MA 609 12 January 1993

Complex numbers. Motivating problem: you can write down equations which don’t have
solutions, like > + 1 = 0. Introduce a (formal) solution i, where i* = —1. Define the set
C={a+if:a,0 € R}. Can put a ring structure on this.

(1 +iB) + (a2 +iB2) & (o + a2) +i(Br + Ba)
(a1 +iB1) - (2 +i6) X (aras — BiB) + i(ar s + az)

One verifies that it’s associative, distributive, and has the expected units. This defines an
integral domain.

[Geometric proof:

03] —51 (8% —0
51 (03] 52 '
Check out the kernel.]

We’d like to show that C is actually a field. To show this, we need to show that every
non-zero element has a multiplicative inverse.

« G}
— 1 )
o? + 32 o? + 32

(a+1ip) " =
Moreover, we can identify R as a subfield of C; look at {a+i0} = R as a field. C = R[z]/z*+1.

In general, write 2 = (z + iy). Can we, in general, solve 2% — (a +i3) = 07 Well, 2 =
(x +1y)? = 2? — y? + 2izy = a + iB. So we have the two equations

We know 222 = a + y/at32, and 2y% = /o2 + 2 — a. So

x = j:\/(a+ a? + [2)/2
y = £/(V&@+ F—a)f2
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How do we figure out which signs will work? The problem is, we lost information when we
squared. Blah

We’ve shown that every number z € C has a square root.'

Indeed, the fundamental theorem of algebra says that every polynomial p(z) of degree n has
a solution p(zp) = 0, where the coeflicients and z, are in C.

There’s a sense in which C = R2. This is since C has an underlying vector space structure,
(x 4+ iy) — (z,y). Gotta show that a(x + iy) <> a(x,y), and addition is preserved as well.
So we identify a complex number with a vector, and complex addition is vector addition in
R2. Can also use polar coordinates; p = /2% + 42, and 6 = tan"!(y/x). Then (z,y) <
(pcosB, psinf). Then

(pcosB +ipsinf) - (rcos¢ + irsing) = (prcos(0 + ¢), prsin(d + ¢)).

So you multiply the lengths and add the angles. Define argz = tan~!(y/z). We see that
arg z12o = arg z1 + arg,. Define |z| = /22 + y2.
Complex conjugation is a map C — C (z + iy) — (z —iy) z — Z. We then have
zZ+z
2

= Rz

Tr =

and

z—7Z
21

= Gz.

’y:

Then we think of f(z,y) as g(z,Z) = f((z + Z)/2, (z — Z)/2i). Note that we have |z|* = 2%,
and Zw = Z - w; extend by induction to finite products. Z =2 <= z € R — C.

lz+w]” = (z4w)(Z+0)
= 2P +wz 47w+ |w|

= |,2’|2 + 2Rwz + |w|2

With suitable persuasion, this gives us

! Actually, it has two of them, since w? = z = (—w)? = z.
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2 2

2" + [w]

|Rwz| <
or

2 2
R < T 10E

More useful stuff: —|w| < Rw, Sw < |w|. Also, |z +w|* < (|z| + |w|)?. Triangle inequality.
Equality holds when arg z = argw. Blah. RzZw = |zw|.

So anyways, we’ve got the Cauchy-Schwarz inequality:
Rzw < |zw|.

There’s a generalization:

n 2
E a;b;
i=1

n n
<D lal* Y bl
=1 =1

You prove it by looking at 0 < > }ai — )\b_i}Q =Y |ai|2 — 2R \a;b; + |)\|2|b7;] Set A = %f::';.

L [Sabf
ai éR 2 zz
D lad 2 3 Rz o+ S S

Whatever. And 0 < |ai|2 _ [Zaibi?

Slbil®
If we write z = p(cos 0 +isinf), then 2% = p?(cos 20 +isin 20), and 2™ = p"(cos nd +isin nf).
This certainly works for n > 0. We know that 27! = p~!(cosf —isin6), so the formula works

for any n € Z. Can use this on a root of unity to get
Z(nC’j) cos® O(isin )" " = cosné + isinnb.

Consider the equation 2™ = w. Write z = pcosf + ipsinf, and w = rcos¢ + irsin¢. Then
we have p" cosnf 4 ip" sinnf = rcos ¢ +irsin¢. So p =+/rn, and § = ¢/n+ 27j/n for j =
Blah.

I've lost a lot of stuff due to power failure.
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We open with something on stereographic projection. Let N be the north pole, and S the
south pole. Then we get maps Xy : S2 — N — C and Xg : S? — P — C. It turns out that
Yy o Bg'(2) is an analytic function.?

We defined 8, = 1(8, — i9,) and 8z = 3(0, + i9,). A complex function f is analytic if
0=f = 0. We could say that

We say that f(z) is analytic at zg if limp,_o M exists. Here, h is a complex number.

Example. f(z) = z. lim((z + h) — 2)/h = 1. f(2) =Z. lim((Z + h) — Z)/h — limy,_o h/h.

Does lim% exist?

) . h2

lim= = lim —

h—0 h h—0 |h|

= lim cos 26 + 7 sin 26
h—0

3
which doesn’t exist.
But 0z =1 # 0.
Look at limy_,q w, which is

u(z + h,y) +iv(z + h,y) — (u(z,y) + v (x,y))

N = O,u + 10,0.

lim

f(ztih)—f(z)
ih

| Meyth) pi(y th) —(u(e) tive)

= limh_> ih

But the right-hand side is also limp_,
H(uy + ivy).

This tells us that 0,u+10,v = —i(0yu+1i0yv), s0 O (u+iv) = —idy(u+iv), or (0y +10y)(u+
iv) = 0. This equation is thus equivalent to 0z(u + iv) = 0.

< limy, w exists. If you assume the partials are continuous, you get the implication
both ways.

If O=f =0, then 0, f = lim,_ w

2What function is it? Should be able to do it without computation.
3h? = p?(cos 26 + i sin 26)
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This gives us a product rule, quotient rule, and sum rule. If f and g are analytic, then so are
fg, f/g (where g # 0), and f £ g. As before, we have, e.g., 0,(fg) = (0.f)g + (0.9)f. This
shows that the set of holomorphic functions is closed under certain algebraic operations.

Can think of this algebraically; d=fg = g0=f + f0=g; if something is in the kernel, then so is
its product. 0 = aggé = gagé + iagg . Thus, gagé =0, and 8;% =0if g(z) #0.

So f(z) = z is analytic; we proved this. = every polynomial in z is also analytic. So is
1/p(z) for any polynomial p(z), so long as we avoid the zeros of p. We have a nice class of
analytic functions, namely, rational functions p(z)/q(z).

The Cauchy-Riemann equations u, = v,, u, = —v, have some interesting consequences.
F'rinstance, tuzq 4+ Uyy = Vgy — Uy = 0. Similarly, vy, + vy, = 0. This gives us a second-order
differential operator, the Laplace operator A = (9% + 85) So if f(z,y) = u + iv is analytic,
then Au = Av = 0. If Au = 0, we say that u is harmonic. The converse is false.

Suppose that w is harmonic in an open subset {2 C C. Green’s theorem is useful here.
If v(z,y) is C', then we can reconstruct v(z,y) from v,,v,) by integration; v(z,y) =
v(xo,y0) + [¥ vydz + vydy. Some stuff about what this means; pick a path (z(t),y(t)).

Z0,Y0

Then dx = ‘fi—gt;dt, and similarly for y. Then the integral is computed as fol vg(x(t), y(t)) %dt +
oy (o (t), y(0)) 2t

Suppose u is given, Au = 0. We’ll try to define a function v with Vo = (—u,, —u,). So use

1:’y

v(z,y) = v(zo,yo) + / (—uydz + u,dy).

Z0,Y0

Suppose there are two paths from (zg,yo) to (x,y). If we look for the difference between
integrating these two paths, we get a path integral v around a domain D. Green’s theorem
says

A (—uydr + u,dy) = /D (Oy(uy) + On(us))drdy = / Audzdy = 0.

D

This all assumes that u is twice diferentiable on all of D. We’ve shown that if u is defined
in a region D without any holes, and Au = 0 in D, then there is a differentiable function v
defined as above. Thus, v(z,y) = f;f)yyo —uydx + u,dy. There’s considerable freedom in the
choice of path; choose one which is horizontal near (x,y). Then

x+h
v(z+hy) —v(z,y) = / —uy(s, y)ds.
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Divide by h, and get 0,v = —u,. Similarly, one computes that d,v = u,. Therefore, u + v
is an analytic function in the domain D. Here v is called the harmonic conjugate of u. It,
too, is a harmonic function.

Z— (I

Recall that a half-plane is something given by %2 > 0. Suppose that P(z) is a polynomial
of degree n. For now, assume that P(z) = AHZ: (z — a). Lucas’ Theorem: where are the
roots of P'(z)?

Do an example. If we have a function with only real roots, then the zeros of the derivative
fall between the real solutions. Lots-o-information there.

Theorem [Lucas| If all the roots of P(z) lie in a half-plane, then so do the roots of P'(z).

Proof Look at P'(2)/P(z) = Y | ——. Let’s assume that 3*% > 0, but %% < 0.
Consider §%* = §&5% — %ai_“ < 0. Now, if $%* < 0, then & JE > 0. We see that

b
S = Yot B £0,50 P'(2) #£0. O

Corollary If C is the convex hull of the roots, then all roots of P'(z) lie in C, as well.
Corollary The roots of P*) are also contained in C for all k < n.
We now move on to rational functions. Let

P(z)  apz"+ap12" '+ .. 4 ag
Q(Z) bm2m+"'bo .

Let’s assume that P and @) are relatively prime. The roots of P are the roots of R. The
roots of @ are called the poles of R. We can write P(z) = AJ["(z — o)™ where the a; are
distinct. We say that o is a root of P of order n;. Similarly, write Q(z) = []'(z — 8)™.
Then R(z) has a pole of order m; at ;. We say that the order of 3 as a pole of R(z) is the
least value of k so that (2 — 8)*R(z) is bounded in a neighborhood of 3.

a

Suppose m = n. Then lim, ., R(2) = B

R(0) = an/by,.

Suppose n < m. Then

So R(z) may be extended to the point at infinity;

1 n 12 T4 -n
lim R(z) = lim —— T 012 - T a0 7

z—500 2 by 4 b1zt e bpzT™

Y
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and R(00) = 0; 0o is a zero of order m—n. R has exactly m zeros and m poles in CU{oco} = C,
the extended complex plane.

If n > m, then lim, ,,, R(z) = oo, and it’s a pole of order n — m. Once again, n zeros and
n poles.

Theorem If R(z) is a rational function, and d = max{deg P,deg )}, then for any point
b € C there are d solutions, counted with multiplicity, to R(z) = b.

Proof We’ve proved this for b = 0,00. R(z) — b has the same poles as R(z); therefore, it
has the same number of zeros. <

From the geometric point of view, a rational function gives a map R : C—>C. It you count
with multiplicities, then you get a d-to-one map. We call d the degree of R.

For a moment, let’s work with R(z) = P(2)/Q(z), deg P > deg@. Using a Euclidean kind
of argument, can write R = G, + H where G (z) is a polynomial, and H(z) is a rational

function which is not singular at co. Suppose that 3; is a finite root of (). Look at R(% +5i).
This rational function (of (;) has a pole at co. Write R(% + 6;) = Gi(¢) + Hi(¢). Let
z = % + B, so Z_l—ﬁz = (. Then R(z) = Gz(z_l—ﬁz) + Hz(ﬁ Subtract off the poles from R;
R(2) — (Go(2) + X1, Gz(z_lﬁz)) This thing is bounded for all z € C. So it’s actually a
constant. The conclusion is that

l

R(:) = Gael2) + 3 Gl _1@

).

This is called the partial fractions decomposition. (Note that G, has eaten the constant.)
A rational function is determined by its behavior at the singularities.

Hopefully, this will work for other sorts of functions.* We’ll look at power series f(z) =
Yoo g an2™.

Hadamard Criterion: Set p = limsup |an|1/ ", The series converges absolutely and uniformly
in any disk {z||z| < r} for r < %.

1/n

Proof Comparison with the geometric series. Given ¢ > 0, IN so that |a,|”"" < p + €.

If we choose an r < 1/p, then there’s an e so that |[(p+€)r| < 1. So ’Zy:NH anz"| <

4For the sequel should know about convergence, absolute convergence, and uniform convergence.
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S ez < M (o )l Thus, |5, 002" < Y, (o + 2)r]", a geometric
series.

In a way this is like a Cauchy test. Given n > 0, there’s an M so that if n,m > M, then
1> a;27| <, provided that |z] <.
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We're playing with power series f(z) = Y ,an2". There’s a theorem of Hadamard which
says that if p = lim,_e|an|”", then the series converges uniformly in {|z| < R < %} This
is cooler than the ratio test, in that it is more widely applicable.

Formally, we can differentiate f(z) and take the formal derivative:
= Z na,z"
1

Yn — o, since |n|"/™ = 1+ 4, where d,, — 0 as n — co. The

If p < oo, then lim, s|nay|
only issue is to show that

1. f(z) is differentiable.
2. f'(z) = fu(2).

Let S,.(z) = >y amz™, the partial sum. Look at fe)=fz0) f1(20). Write this as

Z—Z0

00 n 00 n o0 m n n o0 o0
anpz" — anZ _ ApZ" — QpZ an anz _
ZO ZO O_E nanzn 1 _ E O+§ 0 E nan 1+§ nanz(r)z).
0 0 zZ — 20 zZ — 20

] m+1 m+1
To estimate the first term, use z, — 28 = (—o)(2" 1 + 2" 229 + -+ + 20" 1). So

_
S P P e P I P S Tea

zZ — 20

where % > r > max{|z|,|20|}. So the big thing is

m n
_ Z anZ" = anZg Z na,zyt + O(Z nla,|r™ ).
zZ — 20 0

Now, estimate

T f(z) = f(20) — " q a, 2% ©
Ty [0 ()| < B |30 225 =0 Znan +O(Y nlanr ).
- -0 m+1

Since r < 1/p, given € > 0 we can choose an M so that O-term is < e. The finite term goes
to zero as z — zp. Thus, lim,_,., %j{fzo) — fl(z)) < ¢ for all €, so f is differentiable and
f'(20) = fi(20)-

By applying this result to f1, we conclude that fi(z) is differentiable, and f”(z) = > n(n —
1)a,z"2.
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Theorem If f(z) = > ;" a,2" With p < oo, then f(z) is analytic and indeed infinitely
differentiable, with f*)(2) = >"0% a,, dzkz

Partial Summations We'll look at >,” anb,, and the partial sums Z il ® anb,. Now, in

calculus we have fa f'(x)g(z)dz = fg|° — fa fg'dx. Let sp,, = ag + a1 + - - an. Note that
Sm — Sm—1 = a —m. Then

m+p m~+p
Z anbn = Z Sn(bn — bn+1) + Sn+pbm+p+1-
m+1 m+1
Corollary Suppose that |s,| < M for all n, and b, > b,41 > -+, and lim,, o b, = 0.

Then Y a,b, converges.

Proof

m-+p

Z anbn

m+1

m-+p

< Z |0 (brn = brt1) + [Smtp|[bmspta| + |Sml| D]
m+1
m-+p

le. M (bn = bni1) + M(bmipir +b+m+ 1)
m+1

S m(bm—H - bm+p+1) + M(bm+p+1 + bm-i—l)
- 2M6m+1.

&

What happens at the boundary of the circle of convergence?

e Suppose that > " a,z" converges, where |z| = 1/p. Do we have lim,,, f(z) =
220 anzg?
e Is there necessarily a point on the boundary of the circle of convergence where the

. . n
series diverges? Example: ) 7° Z5.

The answer to the first question is affirmative; this is Abel’s theorem. We can assume that
p=1,2=1,> . a, exists. Then for every k > 0,

o0

z—)land|1 z|<k(1 |2]) Z

0
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Now, |1 — z|/1 — |z| < k is a cone, symmetric around the real axis. So we’re only letting z
approach 1 in a nontangential way. In other words, the distance from z to 1 is regulated by
the distance from z to the circle. The proof works like this.

We can assume that Y " a, = 0. Let s, = >, a;. We'll rewrite

Z a2 = Z (2" — 2" + 2™

0 0

= (1-2) Z Sp2" + Sm2™.
0

Assume that |z| < 1. Then ) " a,2" = (1—2) Yo sn2" = (1—2) Do sh+(1—2) > —m + 1%s,2"
The first term won’t cause any trouble; it’s a finite sum, and disappears as z — 1. So we
lean on [(1—2) > | s,2"|. Since s, — 0, given e > 0 there’s an m so that |s,| < € if

m+1
n >m. So
N < <"
ZS" Z|S"||Z| T2
m+1 m+1
Thus, [(1—2) Y 0 | 502" = |) < ¢k by assumption. Thus, lim|>" a,2"| < ¢k for any

e. That is, lim, 1 Y a,2" =0 = Zo a,. That’s the Abel summation theorem.

The converse is false. There are series a,, so that lim, ,; Zg a,2" exists, but Z(o)o a, does
not exist. The former limit is sometimes called the Abel sum. Cool; we can assign a value
to a divergent series. The classic example is a, = (—1)". Then the Abel sum is 1/2.

Exponential and trigonometric functions Maybe the easiest way to define the ex-
ponential function is as the solution to f'(z) = f(z). Then if f(z) = > a,2", then
(n+ Dapt1 = n, or apy1 = .. So we find shortly that a, = %. So f(2) = apd g 2 n,
is a solution to the differential equation. We define e* = > ° Z—Y,L One easily shows that
lim sup(1 /n')l/ " = 0. The theorem at the beginning of the lecture justifies this definition,

and we have ¢ ‘& = €. This does what we want, e.g.,
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So e“ %€ is a constant function. If we set ¢ = 0, we get e ?¢* = ¢° =. Thus, e ™% = eiz Can
also specialize to get e® = e%e’.

etz _e—iz
24

iz —1iz . ..
e e . We see that e* = cos z + i sin 2.

and sin z =

Define cosz =

, L& i) (i)
sz = g 2 T
0 Z2n+1(_1)n

(n+1)!

0

and

Can deduce the normal trig formulations of sin and cos by working in the complex plane. This
definition is nice, since it makes it easy to prove that, say, cos(z+w) = cos z cos w—sin z sin w.
We would like to prove that there exists a number ¢ so that e*t¢ = e*, or e® = 1. If we could
show that there is a number yo so that cos(yo) = 0, then sin(yo) = +1, and so e = 44, and

et = 1. We'll look at thefunction w(y) = 2%, where y is real.

Assume for contradiction that w(y) > 0 for Y > 0. Then integrate both sides above, and
get [Ydw/w? > [?dy, so

——— > (y—a

w(a) = (y —a) w(y)

a contradiction. Thus, there’s a yg so that cosyy = 0. Can pick the smallest positive such
yo. Then sinyy = 1. We have e®° = i, and 41y, is the period of the exponential. One can see
fairly easily that all periods must be a multiple of this period. We call this number 4y, = 2.
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Finally, e* has an inverse function called log z. The logarithm is complicated because e* is
periodic; the exponential isn’t one-to-one. Since e* # 0 for any z, the logarithm is a function
on the punctured plane. Now, e+ = e%e® and |e¥|* = eWe . So €& = 7.

So we should have log(x + iy) = log |x| + iarg(x + i¢y). This is only determined up to an
integer multiple of 2. We certainly don’t want the function to be multiple-valued; so define
log z as a single valued analytic functionon C — R_. We have to specify log1l = 2min. The
principal branch of the logarithm is n = 0.

We don’t even have to delete a ray; just have to remove a curve which prevents us from
making a circuit around the origin.
eiz_e—iz

2%

Can use this to find inverse trig functions. If sinz = = w, then e¥* — 2ie®*w — 1 = 0,

and

. 2w £+ /2iw? 4+ 4
e = " 22w + =qw+vV1—w?

So sin™'w = Llog(iw + vVw? — 1).

Complex integration We have to give some meaning to the formal expression f"r f(z)dz
where 7 is some curve. We usually insist that it’s piecewise differentiable; v = {z(t) +
iy(t) }rea,5 Where (1), y(t) are continuously differentiable on [, 3] — {t1,---,t,}. We define
the integral to be ff fz(t)+iy(t)) (@ (t)+iy'(t))dt, or D7, ttz“ flx+iy(t))(2'(t)+iy'(t))de,
where tg = « and t,,11 = . We have to show that this is well- defined, i.e., that the integral
is independent of the parametrization.

Say we reparameterize via t( ) @ [a,b] — o, ﬁ] The standard theorem would say that
J2 F(t(r)dz = [ F(t(0) (@ (t(7)) + iy (t(7) Ldr = [7 f(2 L o(t(r))dr. So this
mtegral is Well defined 1ndepenently of the ch01ce of parameter

If we have an arclength parameter, can say [ f(s)ds = f b f )|dz| = f f(2)|7(t)|dt, where
the curve 7 is given by x(t) + iy(t). Then ds = /(') )2dt = |dt Of course, we
have

B
fez| < [ 1)zl

For any e?, we have Re® fﬁ 2)dz = fﬁ e f(z)dz). But we know that |Re®f(z dz} <
|f(2)||dz|. Use this, and we're done choose e to rotate the integral to the real axis. It
follows that | [ f (z)dz} < [If (z)||dz|. Essentially, this is just the triangle inequality.
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If we want, we can view f as inducing a map v — f"r f(2)dz. Define a map on formal sums

of arcs: Y " > fzn% f(2)dz =37 [ f(2)dz.

For example, f| & Well, z = €, so dz = ie??df, and

Zl=1 2z
dz 2T et de ,
— = 5 = 271,
|z2|=1 # 0 €

If we let 1 = {2 : |2] = 1}, then

dz dz
Y1+Y+71 z Y1 z

we just integrate around the unit circle three times. Can also give orientation, and have
— is v with the opposite orientation. So if [ f(z)dz = ff f(2(t))dz(t), then [ f(2)dz =

J5 F(2(t)dz().

Jeff Achter 14
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We have f"r f(z)dz o f f(z t)dt, where z(t) : [a,b] — 7. Can write this as
/f dw+ 2 )dt = /f +z’f§—?zdt.

Can also say that [ pdz + qdy < f p2dt + q2dt if (z(t),y(t)) : [a,b] — 7. Reminder:

Green’s theorem Assume we have an open set ), and a region D inside that open set. If
pdx +qdy is a differential on  with C* coefficients, then faD pdr+qdy = [ fD @ — —)dxdy
The orientation is such that if you're standing on the boundary, facing with the orlenta,tlon
then the domain is on your left. We give the boundary 0D the induced orientation.

