AMCS 610 Problem set 8 due April 22, 2014 Dr. Epstein

Reading: Read Chapters 17, 21, and 22, in Lax, *Functional Analysis*. **Standard problem:** The following problems should be done, but do not have to be handed in.

- 1. Lax page 201, exercise 1.
- 2. Lax page 201, exercise 2.
- 3. Lax page 201, exercise 4.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

- 1. Suppose that X, U are Banach spaces and $C : X \to U$ is compact. Prove that if $\langle x_n \rangle$ is sequence in X, which converges weakly to x, then $\langle Cx_n \rangle$ converges in norm to Cx.
- 2. Prove that the two definitions of precompact set given on page 233 of Lax are equivalent.
- 3. Let X be a Banach space, and $K \subset X$ a precompact subset of X. Show that the convex hull of K is also precompact.
- 4. Let X be a Banach space and {P_N : N ∈ N} be a sequence of finite rank operators, which converge strongly to the identity, that is lim_{N→∞} P_Nx = x, for every x ∈ X. If C : X → X is a compact operator, then prove that P_NC converges to C in the uniform norm. Show that if X is a Hilbert space, then any compact map C : X → X is the norm limit of a sequence of finite rank maps.
- 5. Suppose that X is a Hilbert space and $C : X \to X$ is a compact *self adjoint* operator, that is $\langle Cx, y \rangle = \langle x, Cy \rangle$, for all $x, y \in X$.
 - (a) Prove that for all $x \in X$, the function $F(x) = \langle Cx, x \rangle$ is real valued.

(b) Suppose that for some x, F(x) > 0; show that there is unit vector $x_1 \in X$, so that

$$F(x_1) = \sup\{F(x) : x \in X \text{ with } ||x|| = 1\}.$$
 (1)

- (c) Prove that x_1 is an eigenvector of *C*, that is, there is a real number λ_1 so that $Cx_1 = \lambda_1 x_1$. Give an example of a bounded (though non-compact), self adjoint operator *A* on a Hilbert space for which this is **not** true.
- (d) If we let $X_1 = \{x \in X : \langle x, x_1 \rangle = 0\}$, then C maps X_1 to itself, that is $CX_1 \subset X_1$.
- 6. Let $X = L^2([0, 1])$, and define the operator Mf(x) = xf(x).
 - (a) Prove that M is a bounded operator.
 - (b) Does there exist a $\lambda \in \mathbb{C}$ and $f \in X$ such that $(M \lambda \operatorname{Id})f = 0$?
 - (c) What is the spectrum of *M*? Give a formula for the resolvent operator $R(\lambda) = (M \lambda \operatorname{Id})^{-1}$. Where is it defined?
 - (d) Suppose that $\varphi(z)$ is analytic on a neighborhood of the spectrum of M. Give the most explicit formula that you can for $\varphi(M)$. If $\varphi(z) = \sin(\pi z)$, then what is the spectrum of $\varphi(M)$?
- 7. Let k(s, t) be a C^1 -function on $[0, 1] \times [0, 1]$. Define the operator K by

$$Kf(s) = \int_{0}^{1} k(s,t)f(t)dt.$$
 (2)

Show that $K : C^0([0, 1]) \to C^0([0, 1])$ and $K : L^2([0, 1]) \to L^2([0, 1])$ are compact operators.