AMCS 610
 Problem set 9 due April 29, 2014
 Dr. Epstein

Reading: Read Chapters 23, 27, and 28 in Lax, Functional Analysis.
Standard problem: The following problems should be done, but do not have to be handed in.

1. Lax page 244 , exercise 10 .
2. Lax page 241, exercise 5 .

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Let H be a Hilbert space, and $\left\{y_{n}\right\}$ a set of unit vectors satisfying the hypotheses of Theorem 7 in §22.5.
(a) Show that there is a constant C so that, for all $x \in H$, we have:

$$
\begin{equation*}
\frac{1}{C}\|x\|^{2} \leq \sum_{n=1}^{\infty}\left|\left\langle x, y_{n}\right\rangle\right|^{2} \leq C\|x\|^{2} \tag{1}
\end{equation*}
$$

(b) We can normalize the $\left\{y_{n}\right\}$ so that $\left\langle x_{n}, y_{n}\right\rangle$ is real, for all n, and define $\left\{\theta_{n}\right\}$ so that $\cos \theta_{n}=\left\langle x_{n}, y_{n}\right\rangle$, and $\theta_{n} \in[0, \pi)$. Show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\theta_{n}\right|^{2}<\infty \tag{2}
\end{equation*}
$$

(c) For $k \in \mathbb{N}$ set $n_{k}=k+\epsilon_{k}$; find a non-trivial condition on $\left\{\epsilon_{k}\right\}$, so that the set of functions $\left\{\sin n_{k} x: k \in \mathbb{N}\right\}$ defines a basis for $L^{2}([0, \pi])$.
2. Define

$$
\begin{equation*}
K f(x)=\int_{0}^{\pi} \log |x-y| f(y) d y \tag{3}
\end{equation*}
$$

Show that $K: L^{2}[0, \pi] \rightarrow L^{2}[0, \pi]$ and $K: C^{0}[0, \pi] \rightarrow C^{0}[0, \pi]$ are both compact operators.
3. Suppose that we define the projection operator on $L^{2}\left(S^{1}\right)$, in terms of the Fourier representation by

$$
\begin{equation*}
P\left(\sum_{j=-\infty}^{\infty} a_{j} e^{i j \theta}\right)=\sum_{j=0}^{\infty} a_{j} e^{i j \theta} \tag{4}
\end{equation*}
$$

(a) Show that P is self adjoint.
(b) Let $g \in C^{0}\left(S^{1} ; \mathbb{C}\right)$, define the multiplication operator $M_{g} f=g f$. Show that the composition satisfies:

$$
\begin{equation*}
\left\|M_{g} f\right\|_{L^{2}} \leq\|g\|_{L^{\infty}}\|f\|_{L^{2}} . \tag{5}
\end{equation*}
$$

What is the adjoint of $P M_{g}$?
(c) Let g be a trigonometric polynomial:

$$
\begin{equation*}
g=\sum_{j=-N}^{N} b_{j} e^{i j \theta} \tag{6}
\end{equation*}
$$

Show that the commutator, $\left[P, M_{g}\right]=P M_{g}-M_{g} P$, is a finite rank operator.
(d) Show that if $g \in C^{0}\left(S^{1} ; \mathbb{C}\right)$, then the commutator $\left[P, M_{g}\right]$ is a compact operator. Hint: Approximate g.
(e) If we let $H^{2}\left(S^{1}\right)$ denote the range of P, then we see that $P M_{g}: H^{2}\left(S^{1}\right) \rightarrow$ $H^{2}\left(S^{1}\right)$. We sometimes write this operator as $P M_{g} P$. If $g_{1}, g_{2} \in C^{0}\left(S^{1} ; \mathbb{C}\right)$, then prove that

$$
\begin{equation*}
P M_{g_{1}} P P M_{g_{2}} P-P M_{g_{1}} M_{g_{2}} P \tag{7}
\end{equation*}
$$

is a compact operator.
(f) Show that if g is a non-vanishing continuous function on S^{1}, then there is an operator $A: H^{2}\left(S^{1}\right) \rightarrow H^{2}\left(S^{1}\right)$ so that

$$
\begin{equation*}
P M_{g} P A-\mathrm{Id} \text { and } A P M_{g} P-\mathrm{Id} \tag{8}
\end{equation*}
$$

are compact operators.
(g) Show that $P M_{g} P: H^{2}\left(S^{1}\right) \rightarrow H^{2}\left(S^{1}\right) x$ has a closed range of finite codimension.
(h) Find non-vanishing, continuous functions g_{1}, g_{2} on S^{1} so that ker $P M_{g_{1}} P$ is non-trivial, and the range of $P M_{g_{2}} P$ is not all of $H^{2}\left(S^{1}\right)$.