Cauchy Theorem Suppose that f(z) is analytic in an open set €2, and f’(z) is continuous.
Then if ¥ = 9D where D is a compact subset of {2, then f"r f(z)dz =0.

Proof

/f(z)dx+if(z)dy = f(z)dx+if(z)dy

| DI
y
= // ——i—z—dxdy
= //Dzagfdxdy
0.

Now, we will not assume that f’(z) is continuous. We have a version of Green’s theorem
without differentiability:

Proposition Suppose that p and ¢ are continuous in an open set, and there is a function
U(z,y) defined on the disk so that g—g = p and g—ly] = q. Then f"r pdx + dy = 0 for any closed
curve vy contained in the set. The converse holds, as well.
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Proof Suppose there is such a U. Consider

/ pdo + qdy — / plalt), 5(0) 2t + gfa(t) (1) Lt

o

b
_ /(8Ud_:c oUdy,

oz dt oy dt
b d
- [ Gue.ua.

By the fundamental theorem of calculus, we have f"r pdz+qdy = U(z(b),y(b))—U(z(a),y(a)) =
0.

(;0’:,;)0) pdr + qdy. Take the path to be all

horizontal, and then a little vertical. We get g—g = p. Similarly, get g—ly] =q. ¢

For the converse, we simply define U(z,y) = f(

If we're looking at (z —a)™ with n > 0, then (z —a)" = %(zjﬂzﬂ. Let f(2) = u+4v. Then
u; = v, and u, = —v,. Then £ = (9,—i9,). Apply to (u+iv), and get & (uz+v,+i(vs—uy)).
Plug in from Cauchy-Riemann, and get u, + iv,. The complex derivative may be computed
just from the x derivatives; or y derivatives, for that matter; we have u, + tv,v, — tu, =

—i(uy + ivy).

So

fe) = 52

i) = 5

1) = —ig

16) = 3 —iglU
= 0,U.

Thus, can apply this to (z — a)™ for any n # —1.
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We get special cases of Cauchy’s theorem: fﬂr(z — a)"dz = 0 for any closed curved v with
a & v and n # —1. The problem with n = —1is that dzlog(z —a) = (2 — a)™!, and log isn’t
analytic on a closed circle around a. Last class, we showed that f|z dz

—al=r z—a

= 2m1.

We have a Cauchy theorem for rectangles, due to Goursat.

Proposition Suppose that f(z) is analytic in an open set which contains the rectangle R.
Then [, f(z)dz = 0.

Remember, analytic just means that lim,_,,,
taining R.

f2)=/(z0) (z)_fo(z‘)) exists for all zp in the open set con-

z—

1 p2
Proof We divide the rectangle into four equal parts; number them ( gg 24

thing has length L and height H. Then

) , and the

f(2)dz = (2)dz + (2)dz + f(z)dz + /8R4f(z)dz,
OR OR! OR2 OR3

since the integrals on the edges not on the boundary cancel each other. If n(0R) # 0 then
for some R', [n(OR)| > %|n(OR")|. Let’s call this rectangle R;. Subdivide R; as before;
there’s an R? (a quarter of Ry) so that |n(Rs)| > 1|n(Ri1)|. Inductively, we get a sequence of
rectangles with R D Ry D Ry D --- with R, a quarter of R,,_1, and |n(Ry)| > (3)"|n(R)|.

So we’ve got a nested sequence of rectangles, and N°R,, = z*. We know that lim,_,, 5
f'(z%) exists. We have |f(z) — f(2*) — (—=2")f'(2)| < €|z — 2*| if |z — 2*| is small enough.
Now we're interested in [ [, f(2)dz. We know that [, dz = [,, azdz=0.

f(2)dz = /a ()= ) = (=) ()

ORp

f(z)dz

ORp

IN

/a 1) = £ = (= )l

e/ |z — 2*||d]
ARy,

2(L+H)
2n

much; that’s why we have to use the € factor. Now, |z — z*| < VP;HQ, simply from the

IN

for n large enough. We know that faRn |d| = . But that’s not really telling us very

Jeff Achter 17 Charles Epstein
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geometry. So € [,n |z — 2*||dz| < e% VEPHE®  But it’s also > |n(R,)|4". So [n(R)| < Ce.
Since e is arbitrary, we have [n(R)| = 0. <

Now, suppose that f(z) is not necessarily analytic at every point of R. Indeed, we’ll allow
a finite set of points (3, ---,(, where all that is assumed is that lim, ¢, [(z — () f(2)] = 0.
In other words, f is a little less singular then 1/z. With these conditions, the theorem still
holds.

Proof This is similar. We’ve got a rectangle. Cut it up to isolate these points. (Only
one pseudosingularity per cell) f o fdz = > faRi fdz. So it’s enough to prove the theorem
assuming only one bad point. We cut the rectangle into nine subrectangles so that the bad
point, a, is in the center. Call that one Ry. Then [ f(2)dz = 35 faR 2)dz = faR z)dz.

But we have the estimate |f(z)| < €¢/|z — a|. Thus, ’faR dz) < Jor, T E|dz| Choose RO to
be a square with side length 2h. Then 2 < . Thus, [, ;'dfl" <+ faRo |dz| < 8¢, and so

the theorem is true. <

We’ll extend Cauchy’s theorem to curves which lie in a disk, D Given f(z) analytic in D,
define F'(z) so that 0,F = f. This means we can define F'(w f f(2)dz, where the path
of integration is one vertical path and one horizontal.

For f(z) analytic in a disk, f"r f(z)dz = 0 for all closed curves vy contained in the disk.
We can extend the argument functions which have a finite number of bad points where
lim, |z — (|| f(¢)] = 0. This isn’t much harder. We might have to use three horizontal or
vertical pieces to get between two points, but that’s no big deal. In this context we can
define F'(w f f(2)dz, where the path consists of three horizontal or vertical segments.
Fis Well deﬁned in the complement of the singular set, and satisfies 0,F = f. So Cauchy’s
theorem applies to any closed curve which avoids the singular set.

)de

We need to understand n(vy, where v is a closed curve.

¥ z—a
1. n(v,a) = 2mim for some m € Z.

2. Let C—y=U; U---UUy, where U; are connected components. For a € U;, n(vy,a) is
constant.

Proof

L J. (% Define k(t) = 5. Define g(t) = e~ (=(t) - > g(t). Differentiate, and
get 7 dg = e "O(—h(t)(z —a) + 2'(t)) = e (=2 + 2') = 0. h(a) = 0. We know that
h“)( (t)—a) = (2(a) —a), or ") = 2= Well, eh<b> e g h(b) = 2mim

z(a)—o
for some m € Z.
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2. Suppose we have two points in a connected component. We can Jom them Wlth a
dz(op— oztl

smooth curve. We're looking at f"r Z‘_i—zt. We have n(y, o) — n(y, o) = [ oGy

z—at)(z—aty )
Thus we see that n(vy, ) is continuous in ¢. On the other hand, n(y,) € 2miZ.
Thus, n(vy, ;) is constant.

n0:9) g called the winding of « relative to a; it counts the number of times the curve goes

around a. If C —~ = Uy U --- U Uy, there is a unique component which includes co. We

claim that n(y,a) = 0 for all a € Uy, that component. For

/ d 4]
yZ—a |z —al
/ dz
S R
5 laf = 12|
K
<
= lal=r
— 0

as a — oo.
Let f(z) be analytic in D and let zyp € D. Consder the function M Well,

lim |(z — ZO)M —0.
220 Z— 29
So we can apply Cauchy’s theorem to conclude that
/f(z)_f(z())dz:().
’Y zZ — 20
so long as zy € . And actually, we have
CES TS CURyECO
Z— 29 v %= 20 v ® TR0
z
SE g~ o z)

zZ — 20

the Cauchy integral formula. Also, == [ £&= — £(z0).
Y

7 2mi zZ—20
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Cauchy integral formula

F(z0) = L/rf(z)dz

211 Z— 2

if n(y, 20) = 1.

From this, we can conclude that f is an infinitely differentiable function; and in fact, we’ll
have

f(k)(zo)_k_!/ f(z)dz

C2mi ), (2 — 2okt

First, f is differentiable.

20— 21 20— 21 2mi 2 — 29 22— 21

L[
y (2= 20)(2 — 21)2mi

and then you yell at the thing at the end until you know that it’s < Clzp — z1|. So f/(z) =

f"r (’; (_2;1)22 Proceed by induction to arbitrary derivatives.

f(z0) = f(z1) 1 /f(z d_z 1 1

A consequence of the Cauchy integral formula is that an analytic function is infinitely dif-
ferentiable.

Suppose we have a circle centered at zp, and |f(z)] < M on the boundary of the disk,
dD(zp,7).°> We get

1) (20)] < "?_’/ F@)lldz] _ kM

T 2mi |z—2z0|=r |Z — Z()|k+1 —ork
Cauchy estimate If |f(z)| < M on 0D(z,r), then |f®)(20)| < kIMr*.

Corollary Liouville If f(z) is holomorphic in the complex plane, and |f(z)| < M, then
f(2) = ¢ a constant.

5Disk centered at zy of radius 7.
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Proof |[f(z)| <. We can let 7 — 0o, and then f'(z) — 0.

Corollary Fundamental theorem of algebra Let P(2) = Y."a;2/. Then P(z) has a root.

Proof Suppose P(z) # 0 for any finite z. Well, |P(2)| > |an||z|"(1 — ==L — ... — ) 2>

lan]
1

lan||2z"(1 — €) for |z| > R. Thus, we conclude that 7z is bounded. Liouville’s theorem

implies that P(z) is a constant.
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Last time, we had the Cauchy integral formula f(z) = 5= [ “>= if n(z,7) =1, and f is
analytic in a disk D(a,r), and v C D(a,r).

From this formula, we showed that

e f(2) analytic = f is infinitely differentiable.

n n! e
o« f) = 35 ), A

It’s easy to derive these formulas, but it’s harder to prove that they’re correct. For example,

f(z) — f(z) 1 1 1
A A AT S - d
p— 5 f(O((—z %
zZ—2 1
= d
27rz/f C—zl))Cz—zl
As before, we assume n(7, z) = n(y,21) = 1. We know what the limit should be; estimate

% fo [ (Cf ©_da¢ ) using the equality derived above.

We know there’s an € > 0 so that if d(z,z1) < € then for some § > 0, d(z,7),d(z1,7) > 9.
So we'’re trying to estimate

z— 21

(€ =2)*(C—=)?

Mlz —

Back to the general formula, the one for f(™(z). Let M = max|, 4, |f(z)|. Then we have

that }f(” } <3 ol f"r |(|g(§))|Ldf1||. Last time, we specialized at z = a to find }f(”)(a)} <n!Mr—".
Can also use thls to get an estimate for any point inside the circle. Let z be any point in
the disk. The shortest path from z to boundary of the disk is the radius through z. We can
rotate things so that z sits on the real line; then the distance to the boundary is r — |z — a|.

We say that on v, |( — z| > 7 — |z — al|. This yields the following estimate:

n!M2rr
(=T = al)*T

()] <

Morera’s Theorem Suppose f(z) is continuous in an open connected set 2 C C, and
f"r f(2z)dz = 0 for every piecewise differentiable closed curve v C €2. Then f(z) is analytic.
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Proof Let zyp € Q. Define F(z) = f; f(w)dw. This is well-defined by assumption. Now,
F'(z) = f(z). For

F(Zl) - F(Z) f(21)' fzz1 f(w)dw f;l f(h)dw'
_ j:%f(w)—-f@q»dw'
Jo 1 (w) = f(z)]]dw]
a |z — 21|

6

There’s a 6 > 0 so that [z — 21| < d = |f(2) — f(z1)| <.
So

|z — 21|

|z — 21|
= €

F(21)=F(2)

for |z — 21| < 4. So lim,,,, P

as well. &

= f(z). So F is analytic in Q, and therefore f = F”' is

Now, our goal is to show that every analytic function is represented by its power series.

Recall, we've shown that if f is analytic in |z —a| <7 and |f(2)] < M on |z — a| = r, then
| /™ (a)| < nIMr~". The Taylor series is y %(z —a)™. Consider

N 'f(n)(a) _ W—>1
n! - r

By Hadamard’s criterion, » %(z — a)™ converges in D(a,r).

We have f(z) = f(a) + fol £ f(a + tz)dt, the fundamental theorem of calculus. So f(z) =
f(a) + fol f'(a + tz)zdt. This is actually a complex integral along z(t) = a + tz. So f(z) =

SFor the first equality, remember that we’re free to integrate along any contour, since the integral on a
closed path is zero.
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)+ f f'(w)dw. Since we're assuming that the function is analytlc we can mtegrate by

s £~ Ty oo ] T on fay b e @)+ 7 £ (w)(z—w)dw.
This is the first-order expansion; the integral is the remainder term. We do this n times,
and get

f(z) = fla)+f(a)(z—

"(a)(z — a)? ™) (g 2 D) () (5 — W) dw
SO SO gy [ LG e

21 n!

Now, if everything were real, we could apply the mean value theorem to the integral, R, (z);
but as it isn’t, we can’t.

Use f(")(w) < % So

A< [ 100w E .

Let ( = z — w, and get

z—a n+1
/ el = 2=
0

n+1

Substitute in, and get

2 = al

Ro(2)] < orrM(n +1)! |z —a|"™

<2mrM
STt oy S M

)n+1.
r— |z —al

Thus, f(z) = Z% if |z —a| < 3.

In fact, f(z) =, W on the whole disk D(a,r). We’ll prove the following

Identity Theorem If €2 is an open connected subset of C, and f, g analytic in €2, and
f = g on some open subset of 2, then f = g in all of (2.

Proof Let Ey = {z € Q|fU)(z) = g9 (2)Vj € N} Let Fy = Q — E,. Well, E; is obviously
a closed set; it’s NEY, where B/ = (f0) — g@)=1({0}).

Suppose zy € E1. This implies that 3" f0)(z0)z — 20)7 /5! = 3 W in D(zg,7). We
know tha these are equal to f(z) and g(z), respectively, for z € D(zp,7/2). This implies that
D(zp,7/2) C Ey. Thus, E; is open; since Q = E; U Es, and Q is connected, and E; # ), we
have Q = F,. &
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Corollary f(z) =) W for all z € D(a,r).

1. fand ) W are both analytic in D(a,r).
2. They are equal in D(a,r/2).

3. They are equal in the whole disk, by the identity theorem. <

We have shown that {f|3f" € Q} = { functions representable by convergent power series
around any point in Q}.

Corollary If f and g are analytic in Q and £ (a) = gU)(a) for all j and some a € Q, then
f=gin Q.

Corollary If f4) =0 for all j at some point a, then f = 0.

Corollary Suppose {a,} € Q is a sequence with a limit point a* € Q, and f(a,) = g(a,).
Then f =g.

Taylor series remix We need to know about removable singularities. Suppose that f(z)
is analytic in Q — {a}, but lim,_,, |z — a||f(z)| = 0. Then f(z) has an extension to €2 which
is analytic.

The standard example is L = f1(z). Of course, fi(a) = f'(a).
We can sketch out a proof of this. Let D(a,7) C Q. Then f(z) = 5= —al=r ¢ )Z for z # a.

But the denominator doesn’t care about a, so the right-hand side is analytic in the whole
disk. Furthermore, it agrees with f away from z = a; so it agrees with f everywhere, and
that’s how you can extend it to a. <

This tells us that there is no analytic function with |f(2)] ~ (z—la)a if0<a<l

On to something else [?]. Can look at % fa(2), and fa(a) = fi(a) = f"(a). But
"(z—a)=(f(2)—f(a f/(z)—f(zizﬁ(a)

fl= f'( )(29;()2) fla) _ _; ) = f"(a).
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If f(z) is analytic in a disk D(a,r), then f(0) = %(z —a)® in D(a,r). We did this in
two steps; first, that this is well-defined; second, using the identity theorem, we get equality.

Suppose that the power series ) a,2" converges in D(0,r) but not D(0,r + ¢€) for all € > 0.
Then the function it represents is not analytic in D(0,r + €) for any € > 0.

This isn’t true if you're just working over R.

Example i = > 2z". The radius of convergence is 1, and it doesn’t converge anywhere
on |z| = 1. But the only singularity is at z = 1. So the converse to the above statement is
false.

Definition An entire function is a function analytic in all of C.

If f(2) =)y anz", then f is entire <= T, o0|an /™ = 0.

Corollary If {z,} C  is a sequence with an accumulation point, and f is analytic in €,
and f(z,) =0, then f = 0.

Proof [1] We'll suppose that z, — z* € Q. Consider the following expression:

Qo aiy A,
+ ot :
Z— X9 zZ— X1 Z— Tm

Clear denominators; get

ao(z—xl)(z—xg)---(z—:cm)—l—---—|—a1(z—x—0)---(z—xm_1).

[Io'(z =)

Multiply out, and look at coefficients of z. From the highest term, we get ag+ a7 --- a,, = 0.
For the second highest term, ago1(Zo) + a101(%1) + - - - + amo1(2) = 0. Here, o; are the ele-
mentary symmetric function on m variables, i.e., [[7"(z — z;) = D (=1)i0j(z1, -+, Tm)2™ 7.
Also, Z; means delete z;. One proves inductively that all of the equations are in terms of
symmetric functions; agok (o) + - - + amor(Zm) = 0, for K < m — 1.

At this point, we’ve got to find the perp space of m vectors in m + 1 space. [If m = 2, use
cross products.]

10 TR .
Vio Vi1 - Uim
Um0 Uml *°° Umm
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Take the determinant of this thing by expanding along first row, and you wind up with a
vector Y a;(x)i;. Now the question is, are the a;(z)’s nonzero?

Inductive argument to show

1 1
o1(Z 01(ZTm
det 1(. o) 1(. ) :cmH(x
. - i<j
om(To) O (Tm)

1
where ¢, # 0. If m = 2, we have det ( L ) = xo — x1, done.
1 X

Otherwise, set 2o = 0. You get det =z -+ - Tcpm—1 [ [, (i — z;).

With these a;(x)’s, we have (from above)

3 . iixz _ eall(@i— )

Call the numerator n(z). We then have Y™ a;(x )n(% Yo [ ‘:;((; (J; (Zlffz = f HJE»EJZ o
Thus,

nh_{go Z a; Zn+1 Zn+mf(zn+1)) — C_m/ (Z f(Z)dZ _ E;;[m]f(z*)

n(Zny ) Zntm) 2mi — z¥)mtl

&

Corollary If f(z,) = 0 for all n then fI™(z*) = 0 for all m.
This has something to do with something called divided differences.

Proof [2] Suppose f(z9) = 0, assume not identically zero. Then for some n, flil(z)) = 0
for j = 0,1,---,n — 1 but f"(2) # 0. Then can write f(z) = Y a;(z — 2)’ = an(z —
20)" Yo ot (2 — 20)’ 7", So we can write f(2) = (2 — 20)" fn(2) where f,(2) = 14+ O(2 — 2).
From this, we conclude that the zeros of an analytic function must be separated. So we now
have |f,(z)| > 1 for |z — zo| < 0 for some . Thus, the zeros of f(z) are isolated from one

another. &

At a point zy where f is analytic, there is a well-defined order, that is, the integer n defined
above. Suppose f(z) is analytic in a set 0 < |z — zp| < §. There are a couple possibilities.
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1. Tt could be that lim,,,, |z — 20|”|f(2)| = 0 for some « € R.

2. lim,,., |z — 20|°|f(2)] = o0

3. The limit doesn’t exist for any o € R.

In case 1, there’s an n € Z so that n > a. We know that for some integer n, the function
(z — 20)" f(2) has a removeable singularity at z = zp. This means that (z—20)"f(2) =ao+
ay(z—20)++*+ an-1(2—20)" " +(2—20)"Pn(2). Alternatively, f(z) = g+ -+ +dna(2).
What happens next?

In case 2, if lim, ., |z — 2|’| f(2)| = oo, then we can find an integer n < 8 and lim,_., |z — z|"|f(2)] =
00. So the function m has a removeable singularity at z = zp. This means that there
is an analytic function g(z) analytic near z = zy so that m = g(2) = (z — 20)"h(2)

1

Wz)m Can rewrite

where h is analytic at z = zp and nonvanishing. Thus, f(z) =

this as % So in case 2, f(z) is either analytic at z = 2, or has a pole of some finite

order.

In either case one or two, there is a unique integer n so that (z — zo)"f(2) is analytic at
z = 2y and nonvanishing there. This tells us that poles occur as integral powers. We’ll never
have |z — z0|”|f(2)| < K for some a & Z.

In case three, f(z) is said to have an essential singularity at z = z.

Theorem [Casorati-Weierstrass Theorem] Suppose f(z) has an essential singularity at
z = 2z9. Then f(z) comes arbitrarily close to any complex number in any neighborhood of
z = zp. For any € > 0 and w € C, there’s a z, — 2o so that |f(z,) —w| < e.

Proof Suppose this is false; then there’s a A € C and and r > 0 and 6 > 0 so that
|f(2) — A| > ¢ for z € D(z,r). Look at w for all @ < 0. Thus, for some n,

f(z)—A="00
(;(;;S): is analytic in a neighborhood of z = zg, and - ;0) = h(z). Can choose n so that
h(z) # 0. Then f(z) = A = (Z,:éo))n, and f(z) = (z (ZO + A. So for « large enough,

lim,_,., |z — 20|%|f(2)| = 0, a contradiction.

If f(2) is analytic in 0 < |z — 29| < r, then either

1. f(z) extends to 2, analytically.

2. f(z) = = ZO) —— o 2L 4 (t) where ¢,(2) is analytic.

zZ—20
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3. f(z) has an essential singularity.

Let v be a closed curve in an open set 2, v compact, f analytic. Suppose that f(z) has only
finitely many zeros inside Q, say, {z1,- -, 2}, with multiplicities. Then f(z) = [[{(z —

zi)h(z), where h(z) is analytic in 2 and nonvanishing; h(z) = H{Z(ii).

Let’s check h(z) near z = z1. Suppose that z; occurs n times. Then [[}(z—2) = (z2—21)"g(2)
where g(z1) # 0. This happens if f(z) = (z — 21)"k(z) where k(z1) # 0. Then

We take the logarithmic derivative d% log f = f7/ =y -+ %/ Let’s integrate. Then

f’dz_il/dz_i_ h' dz
L fomi 2mi ), 2 — 2 h 2ri

Here, n(v, z;) is the winding number, and h'/h is nonvanishing. The point is, — f"r Fdz =
Zl (7? ZZ)‘ %
f'(z)dz

Now, consider 2 a disk, ’y a circle. Then 2—7” f"r f( ) is the number of zeros inside . If we

let w = f( ) then I' = f and 2mi f"r fjg(zzdz = om fl" w "

Theorem Suppose that f(z) is analytic in a disk D(a,r), and f has a zero of order n at
z = a; that is, f(z) = (z — a)"h(z), h(a) # 0. Then there’s a § > 0 and € > 0 so that f(z)w
has n solutions in |z — a| < e.

