AMCS 610
 Problem set 7 due April 8, 2014
 Dr. Epstein

Reading: Read Chapters 16 and 21 in Lax, Functional Analysis.
Standard problem: The following problems should be done, but do not have to be handed in.

1. Lax page 182 , exercise 1 .
2. Lax page 184 , exercise 3 .

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. For $\alpha>0$, define an integral operator

$$
\begin{equation*}
K_{\alpha} f(x)=\int_{0}^{x} \frac{f(y) d y}{(x-y)^{1-\alpha}} . \tag{1}
\end{equation*}
$$

(a) Show that K_{α} defines a continuous map from $C^{0}[0,1]$ to itself.
(b) Show that K_{α} defines a continuous map of $L^{p}[0,1]$ to itself for every $1 \leq p<$ ∞.
(c) Define the function

$$
\begin{equation*}
B(\alpha, \beta)=\int_{0}^{1} \frac{d u}{(1-u)^{1-\alpha} u^{1-\beta}} \tag{2}
\end{equation*}
$$

Show that $K_{\alpha} \circ K_{\beta}=B(\alpha, \beta) K_{\alpha+\beta}$.
(d) What happens in the previous part if $0<\alpha<1$, and we set $\beta=1-\alpha$? Use this to find a formula for K_{α}^{-1}. Can you give a class of functions for which the formula for K_{α}^{-1} makes sense?
2. Recall that we define the Fourier transform on $L^{2}(\mathbb{R})$, by first defining it via an integral for $f \in C_{c}^{0}(\mathbb{R})$, then using the density of $C_{c}^{0}(\mathbb{R})$ in $L^{2}(\mathbb{R})$, and the Parseval formula

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\hat{f}(\xi)|^{2} d \xi \tag{3}
\end{equation*}
$$

to extend it as a bounded map from $L^{2}(\mathbb{R})$ to itself. Let $f \in L^{2}(\mathbb{R})$; for $R>0$ define

$$
\begin{equation*}
\hat{f}_{R}(\xi)=\int_{-R}^{R} f(x) e^{-i x \xi} d x \tag{4}
\end{equation*}
$$

(a) Prove that $\underset{R \rightarrow \infty}{\text { i. m. }} \cdot \hat{f}_{R}=\hat{f}$, that is $<\hat{f_{R}}>$ converges in the L^{2}-sense to \hat{f}.
(b) Suppose that for any $\delta>0$, the functions $<\hat{f}_{R}(\xi)>$ converge uniformly to $g(\xi)$ for $\delta \leq|\xi| \leq \delta^{-1}$. Prove that $g=\hat{f}$ almost everywhere.
(c) Prove that if $f(x)=(x+i \epsilon)^{-1}$ for an $\epsilon>0$, then

$$
\begin{equation*}
\hat{f}(\xi)=-2 \pi i \chi_{[0, \infty)}(\xi) e^{-\epsilon \xi} . \tag{5}
\end{equation*}
$$

(d) Let $f_{\epsilon}(x)=x^{-1} \chi_{[\epsilon, \infty)}(|x|)$; for $\epsilon>0$, these functions belong to $L^{2}(\mathbb{R})$. Compute $\hat{f}_{\epsilon}(\xi)$. Show that the operators $H_{\epsilon} g=g \mapsto f_{\epsilon} * g$ are bounded as maps from L^{2} to itself, and

$$
\begin{equation*}
\underset{\epsilon \rightarrow 0^{+}}{\mathrm{s}-\lim _{\epsilon}} H=\mathscr{H} . \tag{6}
\end{equation*}
$$

Here \mathscr{H} is the Hilbert transform.
3. Let $k(s, t) \in C^{0}([0,1] \times[0,1])$, and, for $f \in C^{0}([0,1])$ define

$$
\begin{equation*}
K f(s)=\int_{0}^{s} k(s, t) f(t) d t \tag{7}
\end{equation*}
$$

(a) Prove that $K: C^{0}([0,1]) \rightarrow C^{0}([0,1])$ is continuous.
(b) Let $M=\|k\|_{\infty}$. Show that, for $s \in[0,1]$,

$$
\begin{equation*}
|K f(s)| \leq M s\|f\|_{\infty} . \tag{8}
\end{equation*}
$$

(c) For each $n \in \mathbb{N}$ show that, for $s \in[0,1]$,

$$
\begin{equation*}
\left|K^{n} f(s)\right| \leq \frac{(M s)^{n}}{n!}\|f\|_{\infty} \tag{9}
\end{equation*}
$$

(d) Prove that $(\operatorname{Id}-K): C^{0}([0,1]) \rightarrow C^{0}([0,1])$ is invertible and the inverse is given by the norm convergent series:

$$
\begin{equation*}
(\mathrm{Id}-K)^{-1}=\sum_{n=0}^{\infty} K^{n} \tag{10}
\end{equation*}
$$

Here the "norm" refers to the operator norm on $\mathscr{L}\left(C^{0}([0,1]), C^{0}([0,1])\right)$.
(e) Show that $(\lambda \operatorname{Id}-K)^{-1}$ exists for any $\lambda \in \mathbb{C} \backslash\{0\}$. Give examples of finite dimensional linear transformations (one for each dimension $n>1$) that also have this property.
4. The Laplace transform is defined for absolutely integrable functions and $t \in(0, \infty)$ by the integral:

$$
\begin{equation*}
\mathscr{L} f(t)=\int_{0}^{\infty} f(x) e^{-x t} d x \tag{11}
\end{equation*}
$$

(a) Show that the map $f(x) \mapsto e^{\frac{y}{2}} f\left(e^{y}\right)$ is an unitary isomorphism from $L^{2}([0, \infty))$ to $L^{2}(\mathbb{R})$.
(b) Show that if $s \in \mathbb{R}$, then

$$
\begin{equation*}
\mathscr{L}\left(x^{-\frac{1}{2}+i s}\right)(t)=\Gamma\left(\frac{1}{2}+i s\right) t^{-\frac{1}{2}-i s} \tag{12}
\end{equation*}
$$

(c) Use (a) and (b) to show that \mathscr{L} extends to define a bounded map from $L^{2}([0, \infty))$ to itself. What is $\|\mathscr{L}\|$? You cannot use the argument from the book!
(d) What is the kernel function of \mathscr{L}^{2} ? What is the norm of \mathscr{L}^{2} as a map from $L^{2}([0, \infty))$ to itself?
(e) Does \mathscr{L} have a bounded inverse on $L^{2}([0, \infty))$?

