Standard problem:** The following problems should be done, but do not have to be handed in.

- 1. Lax page 182, exercise 1.
- 2. Lax page 184, exercise 3.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. For $\alpha > 0$, define an integral operator

$$K_{\alpha}f(x) = \int_{0}^{x} \frac{f(y)dy}{(x-y)^{1-\alpha}}.$$
 (1)

- (a) Show that K_{α} defines a continuous map from $C^{0}[0, 1]$ to itself.
- (b) Show that K_{α} defines a continuous map of $L^{p}[0, 1]$ to itself for every $1 \le p < \infty$.
- (c) Define the function

$$B(\alpha,\beta) = \int_{0}^{1} \frac{du}{(1-u)^{1-\alpha}u^{1-\beta}}.$$
 (2)

Show that $K_{\alpha} \circ K_{\beta} = B(\alpha, \beta) K_{\alpha+\beta}$.

- (d) What happens in the previous part if $0 < \alpha < 1$, and we set $\beta = 1 \alpha$? Use this to find a formula for K_{α}^{-1} . Can you give a class of functions for which the formula for K_{α}^{-1} makes sense?
- 2. Recall that we define the Fourier transform on $L^2(\mathbb{R})$, by first defining it via an integral for $f \in C_c^0(\mathbb{R})$, then using the density of $C_c^0(\mathbb{R})$ in $L^2(\mathbb{R})$, and the Parseval formula

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{f}(\xi)|^2 d\xi$$
(3)

to extend it as a bounded map from $L^2(\mathbb{R})$ to itself. Let $f \in L^2(\mathbb{R})$; for R > 0 define

$$\hat{f}_R(\xi) = \int_{-R}^{R} f(x)e^{-ix\xi}dx.$$
(4)

- (a) Prove that $\lim_{R \to \infty} \hat{f}_R = \hat{f}$, that is $\langle \hat{f}_R \rangle$ converges in the L^2 -sense to \hat{f} .
- (b) Suppose that for any $\delta > 0$, the functions $\langle \hat{f}_R(\xi) \rangle$ converge uniformly to $g(\xi)$ for $\delta \leq |\xi| \leq \delta^{-1}$. Prove that $g = \hat{f}$ almost everywhere.
- (c) Prove that if $f(x) = (x + i\epsilon)^{-1}$ for an $\epsilon > 0$, then

$$\hat{f}(\xi) = -2\pi i \chi_{[0,\infty)}(\xi) e^{-\epsilon\xi}.$$
(5)

(d) Let $f_{\epsilon}(x) = x^{-1}\chi_{[\epsilon,\infty)}(|x|)$; for $\epsilon > 0$, these functions belong to $L^2(\mathbb{R})$. Compute $\hat{f}_{\epsilon}(\xi)$. Show that the operators $H_{\epsilon}g = g \mapsto f_{\epsilon} * g$ are bounded as maps from L^2 to itself, and

$$\underset{\epsilon \to 0^+}{\text{s-lim}} H_{\epsilon} = \mathcal{H}.$$
 (6)

Here \mathcal{H} is the Hilbert transform.

3. Let $k(s, t) \in C^0([0, 1] \times [0, 1])$, and, for $f \in C^0([0, 1])$ define

$$Kf(s) = \int_{0}^{s} k(s,t)f(t)dt.$$
 (7)

- (a) Prove that $K : C^0([0, 1]) \to C^0([0, 1])$ is continuous.
- (b) Let $M = ||k||_{\infty}$. Show that, for $s \in [0, 1]$,

$$|Kf(s)| \le Ms ||f||_{\infty}.$$
(8)

(c) For each $n \in \mathbb{N}$ show that, for $s \in [0, 1]$,

$$|K^{n}f(s)| \leq \frac{(Ms)^{n}}{n!} ||f||_{\infty}.$$
(9)

(d) Prove that $(Id - K) : C^0([0, 1]) \to C^0([0, 1])$ is invertible and the inverse is given by the **norm** convergent series:

$$(\mathrm{Id} - K)^{-1} = \sum_{n=0}^{\infty} K^n.$$
 (10)

Here the "norm" refers to the operator norm on $\mathcal{L}(C^0([0, 1]), C^0([0, 1]))$.

- (e) Show that $(\lambda \operatorname{Id} K)^{-1}$ exists for any $\lambda \in \mathbb{C} \setminus \{0\}$. Give examples of finite dimensional linear transformations (one for each dimension n > 1) that also have this property.
- 4. The Laplace transform is defined for absolutely integrable functions and $t \in (0, \infty)$ by the integral:

$$\mathscr{L}f(t) = \int_{0}^{\infty} f(x)e^{-xt}dx.$$
 (11)

- (a) Show that the map $f(x) \mapsto e^{\frac{y}{2}} f(e^y)$ is an unitary isomorphism from $L^2([0, \infty))$ to $L^2(\mathbb{R})$.
- (b) Show that if $s \in \mathbb{R}$, then

$$\mathscr{L}(x^{-\frac{1}{2}+is})(t) = \Gamma\left(\frac{1}{2}+is\right)t^{-\frac{1}{2}-is}$$
(12)

- (c) Use (a) and (b) to show that L extends to define a bounded map from L²([0, ∞)) to itself. What is ||L||? You cannot use the argument from the book!
- (d) What is the kernel function of *L*²? What is the norm of *L*² as a map from L²([0,∞)) to itself?
- (e) Does \mathscr{L} have a bounded inverse on $L^2([0,\infty))$?