Proof The number of solutions to f(z) = w in |z —a|] < € = %mﬁ-ﬂ:e J’:QS—)_‘Z. This
function of w is continuous, so long as f(z) —w doesn’t vanish on |z — a| = €. So this equals
1 1/ (2)dz if |w| <.

2t J|z—al=e ~ f(2)
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If f is analytic in a disk, and v a closed curve in the disk such that f # 0 at any point on
v, then

f’ dz
Fomi Y nlyz)m
{z:f(2)=0}

where m, is the order of the zero that f has at z. Use this to prove:

Proposition If f(z) — wo has a zero of order n at 2o, then there’s a 6 > 0 and € > 0 so
that for |w — wg| < 9, f(2) = w has n solutions in |z — zo| < €.

Suppose n = 1. Then f(z) is locally one-to-one and onto. This implies that g(w) = f~!(w)
is defined in |w — wg| < §. Can write

i F): ds
9(w) = /|Z_ZO|<E f(z) —w2mi

Why is this? Well, for w close enough to wy there’s a unique z, € |z — 29| < € with
f(zw) = w. So f(z) —w = a(z — zw)hy(2) where hy(2) # 0 in |z—¢| < € is a holomorphic
function.

Look at { )(Z Since w is a constant, this is —— —-+ So integrate;

h(z

/ f/ zdz - / ( z X hiu(z)z)d_z —,
fR)—w-2mi J e 2= 20 hu(z) "2mi T

&

Proposition If f(z) satisfies f'(29) # 0 then there is a disk |z — zo| < € in which f(z) is
1-1 and the inverse function defined on f(D(zp, €)) is analytic. Indeed, f is locally 1-1 <=
f/(Z()) 7é 0.

If /() = 0, then there is some integer n so that f =0 for 1 < j <n—1, and fI"l(z) # 0.
Let f(z0) = wo. We know that f(z) —wy = (2 — 20)"h(z) where h(zp) # 0. If h(zp) # 0 then
we can define, unambiguously, a branch of the logarithm log h(z) for z in some neighborhood

of zp. Therefore, we can define h(z)'/" = e for z in this neighborhood. Define ((z) =
(z — 20)h(2)"/". This map is locally 1-1, as —(zo) # 0. Using this map, we can write

f(2) = wo +8¢(2)™

87’m not sure that this should be a +.
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Uh-oh. Picture time. ¢ divides the preimage disk into n sectors; and then raising to the n'®
power makes each sector cover the unit disk. Thus, in local coordinate, a function which
vanishes to order n looks like z +— 2".

Contrast this with the map (x,y) — (23,y). It’s locally 1-1, but not locally invertible, e.g.,
2
at zero; for the Jacobian is gx (1) . This will never happen for a holomorphic function.

If we think of f(z) as defining a mapping from an open set U C C to an open set V C C,
then f is locally 1-1 <= f is holomorphically invertible.

Proposition [Open Mapping Theorem] A nonconstant analytic function defines an open
mapping from a subset of C to a subset of C.

Proof We need to show that if w € im(f) then there is an open set U such that w € U
and U C im(f). But the proof of this is obvious, from the computation above and the fact
that z — 2" is an open map. <

Look at f(z,y) = z%y. Consider the image of a disk centered on y-axis. It’s image will be
sort of folded in half. It’s not an open map, as there are boundary points in the image which
don’t have open neighborhoods.

Theorem [Maximum Principle] If f(z) is analytic in an open set €2, then |f(z)| never
assumes an interior maximum, unless f(z) is constant.

Proof Suppose that |f(z)| assumed a local maximum at zop € Q. Then f(£2) contains a
disk centered at f(zp) of positive radius. Somehow, this gives a contradiction.

Corollary For any K C 2 with K compact, max.cx |f(z)| occurs on K. If there’s a zg
in the interior of K with |f(20)| = max,ecx |f(2)|, then f(z) is constant.

Can also prove this with the Cauchy formula. Represent f (zo) in terms of f(z9 + pe®) for
some p > 0. We know that f(zp) = %Zﬁ f(x)dz _ s [ f(2) + pe?)df. Therefore,

z—z0l=p z—z0
| f(z0)] < 2%”) " f(z +P€7’6)d9) < ok [T £z + pe®)|df < maxo<pean | f(2 + pe®)|. Equal-
ity will hold only if the modulus of f is constant on the boundary of the circle. Can show
that we can keep shrinking the radius and still get the same number, i.e., the function is
constant.

More verbosely, assme that | f(zo| is a local maximum. Then | f(20)| < maxo<g<ar |f(20) + pe”|
for p € [0,€¢]. But the maximum is < |f(zo)|. This implies that |f(zo + pe®)| = | f(20)] for

0 <p<eand 0 <6 <27 Therefore, the modulus is constant, and f is constant.
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Theorem [Schwarz Lemma| Suppose that f(z) is defined on |z| < 1 and |f(2)] < 1 on
|z| <1, f(0) = 0. Then |f(2)| < |z|, |f(0)] < 1, and if there’s a zp with |z9] < 1 where
|f(20)| = |20, then f(z) = cz for some |c| = 1.

Proof Consider g(z) = f(z)/z. This function has a removeable singularity at z = 0. Its

value at zero is f'(0). For any e > 0, we know that max,<i_. [g(2)| < max),j—1_. fz(j) < 1%5

Since € is arbitrary, we have max |z| < 1|g(2)| < 1. Now, |f(20)| = |20] <= |g(20)| = 1,
ie., g(z) = € for all z. So f(2) ="z for all |2| < 1.9 ©

Definition We say that f,, — f locally uniformly in Q if for all K C Q compact, f,|x —
f|x uniformly.

Theorem [Weierstrass| Suppose {f.(z)} is a sequence of analytic functions in an open set
Q C C. If f,(z) converge locally uniformly to f(z) on 2, then f(z) is also analytic.

Proof [1] We'll use Morera’s theorem.

e f(z) is certainly continuous; for continuity is a local property.

compC

e Analyticity is also a local property. For each zy € €2, we can choose D(z9,7,,) Q

compC
so that if v D (20,75) then [ f(2)dz = lim, o fn(2)dz = 0. So far, this is all real
variable theory. By Morera’s theorem, f(z) is analytic. &

Indeed, for any k, f,[f](z) — f(2) locally uniformly.

Proof [2] [k]( ) = kl;- fl( 2ol (g"(g)),ﬁfl For |z — 29| < €/2, (Cf"(ckﬂ on | — 20| = €. So
lim, f¥(z) exists, and is equal to k! o f|c_20|<6 (zf@ de = fH(2). ©

Theorem [Hurwitz] Suppose f,(z) — f(z) locally uniformly on 2 C C, and suppose that
fn(z) # 0 for any z € 2. Then either

1. f(2) =0on Q

90f course, if |f/(0)| = 1, then f(z) = e anyways.
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2. f(z) # 0 for any z € Q.

Suppose that there exists zgp € €2 so that f(z9) = 0 but f(z) # 0. Then there exists an

compC
e > 0 and § > 0 so that |f(z)] > J if |z — 20| = €j where |z — 2| < € Q. So fo— f

uniformly on |z — 29| = €. This means there’s an N so that |f,(z) — f(2)| < /2 forn > N
and |z — 29| = €.

Thus, |fn(2)] > |f(2)] — /2 on |z — 29| = €, which is > §/2. From this, we conclude that

In il : _ _ 'dz 1 _ 1: fndz 1
i uniformly on |z—¢| = €. Now, n = f|z_20|:6 ffZQ—m = lim,, f|_0|:6 fnZQ—m = 0.

(We assumed that there weren’t any zeros in the disk.) This yields a contradiction; f = 0.

&

For example, f,(2) = = converges uniformly to zero, but it isn’t zero.

Now, in real variable theory, we have lim, (1 + Z)" = e*. We're going to prove that the
LHS converges uniformly to the RHS. Now, log(1 + z/n) = nlog(l + z/n). For |z| <n we
can define a single valued branch of log(1 + z/n) which equals zero at z = 0. The power
series expansion is

2 w3

w
10g(1+w):w+7+?+---

So log(1 + z/n) = z/n + O((%)) for |z| < n —e. This says that |nlog(1+ z/n) — 2| =
|z + O(2%/n) — z| = |O(2%/n)| for |z| < Rj and n >> [R]. Thus, lim, ,., nlog(1+ z/n) = z
locally uniformly in C.

exercise If lim, o f.(2) = f(2) locally uniformly, then the limit lim,, o, ef(*) = /()
locally uniformly.
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We already know some power series, e.g., €* = 1+ z+2%/2!+23/3!+- - sin(z) = 2 — 23/3! +
25/l + - ete

Recall that g(z) is O(z") means that lim, ,0|g(2)|/|2|" < B < co. So for example, e* =
1+ 2+ 2%/2 4+ 0(Z%). Thus, O(2") - O(2™) is O("™™), and O(2") + O(z™) is O(z™n(mm),
Newton showed that for any u,

v ()2 (e

where (Z) = w Now, there are actually many different branches; we’re picking

one by saying that (1 + 2)H| =0 = 1.
We defined log(1 +2) = 1 —z+2%/z =3 34+ 2*/4 +---. So Llog(l+ 2) =

1
1+
(d%)’“(ﬁ) = % One sees that the radius of convergence is 1; for limg o0 (3)"/* = 1.

Also,

and

arctan(z) =

so long as |z] < 1.

What property characteries the Taylor polynomial of order n for a function f(z)? Any
polynomial p(z) with the property that f(z)—p(z) has a zero of order n at z = 0 agrees with
the Taylor polynomial in its order n subpart. We would say that f(z) = p(z) + O(z"*1).10

Suppose that f(z) = B,(2) + O(z"™), and g(z2) = Q.(z) + O(z"™). Then fg =P, - Q, +
O(2™™); extract the nth order piece of B, - Q,, and it’s the nth order Taylor polynomial of
fg.

What about f/g? Compute P,/Q, = R, + O(z"™!), using the Euclidean algorithm. Then
P, = R,Q, + O(z"™). So f+ O(z"*!) = R,g + O(2""!). The conclusion is that f/g =
R, + O(2"™)/g. All of this works only if g(0) # 0. Then f/g = R,, + O(z"™).

10«Tendentious.”
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Now, composition. Let f(w) = ap + ajw + asw?® + - -+, and g(z) = b1z + bp2% + - - -.11 What
is the n'* order Taylor polynomial of f(g(z))? Assume f(w) = P,(w) + O(w"!), and
9(2) = Qun(z) + O(z"). Compute

fl9(2)) = f(Qu(2)) +O(="")

= Pu(@Qn(2) + O(z"")) + O((Q)n(2) + O(=")))" )
= Pu(@Qn(z) + O(z"")) + O(="")
= Fu(Qn(2)) + Pu(Qn(z) + O(z n+1)) — Pu(Qn(2))

o(z"*1)
— P(Qu(z) + / P (Qu(2) + t)dt
= P(Qu(z2)) + O(z").

Suppose that f(0) =0 and f’(0) # 0, so there’s a function g(z) analytic near z = 0 so that
f(g(2)) = 2. As always, we assume that g(z) = a1z + -+ + O(z"™!) = Qn(2) + O(z").
What we want is to construct a polynomial P,(w) of degree n such that P,(Q,(z)) =
z + O(z"™). Observe that P,(g(z) + O(z")) = P,(Q.(Z)) = z + O(z""). Remix:
Fo(9(2)) = Pa(@n(2)) + O(z"*)) = Pu(Qn(2)) + O(z"*) = z + O(z").

Well, it’s pretty clear that Pi(2) = £; for then P1(Qi(2)) = 2 + O(2*). Now, we assume
that P, (w) is found so that P,_1(Qn-1(2)) = 2+ O(z™). And so we need to find ¢, so that
P,(w) = P,_1(w) + c,w™. Look at

Pu(Qn(2)) = Puo1(Qn(2)) + cn(Qn(2))"
= P 1(Qn(2)) + ca(b12)™ + O(2"11)
= P 1(Qu_1 + ") +cu(br2)" + 02"
= Po1(Qn-1(2)) + Pr_1(Qn1(2))bnz" + ca(br2)" + O(" )
= P (2) 4 dn2™ + cub2" + O(z"H).

We can set ¢, = and this gives P, (z) as desired.

b"’

Conformality A curve which is locally parameterized by a C'* function z(t) so that 2'(t) #
0 is called regular; it has a tangent vector % If ¢ is some other curve, we can look at the

'We’ve normalized so that g(0) = 0.
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angle of the intersection by the angle between % and %. If F is a nice map, you might not

expect the angle of F'(¢) and F'(z) to relate to the original angle.

If FF=(u(x,y),v(z,y)), then the derivative is
d Oudr Oudy Ovdx Ovdy
S F(zt)) = (=222, 22 P TP
afCW) = Grw T asw T T ogdr

( F(x(t), () F(x(t),y(t)) ) ( & )

L (x(t),y(t) P(x(t),y(t)
- = ()

Now, to compute the angle between w and v we take (w,v) = cos(#)/ ||w|| ||v||, more or less;
up to reflection around multiple of .

a b
LetA—(C d

dt

). When is it true that for all pairs v and w, we have

(Av, Aw) [[Av]] _ (v, w) [[o]] 1
[ Aw] ]

If A is orthogonal i.e., A’A = I, then (Av,w) = (A'Av,w) = (v, w). It’s an exercise to show
that A = AA where A € O(2), the set of orthogonal 2 x 2 matrices.

If F is analytic, that means that u, = v, and u, = —v,. So a Ty ) = ( Yo Uy )

Vg Uy —Uy  Ug
2 2

. . Uy +u, 0
Multiply this by the transpose, and get ( 0 2 + u; )

From all of this, we conclude that if F' is analytic, then the mapping F. on tangent vectors
preserves the angles between curves.

Remix. Let w(t) = F(z(t)). Then w'(t) = F'(2(t))2'(t). So argw'(t) = arg F'(z(t)) +
arg 2'(t). So the difference of the arguments is maintained. Note that F'(z(t)) doesn’t
depend on the tangent vector.

We also note that |w'(t)] = |F'(2(t)||z/(t)]; it scales equally in both directions. This is
another way of showing that I acts as a rotation and a scaling (equal in both directions).

A mapping F : U — V where U and V are open subsets of R? is called conformal if

12May not have formula correct.
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1. Fi preserves angles between tangent vectors, or

2. ||Fi(z)v|| = A||v]| for some A independent of v.

Suppose w(t) = F(z(t), z(t)). Then w'(t) = F.2'(t) + F(t). So arg /((t)) is independent of

2'(t). But this argument is arg(F, + Fx /((tt ). A little futzing shows that Fz = 0 is necessary

for arg - ’ to be independent of 2.

We have % 7 — F, + F-Z and the norm of each side is independent of z’. So either F, = 0 or
F; = 0; F is either analytic or conjugate analytic | F' = f(2) |.

This definition of analyticity does not generalize to higher dimensions. We could define

holomorphic functions to be maps f : U — V so that f is conformal.

If we have a curve z(t) = z(t) + iy(t) for t € [a,b], then the length of this curve is

\/x’ )2+ y(t dt = f |2/(t)|dt. If we let w(t) = f(z(t)), then the length of w is
[P )t = J7 P S

If we have a domain E, we can compute its area | fE dxdy. Suppose f: E — E', f = u+iv.

Then the area of E'is [ [, dzdy = [ [, det ( a Ty )dxdy = [ [, det ( Y Zy )dxdy =
y T

Y
f f (2 | dxdy. Note that the area is positive; the orientation is preserved.

Fact Suppose U,V C R3, and f : U — V is conformal. Then there’s a unique mapping
F :R® — R3 so that F|y = f, and the collection of all such conformal mappings of R? to
R3 is finite dimensional.

Jeff Achter 37 Charles Epstein



MA 609 11 February 1993

Fractional Linear Transformations [Or, alternatively, Mébius transformations.] The
question is, what are the conformal maps S defined on C which are 1-1 and onto C?

For example, if f(z) = “Zis with ad — bc # 0, then f is such a map.

These maps are called the conformal automorphisms of C. If we have two such transfor-

mations, we can compose them to get another map f; o fo which is a conformal automor-
b

d
consider (z1,29) € C?. Look at the map C* — {2z, = 0} — C via (21,22) — Z. Set

z2
( w1 ) = ( a b ) ( < ) We have a commutative map
Wy c d )

phism of C. Lurking in the background is the matrix ( Z € GLy(C). Suppose we

C? —» C?
{ {
C — C

+bzy _ a(z1/z2)+b
Note that =72 = 6(211 /222) 4+ Suppose we have (

az+b az+fB

C ez C =Y C

and everything in sight commutes. The composition on the top row is simply ( : b ) :

(£2)

Define f4(z) = Zjis for A = Z Z ) We’ve shown that fa.p(2) = fa(fs(z)). This shows

that the correspondence A — f4 is a representation.

For starters, we’ll talk about ( (1) (1)4 ) la translation], ( ]5 2_1 ) a homothety, and

10

Now, 228 — lesd 4 2 This is like doing

0 1 . . . .
( ) an inversion. They give, respectively, z — z + a, z — k?z, and z — %
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= +d'_> 1 Hbc—ad 1 = bc — ad +a
2>z + — —.
c z+4 2 244 A(z+dfe) <

Thus, all of these maps are obtained through translation, homothety and inversion. The
inversion map is not %

We actually have fa : SLy(C) — Mo6b(C), and fa = id <= A = £I. By the way,
far = fat.

Given a set Z = {21, -+, 2,} and W = {wy, - - -, w,}, is there a fractional linear transforma-
tion S: Z — W?

Suppose we have {22, z3, 24} which we want to send to {1,0,00}. Set S(z) = =22 2=2_ This

will indeed work. Obviously, we can use this to map any three points to any other three
points.

Suppose S1, Sy : {22, 23,24} — {1,0,00}. Then T : S;08;* : {1,0,00} — {1,0, c0}; there are
three fixed points. We have Zfifi But 0 is fixed, so we have o4 Furthermore, T' (00) = o0;

we have %. Finall, T(1) = 1, so a = d. There is therefore no nontrivial of M6b(C) with

three fixed points.

A fractional linear transformation carries circles and lines to circles and lines. We're really
working on the Riemann sphere, in which case it looks like circles to circles. It suffices to
show that each of the three basic transforms takes circles to circles. Let |—a| =7, w =1/z.

o [a—(a+a)|=r.
o |k2z — K%a| = |k|*r.

inversion |1/w — a| = r, so |1/a — w| = rlw|/|a|. Finally, ww = 2/a—w/a+1/|a]* = r?/|a| w.
So r2/|al* = ZRL = ﬁ

2

Suppose 7"—22 > 1. Then we have (—— ww+2+2— L —(. Let p = r. We eventually
|a ) lal®~1 a  a g
have |w + &=| = -2, = 2. So it’s a circle of center (—1/pa) and radius ,/5=2—.
pa plal r2—|a r2—|a

: 2
Exercise; work on the case 72 < |a|”.

Now, we haven’t yet said anything about lines. But a line is a limit of circles. &

Let’s go back to S(z) = Z=2-2=%. Define S(21) = [22, 22, 23, 24] the cross ratio.

Proposition [z, 29, 23, 24 is real <= {z1,---, 24} lie on a circle.
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Lemma If T € M6b(C), then [21, 29, 23, 24] = [T21, 22, T23, T 24).

Proof S(z) = |z, 29, 23, 24] is the M&bius transformation which takes {zs, 23, 24} to {1,0, 0o}.
Consider S(z) = [z,T29,Tz3,Tz4). This takes {T'z2,T25,Tz4} to {1,0,00}. If we look
at S o T7' it also takes {T29,T23, Tz} to {1,0,00}. We have [Tz, T2, T23,Tz) =
ST_l(T,Zl) = S(Zl)<>

It’s not hard to see that if f(z1,29,23) = f(T21,T22,T5) for all T € M&b(C), then f is a

constant.

One can also prove a converse; there’'sa T € M6b(C) that carries {21, 22, 23, 24} to {w1, we, ws, Wy}
= [217 22,23, 24] = [wb Wz, W3, w4] = K.

Consider Si(z) = [21,29,23,24] and Sa(2) = [z1,ws, ws, wy]. Then Si1{z1, 29, 24,24} —
{k,1,0,00}, and Sy : {wy,wa,3,ws} — {kK,1,0,00}. &

This tells us that if f(Tz1,T22,T23,T24) = f(21, 22, 23, 24), then f = ([21, 20, 23, 24]); it’s a
function of the cross ratio.

Proof |[of proposition| Let {z1, 22, 23, 24} lie on a circle C. Then S(z) carries C to R. So
S(z1) € R, as well. Conversely, if the cross ratio is real, then S(z1) € R, which is the image
of the circle C. = 2z, € C.$

From now on, we're working with PSLy(C) = SLy(C)/{£1}. We’d like to know what
algebraic properties are invariant under conjugation. Certainly, the determinant and trace
work; det(BAB™') = det(A), and tr(BAB™') = tr(A).

Given A and C in SLy(C), when is there a B so that BAB™ = C? The eigenvalues are the
roots of det(A—AI) = 0, that is, [in the dimension two case] det(A—\I) = N2 —tr(A)A\+1 = 0.
The roots are

tr(A) £ /(trA)?2 —4

At = 5

If (tr(A))? # 4, then tr A = tr C' is the necesary and sufficient condition for there to exist B
so that BAB™! = C.

What if (tr(A))? = 4?7 Then the eigenvalues are either {1,1} or {—1,—1}. So either A = +T

+1 1 1
orANB(O j:1)3 .

Let’s consider fixed points. Look at solutions of gjjg = z. Then
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az+b = c2’+dz
4+ (d—a)z—b = 0,
az+b

We’ve ignored ¢ = 0; in which case the transformation is 5=, and so we get %z—l—% = z which

has one soluiton, and another at infinity; unless a/d =, in which case we have z — z + b/d
which has one fixed point at co. If a/d # 1, there’s one finite fixed point and one at co.

Otherwise, we can solve the damned equation, and get

(a —d) £ +/(d—a)?+ 4bc

2c
(a —d) £+ \/(d? — 2ad + a2 + 4bc)
B 2c
(a—d)£+/(a+d)?—4
B 2c '

So if (a + d)* = 4, then ( Z

points.

Z ) has one fixed point. Otherwise, it has two distinct fixed

A homothety has fixed points {0, 00}, and a translation has {oo}. For the moment, we’ll
ignore the inversion map [fixed points z = £1].

Consider the lines through the origin. They’re circles through 0 and co. A homothety must
therefore take such a circle to another circle through zero and co. And in fact we see that it
must act as a (constant) rotation. For we're dealing with a conformal map.

Consider the orthogonal circles, centered at the origin. They are mapped to other such
circles, as well.

Now, suppose that S(z) % has two fixed points, a and (; Let’s choose an element

T € Mob(C) so that T(a) = 0, T(80 = oo. Look at the transformation 7o S o T!. This
transformation fixes 0 and oo.
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az+b

ova- The fixed points turn out to be

We have, as always, f(z) =

(d—a)++/(a+d)?—4
2¢ '

Z =

If (a +d)? = 4, it’s called a parabolic transformation, and there’s one fixed point. If
(a + d)? # 4, then there are two fixed points.

Let F4 be the fixed points of the transformation A = ( Z ZZi ) € SLy(C). If we conjugate,
what is Fpap—1? It’s simply BF4. For if Az; = 21 and Az = 2z, then BAB™Y(Bz) =
BA; = Bz;; and similarly for 2.1 Note that tr A = (a + d); and actually, tr BAB™! = tr A.
So conjugating changes the fixed points, but it doesn’t change the number of fixed points.

Now, suppose that Az; = z; is the unique fixed point. Suppose z; = oco. Then f(z) = az+b.

But az + b = z has another solution if a # 1, namely, z = 2. So a = 1 if f has a unique

a—1"
fixed point; f(z) = z + b, and the matrix looks like ( Lo

01 ) Furthermore, if b # 0, then

( (1) Zi ) ~ ( (1) i ) This thing maps horizontal lines into themselves, and vertical lines

to vertical lines one unit over. (These are circles and orthogonal circles.) If we move the fixed
point to some finite place, then the fixed circles are the ones tangent to some line through
that point.

Oh, shit. Major picture action. Must get from Scott.

We label one class of circles horizontal, and the other one vertical. Basically, the transfor-
mation preserves the horizontal circles, and acts as some rotation.

Now, suppose that there are two fixed points. Through conjugation, we can take them to be
zero and co. Then the fixed circles are circles around the origin, and the orthogonal circles

A0 ) There are

are lines through the origin. The most general such matrix is A = ( 0 A1

two possibilities:

LtrA=X+X1eRand |trA| <2, <= X\ =¢“ Thisis just rotation by §. These are
called elliptic

2. tr A # £2 or as above. This is called a loxodromic tansformation. Then |A| # 1.
If A € R then we just have a scaling. This is called a hyperbolic transformation. If
A = pe then A(z) = p?e??z. These are called loxodromic.

13Remember that last time we proved that you can view the composition as either composition of fractional
linear transformations or as multiplication of matrices.
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What’s weird about all of this is that it’s determined by the trace. We have A2—\tr A+1 = 0,
SO

B trA+/trd2 —4
— 5 )

A

So (up to a sign) A is determined by the trace.

“Most” transformations are loxodromic.

az+b
cz+d”

Proposition If f:C — C is 1-1 onto and conformal everywhere, then f (2) =

Proof '* Suppose f(oco) =oo. Then f(z) = a,2z" +---. Then g(z) = f(ll) = ap +0(z").
Now, f is 1-1 near oo, so n = 1. Therefore, f(z) = az+ O(1) near oco. Consider the function

M. This function has a removable singularity at 0, and is analytic in the finite plane.

Furthermore we know that )M) <a-+ O(ﬁ) By Liouville’s theorem, w =aa

constant, or f(z) = az+ f(0). So far, we know that the theorem is true for functions which
take oo to oo.

Now, suppose f(oco) = wy # oo. Take g(z) = f(z)l_wo = fo(ww— w_lwo). Then g is a
1-1 onto map C — C so that g(co) = oo. Thus, g(z) = az + b, and m = az +b, or
f(Z) - azl—i—b +wo = awaiizw SO

Proposition If f:C — Cis 1-1 onto and conformal everywhere then f(z) = az + b.

Proof Consider g(w) = f(+). This is analytic in D;(0) — {0} a punctured disk. If
lim,, 0 g(w) = oo, then we are reduced to the previous case. For g has a pole, g(w) =
dn 4 2o=L 4 ... Since g is 1-1 in a neighborhood of 0, it maps some neighborhood of 0 onto

the exterior of some disk. Due to some reasoning which I tuned out, we know that n = 1.

Suppose that lim, 0 g(w) does not exist. Then it follows from the Casorati-Weierstrass
theorem that we can find a sequence w,, — 0 so that g(w,) — 1. There is some point w*
so that g(w*) = 1, a contradiction. For the local mapping theorem asserts that for a 6 > 0
there’s an € > 0 so that g(D.(w*)) D Ds(1).'* Choose € small enough that 0 ¢ D,(w*). Then
for large n, w, ¢ D.(w*). And for really large n, g(w,) € Ds(1), contradicting the fact that
f and g are 1-1. And it turns out that this also covers the case where lim,,_o(w) is finite. <

14Recall Liouville’s theorem, that a bounded holomorphic function in C is constant.
15This is also called the open mapping theorem.
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Note that this argument used compactification; we threw the point at infinity back in.

What are the 1-1 onto conformal maps of D;(0)? We can’t use Liouville’s theorem, since we
don’t yet know that the map extends to all of C. Instead we use

Schwartz’s Lemma If f : D; — D; and f(0) = 0, then |f(2)| < |z| and |f'(0)] < 1.
Equality holds <= f(z) = ez.

So now suppose we've got f : D; — D; is 1-1 and onto. The maximum principle implies
that |f(z)|] < 1if |z| < 1. In particular , | f(0)| < 1. Define g(z) = L&=LO

1=f(2)£(0)"
From the homework, we know that a degree one rational function R(z) with |R(z)| = 1 if
2] = 11is of the form R(z) = e£=% where |a| < 1. So g : D; — Dy is 1-1 and onto, and

g(0) = 0. Schwartz’s Lemma says that |¢'(0)| < 1, and if |¢’(0)| = 1 then g(2) = €¥z. Now,
g~ '(2) : Dy — Dj is also 1-1 onto and conformal. (¢7!)'(0)) = —*=. But both g and ¢'~'

must satisfy the conclusion of Schwartz, so |¢'(0)| = |(g_1)’(0)|gi)1, and g is a rotation.
Therefore, % = ez, Solve for f, and we get!®
fla) = L2 IO
1+ f(0)eiz
&
We’ve got a homework problem to show that all 1-1 onto conformal maps from & > 0 to
Sz > 0 are of the form z — % where ( Z Z ) € SLy(R).

Hyperbolic geometry The points are points, and the lines are circles which meet the
real axis at right angles.

The parallel postulate doesn’t hold for this geometry.

Suppose that z; and z; are two points in H = {z : Sz > 0}, and wy, w, are two other points
in H. Is there a transformation 7" € SLy(R) so that T'z; = w;?

Now, there is a line (looks like a semicircle) connecting z; and z,. Call its endpoints [on the
real line|] 27 and z3. The analogous points for w; are y;. We know that 7" must carry the
line z; onto y;. This condition may be expressed with the cross ratio:

[$1’2’1’Z2,$2] = [ybwl,w2,y2]i1.

6Maybe; I made a typo.
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Of course, both cross ratios must be real. Anyways, this is a necessary condition for T to

exist. It turns out that it’s sufficient, as well. We use the same trick as always; use A = Py

It carries the first line to the imaginary line. Then Az; are hanging out somewhere along
Azl A/’u}2

the imaginary line. If you normalize [what?] correctly, the cross ratio is T = 7, Where

A’z = = This says that ;322 = ,ﬁi = X € R. From this, we conclude that Az; = AA'w;.
Y2 w2 w1

Compose with A1, and we’re done.

Now, we can clean up to show that there’s a line [circle] between any two points. Consider
the circles through a point orthogonal to a given circle. Blah. I prefer a more concrete
approach.
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We're on hyperbolic geometry. Recall that a line is a semicircle sitting on the real axis.
There are a couple notions of parallel lines; ultraparallel and otherwise.

There are various models for the hyperbolic plane. One is the upper half-plane, H; and the
other is the unit disk.

Last time, we showed that if you have a pair of pairs of points, then there’s a transformation
of H carrying one pair to the other <= [z1,21, 29, Z2] = [y1, w1, w2, yo]™'. For pairs of
points on the imaginary axis, this is obvious; use z — A\2z.

A triangle is the interior of any three lines, more or less. It makes sense to talk about the
interior angles; look at the tangents to the circles about the points of intersections.

Theorem If 77 and 75 are two triangles with angles oy, 5;, i, then there’s a transformation
A € Aut(H?) <= (a1,01,7) is some cyclic permutation of (az, B2,72).

(=) Trivial, since A is conformal.

(<) We won’t actually go all the way through with this. This is a little easier with the unit
disk model of the hyperbolic plane. It’s a highly visual proof, and I think I'm going to blow
it off.

In general, the sum of the interior angles of a hyperbolic triangle is strictly less than =7
radians. And indeed, for any o + 3 4 7, one can find a triangle wih those angles, provided
a, 3,y non-negative. Note that it’s possible to have a hyperbolic triangles with a zero interior
angle. In particular, there’s a triangle all of whose angles are zero.

Theorem All triangles with all angles equal to zero are equivalent.

Proof Highly visual; bummer! Start off with one triangle having vertices (0,1, 00). If the
other triangle is (a, b, 00), then the proposition is a triviality; use z — . If there’s no
vertex at oo we have (1, x2, z3). So we just have to map those onto (0, 1, 00). But we already

know that z —» Z=ZL22-%3 g an element of Aut(H?) which carries (21, 22, z3) — (0,1, 00).
Z—I3 To—T1

Back to analysis. Recall Schwartz’s lemma,; if f : D1 — D; with f(0) = 0, then |f(z)] < |z]
and |f'(0)] < 1; and equality holds <= f(z) = €%~

What if f(0) = wy # 07 We can take g(z) = 1f_(fulo_fl(”§) in order to use the Schwartz. This
f(z)=wo

1-wo f(2)

tells us that

< [2].

Now, suppose that f(z9) = wy. Take some Mobius transformation carrying zo to 0, say (—

f:ziooc =. Then g(¢) = f (f:ziooc) satisfies g(0) = wy. The conclusion is that 9(4 < |,
and
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FE5) —wol _ "
- w_Of( 1Cj§%) B
Ultimately, we obtain
f(z) — zZ— 2
1 —wof(2) 1—%5z|

If we have equality at any point, then %{(?) f(z) = ew(f%io)—). If you lean on this for a
—f(z0 202

while, you find out that equality means that you’re working with a Mobius transformation.

1
<
[1=f(2)f(20) 11— ZZI

We'll divide through and get )f (2)=f(z0) Letting zy — 0, we conclude

z—20
f'(2)?
that T < — | N This is true for any zy € D;.
If f:D; — D, is a Mobius transformation, then actually - “; f((z))|| = | E for all z € D;.
@)
Let 7 be a smooth curve in D;. Define the length of the curve by L(v) = f"r %. If
7 = f(7), then we can compute L(7) = [, |1f ﬁ;(!d?:' </ 1|_d|zz||2. This tells us that f is a

contraction, when distance is measured this way. If f € Mob then equality holds. Since we
have a way to measure L(vy) for v any piecewise smooth curve, it follows that we can define
a distance dy2(p, ¢) = infy.qy—p v =¢ L(7)-

Theorem Ifp,q € Dy, then dy=(p, q) = L(C,,), where Cy, is the arc of the circle orthogonal
to the boundary of the unit disk which passes through p and q.

Proof Picture time. We’ve shown that if v is a curve and f € M&b, then L(y) = L(f(v)).
Choose f with f(p) = 0. So it suffices to show that dg2(f(p), f(q)) flf( o 42l Write

1—|2)%"
v = r(t)e?®. There is no loss of generality in assuming that « does not pass [again] through
the origin; for that would just make the length longer.

Now, # = 7€ +ifre?. So |z| = (72 4 62r2)Y/2. Then

. 11/2
1|72 +r20%  dt
L —
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|7|dt
>—=
> z [

where 7(t) is increasing on each of the intervals [t;_1,t;], and [0,1] = UN [ry, ,,7,]. This is
basically just picking out the places where r is monotone.

L) = ), /t 17;_(?62

1
= §1og(

So we now know that dy2 = = log( B ) Otherwise, we can use the transformation z — ==
In general,

Get this from someone else

Note that taking the length to be the infimum sort of builds the triangle inequality right in.

F(2)—F(z0)

< absZ=o_.
TG | S s

— 1—2zp2

Remember our original inequality, namely,

Theorem [Schwarz-Pick] If f : D; — D; holomorphic, then for any pair of points p, ¢ € D,
we have dw2(f(p), f(q)) < dmz(p, q). If we have equality for any pair p # ¢, then f € Aut(Dy).

Define a map from a semicircle onto a circle. Start off by sending 1 to oo and —1 to 0. Try
z+1

—Z. Then the semicircular arc connecting -1 and 1 gets sent to the imaginary axis; we
have a map from the semicircle to the upper right-hand quadrant.
Now we have to get it back to the disk. Using z — 22 we can get it to the upper half-plane.

Finally, z — =t gets us to the circle. Putting it all together, the composite map is
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Neat trick, that. Try it with something else. Let two circles intersect transversely; let’s
play with A — (AN B). Can use a similar method to map that region to a wedge in the
upper-right-hand quadrant; and then map onto the upper half-plane, and then back down
onto the unit circle.

Suppose we wanted to map the complement of the segment [—1,1] to the unit disk. The

trick here is to map the interval onto the half-line, via z :L—} Sends it onto the negative
real axis. Then z — 4/z sends it to the imaginary axis. Finally, use :L—} to get to the unit

circle. All told, the map is
Warning: this may not be quite right.

z—1
. 2+l 1:<
=+
z—1 (€+1)
d+1  ((—1)
(z—1) = a*(z+1
ble;h
1(1+4¢?)
T —§(C+1/C)
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Suppose f is analytic in a disk D. We know, for v closed curve in D, that f"r f(z)dz = 0.

1 d
2mi ¥ z—za'
n(y,a) € Z, and n(v,a1) = n(v,az2) if a; and as are in the same connected component of

C — 4. Finally, n(,a) = 0 if a is in the noncompact [nonbounded?] component of C — .

Consider the funciton f(20 = 2. It’s analytic on C {0}. We know that f =1 S (2)dz = 2mi.
So removing just one point was enough to make Cauchy’s theorem fail. Maybe we can
separate it out; for

We defined a winding number; if v a closed curve and a ¢ =, then n(y,a) =

f(z)dz — f(z)dz =

l2|=1 |2|=e

def

Let C; and C. be the appropriate curves. Define fcl_02 f(z)dz = f Ydz — fC z)dz.

Suppose f analytic in a set Q@ C C with Q open. If {71, --,7,} are curve inQ2 then we can
define the [formal] sum 3 + -+ + 7,. Also, let my; = v + -+ + 71, and—y; = 71 with
the opposite orientation. Remember, a curve is parameterized as v <> {z(¢)|t € [0, 1]}, and

f (= , def f(z(t))z’(t)dt. Then —v <> {2(1 —t)}.
You can take a closed curve and bust it into arcs; write v = vy 4+ -+ +,. Then f"r f(2)dz =
> fw f(z)dz. Suppose 7; = z;(t). Then the sets {z(0)} and {z;(1)} are in 1-1 cor-

respondence <= the 7; piece together to form some closed curve . If {71, -+, 7}
a collection of arcs and {a;} € Z, then a;y1 + -+ + a7, is another formal sum; and

fZam f(Z)dZ - Z a; f%. f(Z)dZ

Definition

e A chain in € is a formal sum of arcs with integer coefficients.

e A cycle is a formal sum of closed curves with integral coefficients.

Fact If pdz + qdy = F,dx + F,dy, then fcpdx + gdy = 0 for any cycle C € Q).
If a & 71 or 72, then n(a, 1 +72) = n(a, ) +n(a,12).

Definition A region Q2 C C is simply connected if C —  is connected.

Incidentally, the standard definition is €2 is simply connected if every closed curve in €2 can
be contracted to a point in €.
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Theorem A [bounded]| set 2 C C is simply connected <= n(y,a) = 0 for every v a
cycle in €2 and a & €.

Proof (=) Easy. If Q is simply connected, then C — (2 has a single component; so if v C
is a cycle, and a € C — €, then a lies in the unbounded component of C — v. As such,
n(a,vy) = 0.

(<) Suppose C — Q C AU B where B is the unbounded component, and A is some other
[nonempty| component of C — 2. A is closed and bounded, and thus compact; B is closed,;
and ANB = (). So there’s a minimum distance between points in A and points in B. Choose
d > 0 so that d(z,y) > d if z € A, y € B. Choose a point a € A, and cover the plane with
squares of side %. Call these @);, and suppose that a is at the center of ). Let J be the set
of indices such that Q; N A # 0. Let v =3, 0Q;."" We'd like to see that f"r & = . &
where 7 C 2.

Suppose an edge of 9Q); is not contained in 2. Then it’s hit by another 9@, in the other
direction, i.e., with opposite orientation.'® Let ¥ be the edges of Q); that do not meet A. By

construction, any @; is disjoint from B. So ¥y C £, and f"r & = . L = > e fan & =
dz  __ :
000 7-a = 271,

Definition We’ll say that a cycle v C € is homologous to zero if n(vy,a) = 0 for all a ¢ €.
Notationally, v ~ 0. We'll say that 73 ~ v if 1 — 72 ~ 0, i.e., n(y1,a) = n(ye,a) for all
aeC—-Q.

Let Q = D(1,0) — {£|n € N}. The complement has infinitely many components. Then
~v1 ~ 2 if and only if infinitely many conditions are satisfied; we have to pick a test a from
each component.

Theorem [Cauchy] If f(z) is analytic in an open set €2, then f"r f(z)dz = 0 for all cycles
v C §2 homologous to zero.

Corollary If Q is simply connected, then f"r f(z)dz = 0 for all cycles .

Proof Let Q be open and bounded and let v be a cyclein Q. We'll let {Q;} be a collection of
squares of side € covering the plane. Now define J. = {j|Q; C Q}. Since 7 is a compact subset

I"The sum is finite by compactness.
18That’s assuming it’s just on an edge; but if it’s a vertex then it’s even more true.
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of Q we can choose € sufficiently small so that v C Ujc;.Q; = Q.. Let T'e = > jes. 0Qj. We
choose a point (y & (2. Then

/1“€Z—C0 Z/a —Co

As before, we can select a subset of > jes. 0Q; which consists of edges that belong only to

2 =0 for { € C— Q. =QF. This isn’t too
bad; for such ¢ € QF there is some Q;, j € J. so that {; € Q;. We know that, for C € O,
f"r = =0. By our choice of €, Q; N~y = 0. This @, lies in a single component of 4¢, and

=0 as well.

Since 7y is a compact subset of {2, it follows that f"r j_—zg =0 forall ( €.

At this point, we have a curve I', ~ Zjeje 0Q); so that if ¢ € I, then f"r zd—ZC = 0. We can
use the Cauchy integal formula as follows:

1 f(z)dzz{f(C) ¢ €Q
2mi Jog, 2 —C 0 C£Q,

for j € J. .

So

Z o = f(¢)

o, Z—C

for ¢ € Q. —UOQ,. And in fact, this integral is equal to

%%Z—C:

for ¢ € Q. Thus, Fubini:

[r0a = [ o[ L%

) 27”/ /f_dc

190), is some approximation to our region which isn’t too complicated.
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&
Now, n(y,{) =0 <= , j_—zg = (0. But we also know that any function can be represented

by its boundary values integrated against a particular kernel. T'. is a sort of polygonal
approximation to 7.

If QF is a finite union A; U --- U A, where A, is the unbounded component, then the
statement that v ~ 0 <— f"r e = 0 for a; a point in A, for each j = 1,---,n—1; a finite
number of conditions. We can show the existence of curves Cy, - - -, Cp_1 so that |, c; zd—ZC =0
if € U@éin, and 27 if € A

If v is a cycle, then . But

27rz 'yz(

d
/ 2=
Y=Y piCs # —¢

for all ¢ € QF; every cycle v can be written v ~ Z 1 pJC The C; are called a homology
basis.

If f is analytic in Q, we define P; = 5= [, f o, z)dz. The {P;} are [called] the periods of f.

Theorem If f is analytic in €2, then f = F’ for some F' analytic in ) <= P; =0 for all
j.

To see this, define F'(z f f(2)dz along any arc; it doesn’t make a difference what path
we pick.
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Last time, we described a class of domains, the simply connected ones; n(y,a) = 0 for all
v C Q and a ¢ . The basic fact is that if f(z) is analytic in a simply connected set, then
J, f(2)dz =0 for any y a cyclein Q. (y ~0in Q if n(y,a) =0 for all a ¢ Q.)

Corollary If f(z) is defined in all of © a simply connected set, and f(z) # 0 for all z € Q,
then there’s a function F(z) analytic in 2 so that e”(?) = f(z). Loosely, log f = F.

Proof Let F(2) = [* LWds. F(z) is clearly analytic wherever it is defined. If 71,7, are
o f(s)

I'(s f(s f(s
two paths from zy to 2z in Q, then f f((s ds — fw f((s ds = fﬂﬂ_w2 f((s)) ds = 0, since v; — 2
is a cycle. Consider

3 —F(z) _ g —F v —F
55¢ f(z) = fle fF'e

So f(z)e_ﬁ(i) is a constant; but we know F(z) = 0. So f(z)e_ﬁ(z) = f(z0). Let F(z) =
log f(20) + F(2). Then ef® = f(2).0

f(a)d

If v is a cycle in €2 homologous to zero, then of course f ! (z 2z =0 for any a € Q) — ~.

We can rewrite this as

S f2) 4.
271 yZ—a

= n(y,a)f(a).

This is a perfectly general Cauchy integral formula.

There S a picture which I really can’t capture; but if + is chosen appropriately we have
= 7= fw 1) dz ; take v to be the boundary of the whole domain. Note that for a non-

zZ—
51mply—connected domaln this isn’t the same as integrating around the outside.

For each connected component of the complement, pick a cycle around it with winding
number one. These cycles form something called a homology basis.

For each [such] curve C; we define the period of f around C;, P, = sz- f (2)2‘1—;. In general,
the P; won’t be zero; it’s zero only if f is analytic on the area bounded by C;.

Question: Is there a function F' defined in 2 so that F' = f? The answer is yes <= all
the periods of f are zero.
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As an example take a square containing the [integer| points 1, 2, 3, 4 and 5. Define f(z) =
25 . Each of the periods is 1. Now, suppose f(z) = ) == . If

j=12—j
f(z) = Z (Z_Z [E=OER then the periods are zero.

Suppose 4 is a measure with support on the components of the complement. Then f({) =
f f %Z’;) is analytic in the complement of the collection of closed, compact sets. Let the

components be A;. Then
/Cif(C)dC _ / //d““
- [ [ i%)du(z’?)
— ori / /A (=),

If z € C;, we get something nonzero; and it’s zero otherwise.
Whatever. It could happen that f(z) is analytic on 0 < |z —a| < §, e.g. f(z) = (fZ)n +
-+ BL 4 fo(z) where f°(2) is analytic in |z — a| < . Let 0 < e < 4. Look at

f(z)dz 1 Bdz
- PnfZ 4 Bidyf(z — a(2)d
/|Z . g 20 ) e (o —a) + -+ Bidz/(z —a) + f*(2)dz
= B

For a function with an isolated singularity at a, we define the residue of f at a to be the
unique complex number 7 so that f(z) = £ = F'(z) for some analytic function. In the

dz  for ¢

example above, the residue is B;. In any case we know that R = f|z_a|:E f(2)55

sufficiently small.

Suppose that f(z) is analytic in a set 2, and + is a cycle homologous to zero. Try to integrate
f"r f(2)dz. Let {a;} denote the singularities of f. Only finitely many of these singularities
can satisfy n(vy,a;) # 0. Let R; denote the residue of f at a;. Let {C;} be small circles
around the a;. If the curve v ~ 0 in Q, then take v — > n(y,a;)C;. This is homologous to
zeroin Q—{ay,---,an}. We need to know that sz- Zd_za = 0 for a in one of these components.

We now that
:L - Zf(z)dz = /Wf(z)dz—zn(%ai)/@ f(2)dz
/f = 2mi Y n(y,a:)R
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That’s the residue theorem;

Theorem If f(z) is analytic in 2 — {a;} where a; have no point of accumulation in €2, then
for any v ~ 0 in €2 we have
f OO
i) R
[ = Yot

where R; is the residue at a;.

Note that f( ) need not have nice poles. For example, f(z) = e'/*. Then f|z|:1 f(z)dz =
> fz| | = (3)"dz = 2mi. [We only get a contribution from the term n = 1.]

How to compute residues

1. If f(z) has a simple pole at z = a, then res,—, f = lim, (2 — a) f(2).

2. If f has a pole of order n at z = a, then we need to compute the first n terms of the
Taylor series of (2 —a)"f(2) = ap + a1(z — a) + -+ + ap-1(z — a)" ' + (2 — a)" f(2).
Thenf() ﬁ)—‘i‘""i‘an—l/(z_a)—i_f(z)‘

Consider f"r (j_(?)dz. with v ~ 0. The integrand is holomorphic except at z = (. So the

211

integral is reszzg(zfc) = f(Q).

A couple of weeks ago, we showed that if f(z) is analytic in Q and n(y,a) = { ( (1) ) for all

a ¢~ with v ~ 0 in Q. Then f L (z dz is the number of zeros of f so that n(v,a) # 0.

1 aeD

ag D
denote v = 0D. Be careful! This implies an orientation. The orientation should be such
that the domain is always on your left as you walk around the chain. If f is analytic in D,
and f does not vanish on 9D, then faD L (z dz is the number of zeros of f in D.

We’ll say that an open D is bounded by a cycle v if n(y,a) = We’ll additionally

Suppose that f(z) has poles at by,---, b, in D of order ny,---,n,. We can choose small
circles C, - - -, Cy, around the points by, - - -, b,. Consider 0D — (Cy+- - - +CY,). This bounds
a domain in which f is analytic. By choosing the circles small enough we can arrange that
all the zeros of f in D lie in this domain. By the argument principle,
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/ f'(z)dz
Y= (C1++Cm) f(Z)Qﬂ-

is the number of zeros of f in D. Can we evaluate [ fT/dz? Sure! f(z) = (21—3—2)" + -+
By f(2). (2= a)"f(2) = Bn+ Bo-1(—a) + - + (2 — a)"f(2) = g(2), with B, # 0. Take

the logarithmic derivative. Then - + fT/ = %/. By choosing C; small enough, we obtain

/ fldz .
o, f2mi -

Furthermore, [, % = N(D) — P(D), the number of zeros minus the number of poles
[in D]. That’s called the argument principle.
= [op J}/ dz =5 [ f(aD %, the number of times f(0D) wraps around 0.

Corollary Suppose that f, g analytic in a connected domain D with D smooth, and that
on 0D, |f(z) — g(2)| < |f(z)| # 0. Then f(z) and g(z) have the same number of zeros in D.

Proof Divide by f; then ’1 — —) < 1 on dD. This implies that faD (gg//} 2‘1—; = (0. But this
integral is Ny(D) — N¢(D).

Example Consider 2* — 6z + 3 = 0. How many roots in |z| < 1, |z| < 2? We have to look
at the boundary.

On |z| = 1, we have 1 = |z|* = |-62+3— (2* =62 +3)] < |-62+3| on |z|] = 1. So
| -6z 43| > 6|z] —3 > 3. So these two polynomials have the same number of roots in
2] < 1, ie., 1.

Now try |z| = 2; then |z|* = 16, and |6z + 3| < 6-2+3 = 15. So we have |2* — 6z + 3 — 2*| <
|24 on |z| = 2. So the two polynomials have the same number of roots, i.e., 4. So there are
three roots of 2* — 6z 4 3 between 1 and 2, and there’s one less than 1.

Suppose f(z) is analytic in D compact, and 9D is smooth and f(z) is real on dD. Then
f(z) is constant.
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Proof Look at a = a + i for 8 > 0; consider f(z) —a. I(f(z) —a) = = on 0D. =
faD }c((j ~ = 0 for all a with Sa > 0; can do the same thing for Sa < 0. Therefore, f(2) # a
for z € D for all a with Sa # 0. So f is real on an open set, and f is constant. <

Define a function F(z) = _11 ’% [For now, pretend p is a polynomial.] This should

certainly be analytic off the interval [-1,1]. Can we extend F' analytically?

Let’s try to extend in a neighborhood of some point. Consider the semicircle Scott’s drawing,
~v. We know that f"r ’% = 2mip(z). Now, v = 71 — 72, where 7; is the piece on [0, 1] and
72 is the arc in a clockwise direction. Then

[ B = [ B0 i)

So we can replace the contour integral by deleting 7; and going on the arc instead. Call the

resulting curve =. Then [, ! pgf_)‘j“” = Iz pf)‘f +27ip(z). These are both analytic inside ;2.
So we can use this to extend Fto z € [—1,1]. We say that F(z) can be extended across the

arc. Gotta show that it’s the same thing you get if you extend from below.

Well, actually, it’s not quite the same. Try computing the difference.
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Continuing from last time, we know that lim, f 13 ’zg 3

given by the principal value. More about that in a bit.

dzx exists; and the limit is actually

Laruent Expansions If f(z) is analytic in |2 —a| < 7, then f(z) = 27 a;(z — a)’.
The series converges absolutely and uniformly in |z —a| < r — € for all € > 0. That’s a
representation theorem for functions analytic on a disk.

Now we’ll work with annular regions; A, = {z|r < |2| < R}. Consider a function
Do b =3 b+ Z;:l_oo b;jz7. Rewrite the second series, and get

i ijj + i b;J
j=0 i

The thing on the right is a power series in 1/z, and converges on & < 7, i.e., 1 < |z].
) |2| ) S r

If f(2) is analytic in A, g, then

L fQ v J©)
flz) =5 - ke C— 2 2mi /mm/ ‘— ~dc

If |z2| < R—¢, then CLz = %( ) = CZJ O(%) Similarly, +* = —%(lf—g/z) =—1 Zjoio(g)J
So we now have
1 ok Ll St L | S
2mi O0Arie,R—c (—=z 2mi I{l=R—e ¢ 2 I¢|=r+e # ()

B 272(2/ % i%/ T+Ez dC)
f(§)d¢

Zyi % — i
/ICIR—E(C) f¢) ¢ ‘ /|Z|R_E CIt12mi

= zjaj
/(c) JFQdC b
z 271 2

In conclusion,
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o HQdC
@ /§| R— CJ+1(27”)

Some stuff with pictures. Let 5 be a cycle running around ~;, and both contained in A, g.

By the Cauchy theorem, f . ! C(fl‘fg = 0 since the curve of integration is homologous to

zero. So f g](fl d( does not depend on s.

If f(2) is analytic in A,g, then the Laurent expansion for f(z) in this domain is unique.
Suppose f(z) = > _a;jz?. Observe that

2T T 0
/ f(peié’)eimé’de _ / Z ajpjeijé’eimé’de
0 0 =

where r < p < R. By uniform convergence[?] we have

21 o0 ™
/ f(peiﬁ)eimﬂde _ Z / ajpjei(m—j)ﬂde
0 —~ Jo

= 27ra_mp_m

A_p = / f(pe®)e™dg
27rz

and the coefficients are uniquely determined.
If f(2) is analytic in A, g, then f(2) = g(z) + h(z) where g(z) is analytic in |z| > r and h(z)
is analytic in |z| < R.

Let’s suppose that f(e®) € L*(S'). Then f(e®®) ~ "% _a,e™.? Define g(z) = S_._ a,2",

h(z) = > anz". Then g(z) is analytic in |2| > 1, and h is analytic in |2| < 1. Note that
% S in 0 2

f(e) ~ % a)ne™ = ||fllz. = (2% lan] )2

If we look at g(re) for r > 1, this is an L? function. l.i.m., ,1g(re?) = Z:; ane™. For

20We have to write ~ instead of =; this means that lim Hf(ew = Zﬁfz_M ane™? e
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—-N-1

Q
~~
=
Cb@
>
N—
|
S
3
Cb@
3
>
IN

—0o0 L2 L2

N L2
<
-1 -1
g(,rezé’) . Z . Z anezné’ <
—00 —00
<
< €

For € given, can choose N large enough [if 7 is close enough to 1]. We’re not proving that
lim_,; g(re®) exists. We've just shown that the limit in the mean exists. Conclusion: If
f = g|s1 + h|s1 where g is holomorphic in |z| > 1 and A is holomorphic in || < 1.

Now, suppose we have f(z) = Z_% + 2%2 It has a pole at one and a pole at zero. It’s
holomorphic in three annular regions; |z| < 1, 1 < |z| < 2j and z < |z|. We'll see that it has
a unique representation in each of these regions.

|VV|e know that 5 = =3 "2, and L5 = =33 °(5)). So f(z) = Y0 (—1 — z7=27 for
z| < 1.

In the second region, 5 = %(1_1%) = 15°5(1/2). So f(2) = >0 5527 + L A

Moving right along....

Definition A function f(z) is meromorphic on an open set  C C if f(z) has only a
countable collection of singularities {a;} C Q with no points of accumulation in €2, and at
worst a pole at each of the a;.

Residue Theorem If f(z) is meromorphic in a set 2, and v C €2 is homologous to zero,
then
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27”/]” dz n(7, aj) resq; f.

Consider [~ - +d§ It might seem that the theorem doesn’t apply, as we’re not integrating

over a finite set. Consider I'g, the semicircle of radius R centered at (0,0), along with the
arc [—R, R]. Then the theorem applies to this;

eiz ’ eiz
/FRl n szZ = 2mi Zres(m).

This contour only encloses the pole at 7. But res,—; 11% = lim,;(z —i)-5 =< So

1/ e? q
_— — dz =
27TZ FRZ2+1

etz
[
|z|=R,0<arg zm I+z

1
2ei

z(Rcos 0+iR sin G)ZReIGdH
/ 1+ R2e%9

/ —RsmGRdH
0.

_>

So

i / e*dz / o0 e dx 1
im — = — = .
R—oo Jp . (12)2mi oo (L4+22)(2mi)  2mi
The conclusion is that
/°° evdr m
ol e

We took an upper contour since, in the upper half-plane, || < 1.

Consider f027r R(cos,sin0)dh, where R(z,y) is a rational function in z and y. The trick

. i0 4 ,—if . i0_—if 241 . 21

is, cos = “F— and sinf = “5-—. So cosf = —=|—1, and sinf = —=|.=1. So
16

df = 95 = & i 2| = 1.
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So we write the real integral as a complex line integral;

o - 1 1,1 1
/o R(cos6,sinf)df = /|Z|1R(§(z+;),2—i(z——)),

= /|Z|1 r(z)dz

= i Z resr(z).

z€|z|<1

As an example, try fO7r a+‘iisa with @ > 1. Note that this is just an integral up to 7; but we

may be able to finesse this. The function cos is symmetric about 7, so this integral is just

1 2T 4p
3 Jo arcoss: S0 go to work as above.

B 1/ dz 1
2 yaizatg(z+0)
1 dz

2 |2|=1 %—i—az—i— %
Now we have to find the roots of the polynomial in the denominator; get
z2=—-a*xva®—1.

We only use the root which lies inside the unit circle, namely, —a + v/a? — 1. That’s the
only place where we have to compute the residue.

/ dz o 1
= 2mires,_
=1 1/2 + az + 2%/2 =metVer ltaz+ 2
1 2 1
§+az+% = 5(224—2@24—1)

= G- (et V@ D)z~ (-a— V@ 1))
= %(—a+\/a27—1)(—a+\/a27—1+a+\/a27—1)

= va?—-1
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In conclusion,

/7r do 1 . 1 T
— P o - .
o atcost 2 a2—1 +aZ-1

Let’s try another; [*° R(x)dx where F(x) is a rational function of z. We’ll try doing the
semicircle trick again. [Assume R(z) has no poles on the real axis.] Furthermore, insist that
the degree of the numerator is at least 2 smaller than that of the denominator. Then

/ R(z)dx = lim R(z)dz
oo R—o0 T

= 2 Z resg,~o R(2).

Use |R(2)| < ﬁ if |z is large enough.

One last example; f_oooo Si%dx. Could try

/ T = / %(e—)dx
oo X e X

= §R/ e—dx.
oo T

Except that this doesn’t converge. Ah, well. We’ll integrate over a funky contour; but we’ll
do that next time.
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We’d had a theorem saying: if f(z) is analytic in 0 < |z| < 1, and lim, o |2f(z)| = 0, then
f(2) actually extends to |z| < 1 as an analytic function.

Suppose f(z) is analytic in 0 < |2| < 1, and the L? norm ff|z|<1 |f(z)|2dxdy < 00. Then
f(2) extends to |z| < 1; it has a removable singularity.

Write the Laurent expansion f(z) =Y ", a,z". We can integrate:

1 2w X
// 2)dedy = / / Z |, 2" rdOdr
p<|z|<1 p JO  _

2m

— / o / Zan@znzmrdedr
0 n,m

= Z |an|2 2 dr

n=—oo ¥ P
2n+2)

- Z'"' 2n + 2

1
+|a_s|" log(~).
n#—1 p

This is a sum of nonnegative terms. If any of the negative coefficients is < 0, the thing will

2 n
lanPA=p*""%) ' ) for 1 < —1; and therefore,

blow up. In other words, if p < 1 then each term St
if |a,| # 0 for all n < 0 then we obtain a contradiction. <

1 F(Q)d¢ 1 f|

2 JI¢=1 (=2  2m

< cf 1ol
< \//C| OPld¢[2r.

Claim that lim, o inf [ |£(¢)[?|d¢|2mr = 0.

f(odg We’ll estimate:
zl=r (-

Remix. Use the representation f(z) =

=

If not, then there’s a § > 0 and a constant ¢ > 0 so that fl(l FO)P|d¢) > € for r < 4. But

this integral is [, _ |f (O)|*rdodr > fj Cdr = Clog(2), a contradiction.

So liminf = 0, and there is a sequence {r,, } with r,, — 0 so that lim,,, f|§|:rn | F(O)dC|r =
0. So
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=

2
< c\/rn /|< QP o0

We conclude that

L[ SO
7(2) /|< L

- 271
&

We were talking about [ #22dy = [ % =S5 em%, which unfortunately doesn’t exist.
So instead, we take

[cloRs R o iz
sin x . Se
/ de = lim dz
0 x r—0,R—00 r x
1 R ei;v e~
= lim— dz
2me J, x
1 " e®dx R g
= lim |— + —dx
2m J_p =z , T

This is part of a contour, I',zg. We know that FTREZ'Z% =0.

Consider

/7r e—RsinGRd9 '
0 R
/ 6_RSin0d9'

0

w/2 )
— / e—RsmGd9
0

Can choose a constant 0 < ¢ < 1 for which sinf > ¢ for 0 < 6 < z

/ e*dz
l2|=R *
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/2
< 2/ e Bl g
0
e—RcG /2 - L
—Re'®  — R
So as — 00, limp_ec f|z|:R,%zzo @ = 0.

Going back to the original integral. It remains to compute

/ e*dz / ™ e ire? do
— —
|z|=r,S2>0 < 0 re’

4 10
. ;. ?
= 3 / e do
0
60

et = 1+ O(r)

i / e’ dn / idf
0 0
= 1.

So fooo Si%dx =20

Suppose f(x) is not integrable at = 0. It is sometimes possible to assign a definite value
to a “regularized integral of f.” Define the Cauchy principal value by

PV. /_llf(:c)d:c :g&/:+/:f(x)dx

whenever this limit exists.

Suppose f(z) is a meromorphic function with a simple pole at z = 0. Then the principal
value P.V. f_l f(z)dz exists, and can use the residue theorem to give a formula. Let I, be a
curve as in Scott’s notes. I'.. = I'. U [—1, —r]U semicircle U[r, 1]. So

/_: f(x)dz + /rf(x)d:cz— N (2)dz — /| . F(2)da

Our assumption is that f(z) = % + f(z) where f is analytic in a neighborhood of zero. Go

compute.
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Bd
/ f(z)dz = / =
|z|=r,32>0 lz|=r,Sz>0 <

The rightmost term dies as » — 0. So

JECL

© logzx
0 1+4z2

Let’s compute

/ f(z)dz.
|z|=r,Je>0

/7r Bire'?do
0 rew
1
z'7rB.P.V./ f(z)dz
-1

imres,—o f — f(z)dz.

rf

dz. All the trickiness comes from determining the logarithm correctly.

Let’s pick the branch with the negative imaginary axis deleted; possible arguments range fro

—m/2 to 3w /2. Let I, be the usual.

/ log 2
Sdz
r,rl+z

. . log 2
i)

/ /logdz
rJ 142

Thus far, we know that [, logzdz

1422
But

(z4+1)(z —1)

2mires,—; loi
10g 67ri/2
2
/4.
K
277'22

7T/r 14 22 r 14 (zem)?
/R log xdx /’" 1ogx+7rz'd

— | —————dx
B r 1422

R R
log dz
d ) —
/r 1+ 22 x—l—m/r 15 22

log zd log zd . R
ogzz+271:20ga:a:+ﬂ_z T Iia;g_i_fcr

Cr 1422 12

log xdx /’" log(xe™)e™dx

log zdz

1+22 "
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log 2

1+22dz

J.
log 2

——dz
/|z| R,3z>R 1+ 22

w2

2
dz
1+ 22

r

1 1
52’7’(’ res m

> 1
/ ogzT dx
0 1+.’L'2

Tre 2% dx with 0 < a < 1; that way, the 1ntegral is absolutely convergent.
Pick a contour which looks like a big c1rcle. The problem is, z~

&
One last integral; [~ %

IN

3

Vlog?r + m2rdf

r

1—1r2
0asr—0.
/ \/log R+7er9
log R

0 as R — oo like 08t

> logx < dr
2 d '
/1—1—3:2 x—i—m/o 122

1 [ dx
5/_00 1422
. 1

§2mresl+z2
1
2i
T2
2 2
2/0o o8 e 1 x2i2

0 1+.’L'2
0.

@ isn’t single-valued all the

way around a circle. So as a domain we’ll use the complement of the positive real axis.

) Rie y=ady
lim
o Jrrie 142
is what we want.
I blinked a bit; may be in a bit of trouble.
: Hie ymody /R x %dx
lim =
o e 1+ 2 , 14z
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Along some contour, lim_j = (ze?™)~® = x~*™>  Some contour or other is being called
IS . Be careful of orientations to keep plus and minus signs accurate.

/ 27 %z
T 1 + z

€
rR

. 27 %z
lim

—2mie ™

R™R

2mires,” | 1+ 2

2mi(—2mie” ™)

/ 2%dz n /R x5, /R %z / 2%z
—_— e —_—
cp L +2 , 14z , 14z c, 1+z
; —d —d “dz
(1—6_27”“)/Rx x+/ z z_/ z

0

0

—2mie T

1— e—27ria
—2ms

e7rioz _ e—7rioz

271

27 sin T
T

sinmTo

[Except that the sign, somewhere, is wrong. The residue should have been positive.|
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Harmonic Functions A twice differentiable function is harmonic if Au = ugzy + uy, = 0;
Au = 40,0zu. If u(w,w) is harmonic and f(2) is holomorphic, then v(z,%) o u(f(2), f(2))
is harmonic. For :v = u,, f’, 0:0,v = uuw f'f'. This is a pretty useful fact.

. 1 - .
The function - is pretty important.

In polar coordinates, A = %8,,7“8,, + r%ag. The df vector field is globally defined. We want
to find solutions Aw = 0 where u = f(r) some function of the radius. Then

%arrarf(r) =0

and

f(r) =a+ Blogr.

The Blogr term is like %, in terms of its utility. 0, logr = 82% log 2z = i

Proposition Suppose that u(z) is a harmonic function in r; < |z| < 73 such that u(e?z) =
u(z). Then u(z) = a + Blog |z|.2

That’s essentially what we just proved.

If u(z) is harmonic, then so is the function ug(z) = u(e?z). Define v(z) = ["

o ug(2)%, then

27
v(ez) = / ua(ei‘f’z)%
0

_ /u(ewwz);i_e
T

27 ) do
_ 0
= /o u(e”z) o

= v(z).

Corollary v(z) = a+ (Blog|z|.

Note that u must be defined in some annular region, or we couldn’t average it over the whole
circle.

Suppose that u(z) is harmonic in D(0,r). Then

21Qur functions are no longer necessarily holomorphic, so they're really functions of z and z.
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27 de
10 o
/o u(e 2)27‘_ = «

u(0) = «a.

We see that harmonic functions satisfy the mean value property, to wit: if u is harmonic in
the disk D(zo,7), then u(zo) = [u(z0 + pe)%. The value at the center is the average of
the values along the circle.

We define a weakly harmonic function as a function u which is continuous and satisfies the
mean value property.

Hmmm. Time passes, and Charlie says that

S J3T ulzo + pe®) L pdp

ulzo) = r3/2 —1}/2

Theorem [Weyl’s lemma] A weakly harmonic function is actually a C* function.

Proof Choose a C* function of compact support ¢ (z) such that [~ (r?)rdr = 5=.22
Define Uc(z) = [ [u(z — re’ w(:—j)e%rdrdﬁ. This is an approximate 1dent1ty. This is

defined for pomts sufficiently far from the boundary. Observe that

u(z) = // u(z — re’ d@i/)(r )rdr
- [Ty

= u(2).

So ue(z) = u(z). We're looking at

//CU(TewW( E —67;6[9}2)rd;d9.

Since u is bounded and v is C*°, it follows that for all € > 0, u.(2) is a smooth function of
z. O

22Equivalently, [ 9(% )% = L.
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Exercise If u(z) is C? and satisfies the mean value property, then Au = 0.

Assume u is harmonic in D;(0) and continuousin D;(0). Then w(0) = £ [ u(re®)dd for all

T
r < 1. And actually, we can by continuity take » = 1. Let

for some |a| < 1. Define v,(2) = u(&%). Then v,(z) is harmonic in D;(0) and continuous

in D;(0); and v,(0) = u(a).

w® = [ el
0 2m
e ta df
B /0 u(l + ei"a)ﬂ
; e’ +a
Let e = 1+ act
g - loa
1 —ae
iewﬁ _ ie'?(1 — ae'®) + §i6i¢(ei¢ —a)
% (1 — Gy
ie(1— |af)
T (1 —ae)
|  1- la)?
do| — |1 —ae|

So the integral is

21 2
— / u(ei¢)| 1-— ’a| d¢
0

1 aei[* 2m
T 1—a)* do
_ ¢
— ule —.

This is alternately called the Poisson or Schwarz integral formula. The kernel P(a,¢) =
1-|af®
o]

it out.

;> is the Poisson kernel. Some people write it by substituting a = re’ and crunching

This formula is to harmonic analysis what the Cauchy integral formula is to complex analysis.
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Since P(a,e!®) > 0 and we have the special case of u = 1, yielding

2 . d
1= / P(a, e“i’)—¢
0 2m

for all a € D1(0). Let M = maxu(e’®);j m = minu(e*?). Then

M — u(e™)
0< /(M —u(e))P(a,e®) = M —u(a).

Vv
o

So u(a) < M unles u = M; a similar argument shows that u(a) > m unless u = m.

This is the maximum principle for harmonic functions: A harmonic function u in a connected
set € satisfies u(a) < max,epq u(2), with equality <= w is constant.

Let P(z,e") = 1_|f|2. Then P(z,e®) = R(%t2). This is the real part of an analytic

|z—eZ et —z
function on |z| < 1; so for € € dD;(0) and z € D1(0), P(z,¢e™) is a harmonic function
of z. This means that if u(e®) is any L' function on 9D:(0), then U(z) = U(re®®) &
[ u(e®)P(z, €)% is harmonic in D;(0).
Theorem [H.A. Schwarz| If u(e?) € L'(S'), then U(z) — u(ei) as — €% if e is a
point of continuity for u(e®).

Proof Suppose that we are given an € > 0 and a 6 > 0. Then there’s an > 0 such that
if |z —e| < nand |e — e| > §j then P(z,¢") < e. Blah. |z —¢| > §—n. On the
other hand, the numerator 1 — |z|2 < 2n; it’s basically the distance to the boundary, which
is necessarily smaller than the distance to any given point on the boundary. So

-2 _ 29

, = < €.
|z — eio> = (0 —n)?

We were able to pick an appropriate 1. Go to work.

U(2) — u(e™)] = ' / u(e)P(z, e")d¢p — / u(ei%)P(z,ei‘f’)dqj'

— | [tuteio) — ute 1P, ey
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For all € there” a § so that |u(e'®) — u(e*?)| < &, because u is continuous at e*0. Then

U(z) —u(e?)| < / ' [u(e®) — u(e'”)|P(z,")d¢ +
|ez¢—ez¢0 |<5

t4l¢_i%|>6hwewj‘—1dewm”}%2’ewvd¢

IN

/07r eP(z,e)dg + [u(e) + u(e')|edg
Since }z — eid’o} <n

U(2) —u(e®)] < e(U+ U]l ey + [u(e?)])

for }z — eid’o} <.

Since € > 0 is arbitrary, it follows that lim,_,.is, U(2) = u(e’®). &

Corollary If u(e') is in C°(S?), then U(z) extends continuously to D;(0) by setting
U(e'?) = u(e®).

The Dirichlet problem on the unit disk is solvable for any continuous function u defined on
dD;(0): given u € C°(S'), find a function U(z) continuous on D;(0) such that

1. U|3D1 = U.

2. AU =0 in D (0).

Let  be a simply connected set. If u € C°(952), is there U in C°(£2) which is harmonic and
agrees with u on the boundary?

Suppose the Dirichlet problem has two solutions U and Us. Well, Uy — U, is a harmonic
function in 2 continuous in €2, so that U; — Us|gq = 0. By the maximum principle, U; —Us <
0. On the other hand, Uy — U; < 0, as well; U; = U,. So if there’s a solution, it must be
unique.

Moving right along. Consider f|z_a|:R log rdf. This integral is not —oo, which is log0. So
the mean value property sort of doesn’t hold. That’s cause log isn’t harmonic on the whole
disk. It’s actually a subharmonic function. Such a function is one which has the property
that fo% u(z + pe?)2 > u(z). From this, one can [easily?] show that a subharmonic
function satisfies the maximum principle. A subharmonic function must be bounded above;
u(z) € [—00,00). log|f(z)| is harmonic only in domains where f is nonvanishing; otherwise,
it’s only subharmonic. [Provided f is holomorphic, of course.]
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Last time we were jamming with the Poisson integral formula. It works in any disk |z| < 7;

2 2 _ |2
U(z) :/ u(rei0)|r oI a9
0

z— rei9|2§.

This defines a harmonic function in D,(0); and if u(re®) is a continuous function then U is

continuous in D, (0) with Ulsp, (o) = w.

If U is harmonic in €2, 2 bounded with reasonable boundary, and U harmonic in {2, continuous
in Q with Ulsq = 0, then U = 0. A harmonic function is determined by its boundary values.

The bounded hypothesis is necessary.

Given a continuous function f on 9 there’s a harmonic function U in w continuous on
such that Ulsq = f.

We draw a picture of €2, separated into Q% and Q~, and 0 = QN Sz = 0. Suppose f(z) is

holomorphic in QT U Q™ U, and that f(z) is real on the real axis. Then f(z) — f(z) = 0;
f(z) = f(2).

Now, f(z) = u + iv; and we're assuming that v vanishes as z — o. This leads us to the

Schwarz reflection principle Let ) be symmetric relative to the real axis, Q = €,
connected, open. Let 0 = QNR. Suppose that v(z) is harmonic in QT = QN {3z > 0}, and
z2eQt

that v vanishes along . Then the function V(z) = { Qi(j()z) O is harmonic in 2.

This is clearly harmonic on €27; we just have to worry about o. Let zy € o; consider

cpt . . ..
D(z9,7) C Q. Let u(zo + 7€) = V(29 + re®). Then u is defined on dD(zp,r), and it is
clearly a continuous function. Define a harmonic function with boundary values u(zq + ret)
on D(zp, ), by setting

2m o T2 —2|* de
Uiz +2) /o W tre )|re739 —z)*2m
Check out the symmetry of the kernel; u is an odd function, so integrating over the top half is
minus integrating the bottom half. U(zo+x) = 0 for zp+z € 0. Consider v(zo+2)—U(z0+2).
These two functions agree on the upper semicircle; and they both die on the real axis. So
v(zo+2) — U(z0 + z) = 0, by the uniqueness of such things. Similarly play with the bottom.
We’ve thus shown that V(2o + z) agrees with a harmonic function in the whole disk. This
establishes that V' (z) actually defines a harmonic function in all of Q. <
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Something about v on the upper semidisk, —v on the bottom; u(z) is the conjugate holo-
morphic function. So d,u = 9yv and —dyu = O,v. Want to show that, since v is odd, u
is even. We'll work on u(z) — u(Z) = Uy(z), which is certainly a harmonic function. We
know that 0,U; = ﬁ(aﬁ — 10,)(Up is a holomorphic function, since 0:0,Uy = 0. Well,
0.Uy = Ou(2) — 0,u(z) = 0, where z = x € R. The other derivative is a little trickier.

O,Up = Oyu(z) — Oyu(Z)
= 0,v(Z) + 0,v(Z

= 0 where z = z.

So 0.Uy = 0, because 0.U is an analytic function that vanishes on a real arc. So
(0.Uo — 0,U0)

We conclude that Uy is constant; but U, vanishes on the real axis, so in fact Uy = 0, and
u(z) = u(z).

Theorem If f(z) is analytic in QF, and S f(z) vanishes on o, then the function F(z) =

O+
{% EEQ_ is analyticin Q = QT UocU Q™.

Proof Write f = u + iv. The basic plan is this.

1. v extends to a harmonic funciton in ).
2. The conjugate function to v, that is, uj also extends to a neighborhood of o.

3. u(z) = u(z).

There’s no great trick to showing that it’s holomorphic in QTUQ ™, since that’s not connected.
What'’s tricky is to patch things together across o.

Oh, shit. Major picture time. If you have a region whose boundary is pieces of circles and
gets mapped to such a region, then you can use a Mobius transformation for each such piece
to flatten the circle into a line. Then you get a similar reflection principle; but instead of
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doing the regular-old-reflection around a line, you reflect it about a circle. If R; is reflection
around the first piece of circle, and Ry that aruond the second, then the Schwarz reflection
principle yields f(R1z) = Ra(f(2)).

We're switching gears now. Say f: € — D,  C C simply connected, f analytic, 1-1, onto
D4(0).

Normal families

Arzela-Ascoli theorem Consider continuous mappings f : 2 — S with S a metric
space, ) C C, that is, C°(Q,S). C°(,S) has a natural topology; that of locally uni-
form convergence. There is an exhaustion of Q by compact subsets {K} so that f, — f
provided that f,|x; — f|k, uniformly for each j. So given € > 0 there’s an N; so that
Sup,e, || fu(2) — f(2)|| < €if n > N;. This is the weakest topology you can put on so that
the limit of analytic functions is analytic.

Equicontinuity: A family of functions F C C°(€,S) is said to be equicontinuous on a set
E C Q if, for every € > 0 there’s a 6 > 0 so that ||[f(z) — f(¢')|| < € for all f € F, all
2,2 € F so that |z — 2/| < §. So all the functions are uniformly continuous, and the same ¢
works for all the functions in the family.

Normal family: F C C°(©,8) is a normal family provided every sequence {f,} has a con-
vergent subsequence. [Locally uniform convergence.] Such a set is sometimes called a pre-
compact set; its closure is certainly compact.

Arzela’s Theorem A family F C C°(€,S) is normal <=

1. F is equicontinuous on every compact subset £ C ).

2. For any z € Q the values {f(z)|f € F} lie in a compact subset of S.

Proof Suppose that F is normal We'll show that S, = {f(2) : f € F} lies in a compact
subset of §. Let {w,} is a sequence of points in S,. For each n we can find f, € F so
that d(f(z),wn) < +. Now, {f,} has a convergent subsequence say {f,,}. Then clearly

lim; o0 f; (2) = im0 wy, exists.
Suppose F is not equicontinuous on some compact subset E' C €2. This implies that there’s

a sequence {f,(z)} and points {z,}, {z,} C E and an € so that d(f.(z,), fn(2),)) > €, but

limy, o0 |20 — 2,,| = 0. We can assume that f,,, = fp, Z;Lj — z*. Now,
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lim d(fn;(zn,), fn; (2,,) = d(f(z"), f(z7))

J—00

a contradiction.

Now, we want to show that F is normal. Let {(,} be a countable dense subset of 2. Let
{fn} be any sequence. f,(¢1) lies in S, a compact set, so we can select a subsequence ny;
so that lim;_. fn,;(¢1) exists.

Now, consider f,,;(¢2). We can select a subsequence ny; of ny; so that lim j — 0o f,,, (¢2)
exists. We proceed inductively to construct subsequences ny;a subsequence of n¢,_1); so that
lim; 00 fr,,; (k) exists.

Cantor realized the following; n;; is a subsequence of ny; for all k when j is large enough.??
Set n; = n;;. We now know that lim;_.o fy, (¢m) exists for every m.

We need to use equicontinuity to show that f, (z) converges for every z. Fix an € > 0. Then
there’s a 0 so that if |z — 2/| < 9, then d(f(2), f(2)) < e forall f € F. So choose &,, so that
|&Em — 2] < §. Then

A(fn; (2); fr (2)) < d(f; (2); F; () + d(Fn; (Gn)s i (Gn)) + A Fri (G i (2))-

So for some J, if j,k > J then this distance d(fn,(2), fn,(2)) < 3e. Since S. is compact,
lim;_,o0 fn,(2) exists for all € Q. And actually, we’ve shown that the limit exists uniformly;
given € > 0, there’s a J such that sup,. d(fn,(2), f*(2)) < 3eif j > J.

By compactness, we can pick M balls B((py,,d) to cover. <&

Z3.e., when j > k.
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Last time we wre talking about {f : Q2 — S} D F; and for now, S = C.

The Arzela-Ascoli theorem says that F is precompact <=

1. F is equicontinuous.

2. {f(2)|f € F} is bounded for each z € Q.

Let’s say we give an €. Then for each point €  there’s a 4, so that if |z — w| < ¢ then
|f(2) — f(w)| < € for all f € F. There’s some number M, = max{|f(z)| : f € F}. In the
set |z —w| < 0, |f(w)] < |f(w) — f(2)|+ |f(2)] < M, + €. So we can replace condition (2)
with the following:

cpt
2’ For every compact set K C () there’s a constant Mk so that |f(z)] < Mg for all
zeK, feF.

Theorem [Montel] If F is a family of analytic functions on w an open subset of C so that
F is locally uniformly bounded, then F is precompact.

f
) — fw)| = / <<>d<'
< /Z!f’(C)HdCI
< Sg;gﬁ)lf’(Z)HZ—WI-
v o F(Q)de

270 Ji¢—pol=r (€ — 2)°

where we assume that | — (| <7 C Q

For |z — (o| < § we have the estimate

cmaxc ¢ | f({)]

If'()] < 4 :

r

So there’s an M such that |f'(z)| < X for all f € F, |z — (| < £.O[7]
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Hurwitz Theorem Suppose {f,(z)} is a sequence of holomorphic functions in 2 (a con-
nected open set) that vanish once in Q, and f = lim,, . f», (2) is the limit of a subsequence
(in the locally uniform topology). Then either

1. f=0.

2. f has at most one zero.

Proof Simple consequence of argument principle.&

cpt
Recall that a domain  C C is simply connected provided n(y,a) = 0 for alla € Q°, " C Q.
If ¢(z) is analytic and nowhere vanishing in 2, then log ¢(z) can bedefined as a holomorphic

function; for [ CCO (2/((;)) dz is well-defined.

If the logarithm of a function, then the n** root, exp % log ¢ is also well-defined for all n.

Riemann Mapping Theorem If (2 C C is simply conected and €2 # C, then there exists
a holomorphic map f: Q@ — D;(0) which is 1-1 and onto.

Suppose there exists such a function f: Q — D;(0), and another one f’. Then fo (f')7! €
Moab, and thus it’s ew%. So if we have one such mapping f, then all others can be written

as f'(z) = e lf_(?f_(j).

The first thing we want to do is normalize; choose f(z9) = 0 in D;(0).2* The proof that
we're working on is due to Koebe.?

Consider the class of maps F such that

—_

. f:Q — Dy(0).
2. fis 1-1.

3. f(z0) =0.

4. f'(z) > 0.

We will show:

24This stops the map from creeping out to the boundary and beyond.
25Tt would be difficult to overestimate the importance of Koebe’s work, but he was consistently able to do
it.
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1. F#0.
2. If m = max{f'(z0) : f € F}, then there’s a function f, € F such that f'(zy) = m.
3. fo:Q — Dy(0) is onto.

Let a € Q°. Well, h(z) = v/z — a is well-defined in €. This is 1-1. Furthermore, /2 —a =
—+y/w — a never occurs; for we square, and get z = w, and then you get garbage.

There exists a p > 0 so that |h(z00 — w| < plies in the image of h(£2). Then |h(2) + h(z0)| < p
for all z € .25 So 2|h(z9)| > p. Define

p W (20)| h(z0) h(z) — h(20)
4 |h(z0)|” I (20) h(2) 4 h(z0)

go(2) =

Actually, go(z) = CZ;ZEEES o h. Then gy € F, and F # ().

Observe that I(f) = f'(z0) is a continuous function on F; for f'(z) = [ (’; (220222—7” where

{|—20| < r} cgc ). The topology on F is that of locally uniform convergence. F is a
precompact set, so there is a sequence {f,} so that lim, ;o [(fn) = supsexI(f). Since F
is normal, {f,} has a convergent subsequence f,, — f locally uniformly. Then f'(zp) =
supsexl(f) > 0. So f # 0. fn,(2)is 1-1, so for every 21 € Q, fn, (2) — fn,(21) is nonvanishing
on © — {z1}. The function f is nonconstant; by Hurwitz, f(z) — f(21) # 0 at any pont of
Q0 — {z1}. Since z; arbitrary, f is 1-1.

Suppose there’s a wg so that f(z) —wp # 0 for all z € Q. Then we can take

- f(z) — wo
FE =1 %)

This function is defined in €2, because 2 is simply connected and 1f (2)= flfo) does not vanish.?”

Define

[F"(20)| F'(2) = F(20)

&= F) 1-F ) F(z)

26]f a number is in the image, then minus that number is not in the image.
27The idea is, you know the function should have a greater-than-zero derivative; by taking the square root
[of a number < 1], you get something bigger than 1.
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G is 1-1, |G| < 1, G(z) = 0. Of course,

F'(20)] 1 + wol
@' (z0) = =Ll ) s )

L= [F(20)[*  24/]wo|
So we’ve constructed a function with a larger derivative at zy, a contradiction; since f was
where the derivative was maximized. The map f is uniquely determined by these properties;
for if there were two, say, fi and f, then fy o f;*(2) : D; — Dj is 1-1 and onto such that
f20 f11(0)0, or fao fi'(2) = €z, and 6 = 0.O

If 00 is a simple closed cuve (3f : S — C with f continuous and 1-1, 9Q = f(S)), then
the mapping function extends coninuously to 0f2.

Proposition If f:Q — D;(0) is a Riemann mapping function, then lim,_,sq |f(2)| = 1.

cpt
Proof Think of it as z, — 0. Given any compact set K C §2, there’s an N so that

_ cpt
2¢Q — K for n > N. For each r < 1let f~(D,) = K, C Q. For any r < 1 there’s an N
such that , € Q — K, for n > N. So liminf, o | f(2,)] > 7; s0 lim, o0 | f(2n)| = 1.28C

Let’s now think of the map f : 2 — D;(0). Suppose 0f) contains a straight line segment [.
We'll assume that, for each p € [, there’s an r > 0 so that D, (r) N9 = [N D,(r); this rules
out a lot of really gross cases, like the dragon’s teeth thing. This is a free boundary arc.

There are two possibilities; either € is just on one side of [, or on both. For now assume
that we’re working with a 1-sided [free] boundary arc. Further assume that [ C R. We know
that as z — [, | f(z)| — 1. Look at log f(z). If we pick a disk around p € [ small enough, f
doesn’t vanish anywhere on the circle around p [at least, the part of it inside Q]; so we can
write ilog f(z) = log|f(z)| + arg f. We can reflect across the arc. So f(z) has an analytic
extenison to the lower half-disk.

The function gives a monotone parameterization of the disk. If z¢ € [, then f'(x) # 0; for if
it were zero, then f(z) = (z — z¢)"h(2) near z = xy. Some geometric argument, and n < 1.
We know that a%log If| = —% arg f. Blah. Oyargf > 0; f|; gives a strictly monotone
parameterization of an arc of S*.

28How do we know that the inverse image of a compact set is compact?

Jeff Achter 83 Charles Epstein



MA 609 25 March 1993

If Q@ C C is simply connected, 92 # (), then there’s a holomorphic map f : Q@ — D;(0) which
is 1-1 and onto.

Simple connectivity is on the Riemann sphere. For example, the map z — (% + z) maps the
unit disk onto the complement of a [real] line segment. So the image {2 can be thought of
as a simply connected subset of the sphere. We say that if 2 C C, Q) is simply connected if
0 # {p}.[?] There’s actually no map f : C — D;(0). It’s plausible that, on the Riemann
sphere, the boundary is connected.

The proof of the Riemann mapping theorem isn’t particularly effective. This is actually a
current site of research.

Today we’ll play with polygonal regions. Suppose we have a finite number of vertices
p1,- -+, Pn- At each vertex we have an [interior| angle, a;m with 0 < «; < 2. We’ll map
it to the upper half plane, but the principle is the same. We know that at the boundary,
the function has an analytic continuation across the arc. We don’t know what happens to a
vertex. Let f : poly — upper half plane. We can translate so that the vertex is at the origin.
Look at the map ¢ + €?¢*. It maps a neighborhood N of the origin to a region with the
proper angle. So we have g(¢) = f(e®z(a1)) : N — H2. Note that Sg(¢) — 0 as S¢ — 0.

The Schwarz reflection principle tells us that g(¢) has an extension as an analytic function to
N~ ={z:z € N}. Cansay Nt = N. Let G({) denote this extension; then G : N* — H?,
G : N~ — H2. Call this condition ().

This implies that G'(x) # 0 on N* NR. Suppose not; so G'(zg) = 0 = G(z) = (2 —
x0)"h(z) + K(x0), where h(z¢) # 0. If n > 1, then (%) cannot hold.
From this, we conclude that G'(x) # 0 on RN N*. This implies that f(z) restricted to P

near the vertex P, gives a strictly monotone map to R. This tells us that at least locally the
vertex P; corresponds to a unique point on 8]1-]11.

Arguing in this fashion we easily show that f has a continuous extension to P UdPand that
f:0P — O]HEr U {oo} in a strictly monotone fashion. As you move around the boundary,
you move in the same direction on the real axis.

Thus far we only know that it’s locally 1-1; gotta show that nothing bad happens, e.g., going
around the disk twice. So compute

£() dz
or J(2) 277

The nervous student can integrate on something within e of the boundary; call it 0P.. This
integral is the number of points where f = 0. On the other hand, it’s the number of times
f(OP) goes around the circle. We know that the number of zeros is one, and so it goes
around exactly once.

Jeff Achter 84 Charles Epstein



MA 609 25 March 1993

By computing the winding number of f|sp, we conclude that f : 0P — OHZ U {oo} is
actually a continuous, 1-1 onto map.

Each vertex of the polygon corresponds to exactly one point on the boundary of Hi So
there’s a sequence of points {x1, -, T} with f(Q;) = x.,, where the @; are the vertices of
the polygon. Let’s normalize so that all of the x;’s are finite.

Let F = f~' : H2 — poly. We know that (F(z))*/% has an analytic extension to the lower
half plane, H?. This means that (F(2))"/* = (z — z;)h;(2) with h;(0) # 0 and hy(z) is
analytic in a neighborhood of x;. If we restrict to the upper half plane — that is, select
a branch — then F(z2) = (z — z;)*h;(2) near x;, where h; is an analytic function. Recap:
locally,

F(z) =(z—x—1)%hi(2) + P,

Differentiate to get rid of some of the localized stuff;

F'(z2) = ailz — )" haz) + (2 — 2)%h; (2)

a—1 d ~ -~
log F'(2)) = = — log|h; —zi)h;
(og P'(2)) = T+ T loglfu(2) + (= = ) (2)
F//
But [log F'(2)] = -
F" o; — 1 i
= C + analytic near to z = z;.
)i ﬁ//
o

where I’ is F' after a double reflection, i.e., F = c1F + co. Why the ratio? You look at the
function, and you have to look at the action of Euclidean motions on the image. You want
to find some quantity which is the same for all those functions; F”/F" is the simplest such
function for a mapping which is independent of which particular domain you map onto if
you look at all possible rotations and translates.

This argument shows that 1;;—/// is actually an analytic function in all of C, where we compute
it in H? using any Schwarz reflection of F. So we know that

" m a — 1
G(z) = — — :
(Z) F .12—.’1,'i

1=
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is actually analytic on C. Subtracting off these terms leaves an analytic function. [We took
out the singular part in every neighborhood.|

Let’s investigate the behavior at co. Let ¢(z) = F(—1) for z € HZ. We've assumed that
x; # oo for all . There’s an ¢ with z; < 0 < x;41. Clearly [?] ¢(0) is some point on 9P, and
¢(2) has an analytic extension by reflection to a neighborhood of zero. Again, ¢'(0) # 0.
We can therefore write

o(z) = )+ Z a;z" where a; # 0

F(z) = —i—Zaz

as 2 — 00. So

C—F” “ Oéil
P Z— T
I=1

is analytic in C, and as such is constant; can eyeball it and see that the constant is zero.

We’ve determined that

" “ Cl{i—l
AN D
d.logF' = 0, Z i — D) log(z — ;).

Since we’re about to integrate log instead of differentiating, we have to pick a branch; restrict
z € H? and choose some branch of the logarithm. Then

log ' = Z(ai —1)log(z — x;) + Ch.
F(z) = GGz =)™
dw

F(z) = O / A e e 2
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This last formula is what we were looking for; it’s called the Schwarz-Christoffel transformation.<

Unfortunately, some choices of x1,- -, z,,, you get mappings on to crossing domains [pen-
tagrams|. Figuring out the relation in general is unsolved; this is the accessory parameter
problem.

Suppose we have F' : D;(0) — Q If (21, 29, 23), (w1, ws, ws) are tuples of points on dD;(0)
then there is a Mobius transformation 7" so that T'z; = w;. It’s clear that T(0D,) = 0Dy,
and the interior goes to the interior.? Now pick three points in the image F(w;). Then
FoT:z~ F(w;). In general, we can specify arbitrarily the image of three distinct points
on the boundary. And in general, this is the best you can do.

So suppose our polygon is a triangle, and we want to send the vertices to 0, 1 and co. Then
the function is

f(z) =a /OZ z0l(1 — 2)P7 4 Gy

where the angles are «, § and . Since this is a triangle, a+ 3+~ = 1. Note that in general,
Z(l — Oéi)ﬂ' = 2.

We can determine the length of the side that the interval [0, 1] is mapped onto. This length,
c, is

[ = [ a2

But I'(z)[(1 —z) =
anda+f+vy=1
1
¢ = —sinmy[(|alphal(B)T'(7)
T

Of course, there’s the law of sines,

a b c

sinma  sinwf  sinmy

Can use this to compute the lengths of the sides in terms of the angles.

29Provided the w;’s and z;’s are in the same cyclic order.
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To date we’ve concentrated on holomorphic functions, the solutions to the equation du = 0.
Now we’ll take a look at Ou = f. Let H(Q2), for Q an open set in C, be the holomorphic
functions on ) with the topology of locally uniform convergence. Let Ok be holomorphic
functions defined on a neighborhood of K. Consider H(D;(0)). We know that any u €
H(D1(0)) has a power series expansion u(z) = » " anz". Let {r,} 1, ie., an increasing
sequence going to 1. Let [lul|, =supp, (o) |u(z)]. Then we can put on a metric

o0

d(u,v) _ Zu—n HU - UHn

~ 1+fu—vf,

And this metric does indeed induce the desired topology.

Given a function v € H(D;(0)) and an ¢ > 0, can we find a polynomial p.(z) so that
d(u,pe) < €?

The answer is yes. Let p.(z) = 3.0 anz". The grungy term in d(u,v) is no bigger than 1.
So |[pe — UHDTNG 0 <€

Another way of phrasing this is, if we fix any compact subset of the unit disk, we can find
a function which uniformly approximates the function to any desired degree of accuracy on
that compact subset.

What if we look at functions in an annular region, H(A,z)? Well, u € H(A,r) is given by
a Laurent series; u(z) = Y > _a,2". Such a function won’t be polynomial approximable.
Frinstance, suppose that for every edpe so that [|u —pe| 4, , , <€ It should be clear that
Pe(z) — wu(z) uniformly on 0D, 25. Now, p. is holomorphic everywhere, including in the
hole in the middle of the annulus. Using, say, the Cauchy integral formula — or even just
the maximum principle — the p. must converge uniformly to u on the whole disk. So u is

holomorphic on the whole disk.

€

So maybe polynomials aren’t the right thing to do. Try ¢.(z) = Zf:r:_ n, an2". Can choose
Ne so that [[u— ¢4 ,,, , <€ Can approximate uniformly in an annulus with so-called
Laurent polynomials. Note that the g. are holomorphic everywhere off the origin.

Partitions of unity Let & = {U;}ic; be an open cover of a set  C C. A partition of
unity relative to 2 is a family of functions {¢; }ic; such that

1. Each ¢; is smooth, nonnegative, compactly supported.

2. supp ¢; C U;.
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3. For any compact set K C , the set I = {i|K Nsupp ¢; # 0} is finite.
item ) ., ¢i(x) = 1 for all z € (2.

Consider the function
el__—lt t<1
t) = .
ro={ ¢ 13

This is infinitely differentiable. The real reason is that e™* — 0 as x — oo faster than
x™ — oo for all n.

We define ¢(z) = f(|z|*). Then ¢(*5*) is smooth and supported in the ball of radius §
centered at x = a, and ¢ > 0.

Let {V}},es cover by a countable collection of balls. We can assume without loss of generality
that at most finitely many of the V}’s intersect a given Vj,. Then we defineamap 7 :J — I so
that V; C U,(;). Let ¢; be a function as above so that ¢; > 0, supp ¢; = V;. Now, ZJEJ oj(x)

is finite by assumption.’® So >7._; ¢;(x) = é(z) > 0 for z € Q. Set x;(z) = d;j((f)). So we

define 9;(s) = ZjET_l(i) x;j(x). And it should be clear that Y 1; = > x; = 1 for all points
in 2. That’s how you construct a partition of unity.

As an application, let X C R"™ be a closed set, U D X an open set. Then there is a function
¢ so that ¢ is smooth, ¢ =1 on X, 7 = 0 on R™ — U. For let our cover of R" be U and
V = R" — X. So there’s a partition of unity {¢v, ¢v} satisfying ¢u(z) + ¢»(z) = 1. For
r e X, ¢U(.’L‘) = 1.

Suppose that X, Xo C 2 closed and disjoint. Let ¢; € C*°(€2). Then there’s a function

cpt
¢ € C*(Q) so that ¢|x, = ¢;. Choose an open set U so that X; C U and Xo NU = 0.
Then choose a partition of unity as above. Let a = ¢y (z). Let ¢ = aps + (1 — a)po.

Let R and R’ be two closed rectangles in C, R’ C 10% Let U be an open set containing R — R/,
and ¢ € C*(U). Then

Qi//a—q_ﬁdxdy = odz — odz.
0z dR OR

Forlet K = R—R' and « a function in C§°(U), such that = 1 on K. Then ¢(z) = a(2)¢(z)
is defined on a neighbohood of R. Then

300nly finitely many of the V,’s cover any particular point.
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22// —dzdy = /aRw(z)dz
= /aRqﬁ(z)dz.

Similarly, 2¢ [ fR/ dxdy = [op ®(2)dz. So then

, ¢ B
22//3—1%/ gdxdy = 8R¢(2)d2_ - o(2)dz

Lemma Let R be a rectangle. Then

J )5

Why is this true? Well,

// dxdy_//rdrd@
r 17| R T

Theorem Let ¢ € Cyoo(C). Then for any number w € C, we have

[ o

Equivalently, the linear operator given by integrating against (—) is the inverse to a—'

Proof

_ [9¢1
//822— N 8zzdxdy

cpt
Choose a large rectangle R so that supp ¢(z +w) C R. Let R, = [—¢, €] X [—¢,€]. Then
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¢ 1 0 ¢(+w)
8 (z—i—w)z = 82(7,2 )in R — R,
22// dxdy _ qﬁ(z—l—w)dz
R—R. 82 z OR. z

dz dz
= - [ w4+ [ o0
= —2mig(w) + O(e).

Let € — 0 using the fact that % is locally integrable to conclude that

0¢ drdy
/ Zr—w To(w).
&
Consider this from a functional point of view. Let D¢ = %. Let Lyp = —1 f Y(z d’Cdy

Clearly, LD = I. Is it also true that DL = I? Maybe. We certainly have a blg kernel but
in infinite-dimensional spaces that’s not necessarily so bad.

Theorem Let ¢ € C°(C), and define u(w) = —% [ [ ¢(<) dg”. Here, ( = £ 4+ in. Then
u € C=(C), and 2 = 4.

Proof We can start by rewriting

I

% integrable = u(z) is continuous.*’ We can look at difference quotients.

u(z—l—h})L—u(z) N //¢<+z— —9(C+2)1 ~dsdy
Use Lebesgue dominated convergence

to pass inside integral
h €

% = ——// (z+Q) dﬁdn

31A continuous fuction of compact support, multiplied by a locally integrable function, then the integral
of this composition is continuous.
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Similarly, one shows that
ou / 0¢p
i z + ()=dE&dn.
oy 877( 03 cadn

We can iterate this process to pick off any partial derivative. So u is a smooth function.

Now, % = f f (z+ () dgd” The previous theorem tells us that this is actually equal
to ¢(z).O
We now see that DL = I the identity.

Let €2 be an open subset of C, K a compact subset of Q. Let a € C§°(Q2) with a =1 on K.
Then for any f € H(2), we have

-t et
for all z € K.

This is a little like the Cauchy integral formula.

a(z)f(z) ze€Q

0 L eC—Q " The result just proved

The proof is all but immediate; let ¢(z) = {
says that for any z € C,

o) = L[ [ Lot dﬁd:d
I

And if z € K then ¢(2) = f(z). ©

Note that we’ve got this nice formula without any winding numbers; we just need some C'*°
function. The integral takes place — if you work things out — somewhere between K and the
boundary of the support of «.

Let (X, |-]]) be a normed, complete vector space; that is, a Banach space. If Y C X is a
closed subspace then [ : Y — C is a bounded linear functional provided that

1. Linearity l(ax + fy) = al(x) + Bl(y) for a, 5 € C, z,y € Y.

2. Boundedness sup, .y ”H(;ﬁ' = ||I]] < o0.

Remember that, in infinite-dimensional spaces, the unit ball isn’t compact. The only reason
Hahn-Banach isn’t a triviality is because of the infinite dimensionality.

There are a number of formulations of the Hahn-Banach theorem. We’ll use this one.
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Hahn-Banach Theorem There is a linear functional L : X — C so that

1. Ly =1.

2. M = el

Corollary Suppose we have Y; C Yy C X, Y; closed. Then Y; =Y, <= every linear
functional { on X which vanishes on Y; also vanishes on Y5.

(=) A triviality.

(«<=) This is tantamount to showing that the Y; can be separated with a linear functional. If
Y1 # Y, then there’'sa v € Y5 — Y. Define 371 =Y+ C{v}. 171 is closed. If y1 +c1v = yo + cov
then y; = y» and ¢; = co. We thus have Y7 3 y1 — y—(c2 — c1)v € Yy — Y3, and everything
is zero. Define [(y + cv) = c. It’s a bounded linear functional defined on Y;. So there’s an
L defined on all of X so that L|i- = [, But L[y; = 0. On the other hand, L[y; # 0, since
L(v) #0. <&
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Last time we were talking about the Hahn-Banach theorem. You can tell whether two
spaces L C M actually agree by looking at whether all linear functionals vanishing on one
vanish on the other. Recall that if Y € X C B a Banach space, then ¥ = X <=
{Ae BT : Ay =0} ={X € BT : A\x = 0}. We'll apply this with K C C compact. C(K) is
the continuous functions on K with the sup-norm topology. We describe the dual with

Riesz-Markov Theorem C(K)* is the set of finite signed Baire measures.

The Baire sets is the smallest o-algebra of sets so that every continuous function is measurable
with respect to that o-algebra. A Baire measure is a measure defined on the Baire sets. A
signed measure can be written as dy = duy — du— where duy are ordinary Baire measures.
And its finite if [} dpy +dp— < 0o. So the theorem says that for every | € C(K)*, there’s a
finite signed Baire measure du so that I(f) = [, f(z)du(z).

Theorem |[Runge| Let Q@ C C be an open set, K C € compact. Then the following
conditions on K and () are equivalent.

1. Every function analytic in a neighborhood of K can be uniformly approximated on K
by functions in H(€2).
2. The open set 2 — K has no component which is relatively compact in 2.

3. For every z € Q — K, there’s a function f € H(Q2) so that |f(z)| > supg | f].

If K C C is compact, we define

Kconvex = N ¢
C|CoK,cconvex

Can also define IA(CVX by

IA(CVX = {z: Raz < supRazVa € C}.
2€EK

This says take all the points in the plane where linear functions may be estimated by their
values on K. We’ve thus obtained an analytic definition of the convex hull. If z € Kcvyx,
then there’s an a so that faz > sup,.x Raz. That’s the connection with the third part of
the Runge theorem.
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Proof Runge’s original theorem can be proved just using power series. But we’re not going
to do that.

(iii) = (i7) . Assume (77) is false. Then — K has a component O so that O C Q is relatively
compact. Therefore, 00 C K.3? We know that supy, | f| = supye | f| for any f € H(Q2). But

suPgo | f| < supy | f]-

(1) = (di). If (7) holds then for every f analytic in a neighborhood of K, we can find sequence
{fn} C H(Q) so that f,, — f uniformly on K. Suppose that there were some O a relatively
compact component of 2 — K. Notice that supg |fr, — fim| < supg | fn — fin|- So f,, converges
to some function F(z) on O as well. If we chosoe f(z) = ﬁ where ¢ € O, thne we can find

a sequence {f,} € H(Q2) so that f,(z) — ﬁ uniformly on K. So if we look at (z — () fn(2)

on O, it’s going to converge again. Since f, — ﬁ on 00, it follows that (z — ()F =1 on
00, and therefore on all of O. A contradiction, sinc ¢ € O.
(13) = (7). We'll use the Hahn-Banach theorem. (ii) = (i) follows if we can show that any

finite signed Baire measure du wih support on K such that [ f(z)du(z) = 0 for all f € H(Q)
also satisfies [ f(z)du(z) =0 for all f € Ox. What we're showing is

H(Q) |k = Oklk.

Define a function ¢(¢) = dC“T(? for all ( € C — K. Some facts are at hand.

1. ¢(¢) is an analytic function for { € C — K. Can prove this with Morera’s theorem,
and interchange the order of operations.

2.(eC-Q=

om0 = rt [ A

and this is zero for all £ > 0. For if { € C — €2, then ﬁkﬂ € H(D).

Note that this implies ¢(¢) = 0 on any component of C — K which intersects C — ).
Since ) — K has no relatively compact components, the closure of every bounded
component of 2 — K must intersect a component of C — 2. For otherwise, the closure
would be compact in Q. Thus, ¢(z) = 0 on every bounded component of C — K.

32Prove this using the fact that O is a mazimal connected set.
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C — K has a unique unbounded component, which may or may not intersect a component
of C — . Since K is compact, if we choose ( sufficiently large then

Choose a function f € Og. There’s an open set W with Q D W D K, so that f is actually
in #(W). Can choose a function ¢ € C§°(£2) so that ¥y =1 on K.

Try out the Cauchy integral formula, which said that

16 =v@fe) = [ [ 10% d“_ dudy

for z € K. So we have

/f(Z)du /——//de C%dd

Since g—% = 0 on a neighborhood of K, it follows from the Fubini theorem that we can

interchange the integrals:

/f(Z)du(Z) = —%//%qﬁ(od d
0

And this is precisely what we were trying to see. <
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The advantage of the Cauchy representation is that it let us get away from the shape of K.

In general, to prove something about functions using a representation formula, you only have
to prove it about the kernel.

(13) = (4i7). Want to show that if Q — K has no relatively compact components, then for
all z € Q — K, there is an analytic function f € H(2) so that |f(2)| > sup,cx |f(2)|. Let
Q — K = UqeaU,, where the U, are components of the complement. z € ) — K = z € Uy,
for some ag. Let L = K U{z}. Then Q — L = Ugya, U U, UU,, — {2}

Let f(z) be zero on a neighborhood of K disjoint from z, and 1 on a neighborhood of z
disjoint from K. f can be approximated on L by functions {f,} C H(£2). We can choose
fn(z) so that supy, |f — fu| < 3. Thus, |f.(2)] > 1 > supg |fa]. ©

Thus endeth the Runge theorem.
We define the holomorphic convex hull as follows. If K C €2 is compact, then

Ra® {zeQ:|f(2) < sup | (w)] Vf € H(D)}.

For example, if €2 is some simply connected domain, and K is a curve, then Kq is just the
interior of the curve.

Choose ¢ € Q°. Then ﬁ € H(9). This means that if z € Kq, then —L- < SUD e f¢ T

l=—(] lw—]"
1 1
sup—— < sup sup ————
cer |2 — (] ¢eQC weK lw — (]
B 1
-~ d(K,Q°)

d(Kq,Q°) = d(K,Q°).
This isn’t just an idle curiosity. We know that |e?*| = e®*. So we can set
Kevx = {z :|e**| < sup |e**|Va € C}.
zeK
We throw on more test functions to define the holomorphic convex hull; thus,
Kq C Kevx.

This tells us that IA(Q is a relatively compact subset of 2. The distance from the boundary
is the same as the distance from the boundary of K.
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Theorem Kq = KU relatively compact components of 2 — K.

Proof Suppose O is a relatively compact subset of 2 — K. Then 00O C K, and thus

|£(2)]

IN

sup |f(2)| for z € O
e}
< sup|f(z)]-

K

If we define K7 = KU relatively compact components of (2 — K, then we’ve thus far shown
K, C Kq.

To go the other way, {2 — K; has no relatlvely Compact components. So part (iii) of the
Runge theorem tells us that K; O Km D KQ So K; = KQ &

Proposition C — IA(Q has finitely many components.

Proof C-— KQ = Wy U352, W; where these are the components, and W, is the non-compact
component. Well,

o W,NW;, =0 for j #k.
e W; C B(0, R) for some large enough R.

o W, ¢ Q for all j. That’s because €2 — IA(Q has no relatively compact components.
J

From 1 and 2, we know that >, [W;| < oo. Let r; = sup,{r : D(a,r) C W fora €
W; —Q}. Now, Y 7rs < 3 |[W;| < oo. If the sum is infinite, hen 7; — 0. So d(Kq,Q°) = 0.

We have a contradiction,since K¢ is a compact subset of 2.

Classical Runge Theorem Let 2 C C be an open set, and let C — Q2 = U,caC,. Here,
C, are components of C — Q. Let A’ C A = {a : Cycompact}. For each o € A’ choose a
point a, € C,. Then any f € H(Q2) can be uniformly approximated on compact subsets of
(2 by rational functions whose poles are contained in {aa}.

Corollary In order for the restriction of polynomials to be dense in H(£2), it is necessary
and sufficient that C — €2 have no compact components.
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Classical Runge theorem 2 C Copen. C—Q = UyeaC,.3 Let A’ = {a|C,, compact} C
A. We choose points a, € C,, o € A’. Then any holomorphic function f € H(£2) can be
approximated locally uniformly on € by rational functions whose poles lie in {aq}acar-

cpt ~
Proof Choose some K C 2 and an € > 0. Let L = Kq, the holomorphic convex hull;

we took K, and threw in the relatively compact components of the complement of K. We
showed last time that C — L has a unique unbounded component U, and finitely many
bounded components Wy, ---, W,. Since {2 — L has no relatively compact components, every
component of {2 — L meets one of the W;. Suppose ¢ & €2 but { € W; for some 7. Then it also
belongs to C,, for some %, and C,, C W;. = C,, is compact. For each 7, choose o; so that
Co, C W;. In each of these sets we have selected a point a,,. Let Qo = C—{a;};=1,..,. Look
at Q—L. Well, C—L = UUWU- - -UW,,; Q=L = UU(W1 —{aq, })U- - -U(W,—{aq, }). None
of these components is relativley compact. Now we choose f € H(2); f is holomorphic on a
neighborhood of L. By the theorem proved last time, given an € > 0, there’s an F' € H()
so that [|F' — f[| ;) < €. At each point, F' has a principle part. At a,,, we have p;(z) =

Z;:_Oo bij(z — aa,)’. Observe that F = h + Y7 p;(z); something holomorphic plus the
N; bi;
Di —21 (z—aa; )7 Lo (1)
We can also choose a finite part of the Taylor series of h(z), call it h°(2), so that
Ih — hOHLOO(L) < € [[Fo— fHLoo(L) < [|Fo - FHLOO(L) + [|[F = fHLoo(L) < (p + 2)e, where
FO=ho+370, 20 &

5=1 (z—aa,)? "

sum of the principal parts. For each 7, can choose an N; so that )

6.34

Corollary The restriction of polynomials to €2 is dense in H(2) <= C — Q has no
compact component.

This isn’t at all how Runge did it. Play with £ = (1 — =<)~%.

Let £ C C be a discrete set; no finite points of accumulation. Let p,(z) be a function
holomorphic in C — {a} for each a € E. Does there exist a function f € H(C — E) so that
f — pa is holomorphic in a neighborhood of a for each a € E?7 Might as well asssume that
the p, is a Laurent series with just negative terms.

More generally, let €2 be an open set in C, £ C Q a discrete subset. p,(z) as above. Does
there exist a function f € H(Q — F) so that f — p, is analytic in a neighborhood of a for
each a € E?

Well, yes.

33note that this need not be a countable index; e.g., the deletion of the Cantor set has an uncountable
number of components.
34Go back and adjust notation for b;;.
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Theorem |[Mittag-Leffler| Yes.

cpt cpt

1. We choose an exhaustion of 2 by compact subsets K; C Kj;;1 C ---. We've shown

~ cpt cpt ~
that Ko C Qif K C . Thus, we can replace the K; by K;o. We’ll denote them
by {K;}. We also assume that £ N9K; = ( for all j.%

2. Define the functions E(z) =D ae K, pa(2). There’s no reason, a priori, to believe that
this sum actually converges.

3. By induction, assume that we’ve found hy,---, hx_1, h; € H(S2), so that if we set
fj = fj + hj then

1f5 = fimallpoe (e, o) < 277,

Look at fk— fr—1 on Kj_1. By the construction of f; and f;, this function is holomorphic
on a neighborhood of Kj; ;. The Runge theorem applies to show that we can find
hi, € H(Q2) so that

Hﬁ—fk—l-i-th <27k,
Loo(Kp_1)

So let ﬁ + hj = fi; this completes the induction.

4. We claim that limg_,, fr exists locally uniformly on 2 — E' and has the desired prop-
erties.

Fix an m. Let j,k > m; consider ||f; — kaLoo(Km). We write this as

7j—1
fi=f = Y _fin—1f
=k
7j—1
15 = Fell ooy < D it = fill by
=k
j—1
< S
=k

< ik

35This is no problem, since F discrete; can wiggle the K a bit.
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since K; D K,,. Finally, we consider

-7, < 2
jlggofj—me =g

exists on K,, and is analytic = lim;_,, f; exists locally uniformly on 2 — E.

We now know that lim;_,. f; = ;”; + g on K,,. Call this thing F'. F' is an analytic
function plus a sum whose principal parts are exactly what we wanted. <

If {pa(2)|a € E} are all rational functions, then so is F'(2).

If we try doing this on C, list {a,}, {p;(2)}. E is a discrete set. We only need locally uniform
convergence. So we can fix some ball, and there are only finitely many FE-points inside it.
Taylor expand p;(z) at the origin. Choose a finite part of the Taylor series ¢;(z) so that

Ip; — &5l o <27
T el
Claim: ) p; — ¢; converges locally uniformly on C — E.

The argument is basically trivial. Fix an R. Then there’s a J so that ||a;|| > 2R if j > J.
Write the sum as

Y opi—bi+ Y pi— ¢

i<J i>J

The point is that we have a Weierstrass M-test sort of argument;

L

< Y Ipi— ol
j=J
L

< ) 27
i=J

if z € D(0, R). By the Weierstrass M-test, the sum converges uniformly on this disk to give
a holomorphic function. <

Recall that we had a partial fractions expansion; F(z) = P(z) + >, P;j( —1a]-)' What we

z

have on our hands is a generalization of this; h(z) + > (p; — &;).
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We'd like to try [for some reason — I spaced out a bit | Y- —; but this doesn’t converge.

But £+ >, 21 P —1—‘% converges. = 1 :(J;_—:) =1+ 2o This converges uniformly,
so we can reorder this;

1 = 1 1 1 1 1 = 2z
;—i_;(z—n—i_ﬁ—i_z—l—n_g)_;—i_zlz?—n?_f(z)'

n=

f(z+1) = f(2). If we could write f(z) = Y>> -, this would be obvious; we’d just be

z—

changing the index of summation. For look at (f(z + 1) — f(2))". Well,

fz) = _[%—Fz(z—ln)?—i_ (z—l—ln)Q]

1
= — Z W obviously periodic.

Observe that f(—z) = —f(2);

2(z+1)
(z+1)2—n?

lm f(z) = [z +1) = Jim Yo )

= 0.

The last step isn’t obvious, but it’s not too bad, either. The integral test fails, but we’re all
adults here.

So we know the following:

1. f is periodic of period 1.
2. f has poles at the integers with residue 1.

TCOSTZ

Consider mcot mz = 7272 This is actually has the right properties. So look at f(z) —
mcot mz; this is analytic in the whole plane. Now, lim, ,1 f(z + iy) is bounded; we only
have to check this on [0, 1]. But 7wcot 7z = ijZ—zﬂ Letting z = = + 4y, shouldn’t be hard
to see that lim, .. |7 cot wz| is bounded. So f(z) — mcot7 is a constant; their difference
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is a bounded holomorphic function on the entire plane. And it’s not hard to see that the
constant is zero; subtract < from both terms; (f(z) — ) — (mcot ™ — 1)|.—o = 0. So we now

have this formula,
1 = 22
mcot e = 2 + Z CRReCY
n=1
Equivalently, we have

o0

1 1 1
trz ==+ =),
7 cot mz z+n:1(z—n+zn)
By differentiating term by term, we have
1. o = 2(—1)(2k — 1)!
(mcotmz z) (0) ngl por
On the other hand,
t [ 2 + 1]
cot mz = | ——— .
i i T e27rzz —1

We can work out the Laurent series for this at the origin.

1 1 1 —1)F 1By 22k 1
___+Z( )" B
e —1 z 2

B (2k)!

Here, By is a Bernoulli number. Substituting everything in, we have

meotmz — — =

i (—1)F1By(2mi) %~ 12mi
z 1

(2k)!

By equating coefficients, we have

o 1 22k—17.‘.2kBk
2 n? — (2k)!

k=1

It was only proved about ten years ago that n—13 is transcendental; nothing is known about
n®. But we have closed forms for even exponents.

_ 1 _ 5 601
By = 55, Bs = ¢, Bs =

1 _ 1 _
Just for purposes of reference, By = ¢, By = 55, Bz = 45 2730

—¢
B ="1.

Jeff Achter 103 Charles Epstein



MA 609 20 April 1993

Whereas the Mittag-Leffler theorem was in a sense additive, today we’ll be looking at the
Weierstrass theorem, which is essentially a multiplicative statement.

For starters, consider the infinite product [~ p,. We have the following conventions.

1. Only finitely many of the p,, are allowed to vanish.

1 p,=0

Pn P #0
We also insist that P # 0; we’ll say that the product diverges if the limit is zero.

2. We say that the product converges if limy H,]:rzl pl, = P exists where p), = {

Proposition If limy_ . Hi:rzl Py exists, then lim,, .o, pp, = 1.

We assume wlog that p, # 0 for all n. Set Py to be the N** partial product, Py = Hf:r:l DPn-
Then limy_,oo P, = P # 0. This says that given n > 0 there’s a M so that |Py — P| <7
if M < N. And actually, we can assume that |Py, — Pn,| < n for N; > M. Suppose that
lim,, 0o P # 1. Then there’s a sequence n; — oo so that |p,, — 1] > € > 0. Consider
PNni—l — PNni} = }PNni_l(pni — 1)} We’ve simply factored out the common factor. But by
assumptions, }PNni_l(pni — 1)} > (|P| —n)(e). Choose n < €, and i very large to derive a
contradiction.

Theorem [[ (1 + a,) converges if and only if ) >, log(1 + a,) conerges, where we take
log to be the principle branch.

Proof IfS, =)} log(1+ay), then P, = €. If lim, o S, exists, then lim P, = "™ £
0.

To go the other way, fix an € < 1. Then there exists an N so that |a,| < € if n > N.
Clearly it suffices to show that limps e [[My (1 + a,) exists = 32 log(1 = a,) exists.
We know that log % P—M = ZlMN log(1+ a;) + 2mihy where hyy € Z. The point is this. When

M 1is quite large the 27rth term can’t change. For if we take 1og o = log Pgﬂjl PiMl =
log —5 M+1 + log A = S M og(1 + an) 4 2mihary. If we compute the difference, we have

log PPT = log(l —|—aM+1) +27i(har41 —har). So that integer had damned well better be zero.
The upshot of this is that for M sufficiently large we have a constant h so that log % =

Z% log(1+ ay) + 2mih. Since limps o Py = P, it follows that limp; oo Z% log(1+ a,) also
exists.
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We know that (1 — €)|a| < [log(1 + an)| < (1 +€)|an| if |an| << 1, since lim, o 26142 = 1.
This gives us a criterion for absolute convergence; [[(1 + a,) converges absolutely <=

>~ |an| converges.3

Consider a,, = (7%”. Then > a, converges — not absolutely, but it converges nonetheless.
What about H;’;l(l—l—%)? Well, it diverges. Consider Zlog(l—i—%). Well, log(1+42) =
z— % ? - % + ---. So The aforementioned sum is » % + £ 4+ O(=35). The first and

last terms converge, but the middle one doesn’t converge. So the product doesn’t converge.

Now consider the sequence %, %, n—il, — /n—il, n—ig7 \/ nL—f—Q ---. This diverges; the harmonic
part diverges, while the other one converges. Let these things be a,. Consider > log(a, +
1) = > am — % + O(a?,). The O(a3)) part converges; so we only worry about the first

2
two terms. We got £ — 5(0)2 + (/2 = J09 4 2y - 4G - ol - 3G/

Then a lot of terms cancel out, and we’re left with -7 4/2(—1)", which converges. Thus,

> log(1+ay) converges, even though > a,, diverges. In the absence of absolute convergence,
there’s no implication one way or the other.

Consider []°,(1 — -5) = 5. How do you prove that? It’s

o n?—1 o (n—1)(n+1)
7];_[2( n2 ) - 7];_[2 n2
H(n—l)(n+1) B _1N+1
st n? B 2 N
How about (1+ 2)(1+2%)(1+2*)(142®%)--- = {&-. This is for |z| < 1. This isn’t too hard

to show; use binary representation.

2 C C an open set. Let E = {z;} be a discrete subset of Q. Let {n;} be a sequence of
integers.

Weierstrass Theorem There is a function f € H(Q2 — E) so that (z — z;)~™ f is holo-
morphic and nonvanishing in a neighborhood of z; for each j.

Proof Choose compact sets K; C €2 so that K; C Kji;, and I/(\J = Kj; in other words,
) — K has no relatively compact components. Finally, we insist that U2, K; = . We
proceed inductively.

36That is, [],~ (1 + |an|) converges.
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Choose €;Lej11 > --- so that > ¢€; < co. For the inductive hypothesis, suppose that we can
find fi,---, f; rational functions with the poles and zeros of f; on K; as specified, and also

functions g1, -+, gj—1 € H(?) so that ) Froedicl — 1) < ¢ on K;_1.37 There’s no real need to

do a base case. Anyway, choose a ratlonal function f so that the poles and zeros of f are as
specified on K 1; f’rinstance, [[’(z—2;)". Then fi = c[[(#—w,)™ for some w, € Q—K;.
J
Since €2 — K has no relatively compact components, I can choose w;, € 1 — K;1; so that

wy, w,, belong to the same component of Q — K. Look at f[[(z —w!) ™ = fj+1. Then

fiv1 z—w, \""
fi _CH(Z—W’> '

We can draw a line from w, to w),. Then log(%=%) is an analytic function on Kj;. Well,
f]+1 g

1og
as not to introduce any new zeros and poles. The obvious choice is to take logarithms and
then exponentiates. The only possible fly in the ointment is that the logarithm of the ratio
might not be single-valued. That’s why we diddle the f;’s a bit. By the Runge theorem

= logc+ ) m, log =2 is analytic in a neighborhood of K. We needed a device so

there is an analytic function g; so that )log fin — g

< ¢; on K;. We're approximating on

fiv1 —g;
e 9 —
fi

a compact subset. If we exponentiate this, we have < CE;j.

This completes the induction step. We have f = lim;_, fri1 HJ e 9 =limy_ o fn H;] N f]fjle_gz
(times some finite bunch of other terms) exists locally uniformly on 2. Note that the term
f]f’“l 9 does not vanish on K. So f has precisely the right zeros and poles on a subset K.

So f has the right ones at all points of E. The limit is of the form fyhx where hy € H(Ky),
and hy(z) # 0 for any z € Ky.

Recall that a rational function is a quotient of polynomials. We’ve defined meromorphic
functions in terms of a local property; it’s analytic in the complement of a discrete set, and
if you look at the Laurent expansion at any point in the discrete set, that expansion has a
finite number of nonzero coefficients of negative powers.

Let’s suppose that £ = {z;} and f € H(Q2 — E), meromorphic on €. This means that
at each z; there’s an integer n; so that (z — z;)™ f(z) is analytic near to z;. Let h be the
holomorphic function in H(2) with zeros of order n; at z;, whose existence follows from
the Weierstrass theorem. Set g(z) = h(z)f(z). Then g(z) € H(2), by construction; it has
removable singularities at each point E, and we removed ’em. Thus we have a representation

37The point is that f7; H;-le edi = f) Hi:l fif“ ed
and poles.

i. Now, the left-hand term clearly has the proper zeros
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f(z) = zgz;, where g,h € H(Q2). This is an analogue of a rational function. We’ve proved

an algebraic statement; the set of meromorphic functions is the fraction field of the ring of
holomorphic functions. Note that this is a global condition, not a local one.

Let © C C be given, and {z;} = E C Q a discrete subset. Let {a;} be a set of complex
numbers. Is there a function f € H(2) so that f(z;) = a;? Let h be a function that vanishes
to order 1 at each point {z;}.%® If f existed, we’d know that f_% should be analytic near
z = zj. We can choose a function g meromorphic in {2 with principle parts the same as %’
at z = z;. So g — 9 is analytic near to z;. Let f = gh.Then g — 3 = % — 5 f(z) = a;.
Thus we see that f = gh solves the problem. We used the Mittag-Leffler theorem to find a
theorem with the right principle part, %

38This function is courtesy the Weierstrass theorem.
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Let Q2 C C open, E C () discrete. For each a € E choose ¢, a meromorphic function defined
near a, and an integer k,. Then there’s a function f € H(Q— E) so that f—a, is O((z—a)*=).
If you look at the Laurent expansion » - a;(z — a)’, then Z’i“m aj(z — a)’ is the same as
the Laurent expansion of ¢, up to the k,’th term. So you can interpret arbitrary pieces of
meromorphic functions, not just values.

Proof Choos h € H({2) so that h vanishes at a to order k,+ 1 [for each a], and is otherwise
nonzero. If g is meromorphic and has principle parts given by ¢—h“ at a € F, then f = gh
solves the interpolation problem. For % =g— ¢—h“ blah. <&

If polynomials p, g relatively prime3® then there are polynomials r and s so that rp+ sq = 1.

For if z € Z,, we want r(2)p(z) = 1; we get degq such constraints. Similarly, s(z)q(z) =1
for z € Z,. Then r(2)p(z) + s(z)q(z) —1 = 0 for z € Z,U,. The degree of the left-hand term
is one less than deg p + degq. But it has degp 4 deg q roots. So it must be identically zero.

Suppose f,g € H(?) and N Z; = 0. Then there are o, § € H(?) so that af + fg = 1.

Proof We need to find 3 so that % is holomorphic. We need to find 5 € H(f2) so that

1
% — [ vanishes to the same order as f at zeros of f. Then £ fﬁ

at Z¢, and # is therefore holomorphic in €2; set this thing equal to a.

has removeable singularities

Suppose €2 is an open set in C and f € H(2). We say that f has an extension across 02
near a point z € 02 if there’s an r > 0 and a function ¢ € H(D(z,7)) so that f = ¢ in
D(z,7)NKQ.

Theorem If Q C C is open, then there’s a function f € H(2) which cannot be extended
across any boundary point

Proof

1. List the rational points in © with each appearing infinitely often {z;}.

2. Choose an exhaustion of €2 by compact subsets K;. Assume without loss of generality
that Kj = Kj.

3. Let r; = d(z;, Q).

397, ={z:p(z) =0}, then Z, N Z, = 0.
P p (1 24q
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For each j choose a point w; € Q@ — K so that d(z;, w;) < r;. Choose a function f € H(2)
which vanishes at w; for all j. f cannot be extended across any boundary point. If a €
irrational and r = d(a,Q°), then D(a,r) contains infinitely many points where f vanishes,

since a appears in the list {z;} infinitely often. = f cannot be extended across any point in
0. &

Weierstrass showed [directly] that Y 2™ can’t be extended across the unit disk.

Now we’ll just review some problems. Suppose f(z) = [f.(2)]™ for some f,(z) € H(2) for
all ny, Show that f(z) = e for some F € H(Q).

e f does not vanish. If it did at some zp, then f,(z) = 0 for all n; So f(z2) = (2 —
20)"(fn(2))™ for every n, and the zero would have infinite order, a contradiction.

e o0 show that F' exists it is necessary and sufficient to show that f v L (Z)) dz &

well-defined in §).

Note that f'/f = nf!/f,. Let v be a closd path in Q. Then f"r fT/dz = nfﬂr j:—:dz
Interpret this geometrically. It’s a winding number, and thus an integral multiple of
2m. So the integral over 7 is < 0o, and thus f"r fT/dz = 0. [If it had been 27}, we would
have had things zooming off to co.]<

F(w) is

We’re doing number 7 on 5. Show [ [, |f |2dxdy < M. The most direct way is to show that
by taking the Taylor expanison at D(z,r), use the square norm to estimate the Coefﬁcients

in the Taylor expansion. If f(2) = 3" an(z — 2)", then [, o 1f (2 )P =300 |an o <

more or less. So each term we have |a,| < ,,Mn Therefore, f is uniformly bounded on a

smaller disk centered at the same point

Alternatively, use f(z) = 27” faD(zo Y= Zd( So integrating wrt r yields fR f(z)dr =

2}” ftr faD(zo’r f(od)gdr Then €|f(2)| < 217r féﬂe 027r ||JZ||£d_rj)0 < CMif |z—2] < R—ce
Rule of thumb; you can use the Cauchy integral formula and integrate, to relate areas to
pointwise estimates. Keep this in mind. Any estimate whatsoever on holomorphic functions
implies pointwise estimates. Estimate it in any reasonable toplogy, and it gives pointwise
esimaes on relatively compact subsets. That’s sort of the basic lesson. For a family to be
normal, it suffices that they be locally uniformly bounded, because then the dervatives are,

and it’s equicontinuous. What we just saw was another example of this principle.

Moving on. Define I(r) }f e®)|do, f € H(D(0, R)). Want to show

1. I(r) is strictly increasing.

2. I(r) is log-convex.
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The idea is this. For almost every r there’s a continuous function ¢r( ) so that |¢,(0)] =1,
and ¢, () f(re”) = | f(re")|. The hint says consider the function F(z) = [; °T b () F (2e)df /2m.
This is analytic. Notice that F(r) = I(r). Also, |[F(z)| < [|¢.(e ’9 ze’(’ }d9/27r = I(]#]).

So this tells us that

1. I(r) is increasing, by the maximum modulus principle. In particular, it says that
I(r) = max,|— |F(z)| < maxp, =g |F(z)| < I(R) if R > r. To get strictly increasing,
use the sharp version of the maximum modulus principle.

2. We want to show its log convex. So show that I(r) < I(r1)*I(rs)'~ where a = g
1

log:—
where r; < r < r3. Now apply the Hadamard three-circle theorem. Let M(r) =
sup,—, [f(2)|. Then I(r) = M(r) < M(r1)*M(rz)'~* by Hadamard. But M(R) <
I(R), so the last term is < I(ry)*I(ry)*~.

For the next problem, study I»(r) = [ | f(re®) } df/2m. Define Fy(r) = [[¢,(e) f(z€)]2d0 /2.
Then Fy(r) = I(r), and we get the same argument more or less.

Theorem If S — R" is immersed locally convex and compact, then it is embedded and
the boundary of a convex region if n > 3.

This is way false in the plane e.g., the pentagram.

Consider (227“ = >0 2"P,(x) the generating series for the Legendre polynomials.

=11 ' Mda We know from the Cauchy integral formula that P, (z )

1 1 2xtvV4z2—4
5 =

2mi J|z|=r (22— 2x2+1)1/2 z”+1
x £1iv/1 — 22 Assume x € [—1,1]. These roots are conjugate points on the unit circle. So
if you integrate around a little circle, you don’t care about them. Now, how shall we define
the square root? We want to define a domain in which sqrt is well-defined. Draw a line
between the two roots; take its image under the map z % The image is a circle; the
complex plane minus that circle is where we’ll define square root. The reason to do this
is to change variables; z = i We then have 2%” f|w| L7 . . In the w variable,

dz for r small enough. The roots of the denominator are

__wh dw
_ 1 2
= G

the square root is defined off the line connecting x + /22 — 1. Factor the denominator.
(& —Z+ 1)V =[L5(1 - 22w+ w?)]"? = (1 — 23w + w?)"/% So our integral becomes

w2 w

L w"dw
2mi ) (1 — 2zw + w?)V/2

Cauchy’s intgral formula says that if we take an integral just around the cut, we get zero.
Now, w" takes the same value on either side of the cut. But the denominator has opposite

Jeff Achter 110 Charles Epstein



MA 609 22 April 1993

sides on either side of the cut; but we’re going up one side and down the other. So as the
contour shrinks down to the cut we get twice the integral along one side. So the integral is

> 2
1 [rrivi-e wdw

2mi eeivicer (1 —2zw + w?)V/?

Paramterize this curve, and get

1 [t 2+io/1—22)iv1 —22da 1. tl z +1av1 — z?)do
= —in )

T ) Blah.}/? o Vi—a?

(n+i)tdt
For the other formula, the trick starts the same; invert. Our goal is P,(cos ) = 2 fo _coslmtgidt
\/2(cost—cosf)

Somewhere along the way, you should observe that the integral is real; the imaginary part
integrates out to zero.

Moving along. If f(z) is analytic in |z| < 1 and has roots {a;}, then if |f(z)| < M then
Yoo, log ﬁ < 0o. How do you do it?

—/ log}f (re’ }d9—10g|f

a; <r

Hypothesis says that this thing is < log M. Note that we’re always working with positive
numbers. Here’s the trick. This is

> log|f(0)

a; <R |

Let r —_>1. Then log WA{?)I > ZQKR log ﬁ, and thus log I(%)I > limp_y; Zlai|<R log ﬁ We're
using lim,_,; [ log } f (re’(’)}dﬁ < 0o. This has something to do with Nevanlinna theory.
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