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In these notes we present the pseudodifferential approach to elliptic boundary value prob-
lems for the Laplace operator acting on functions on a smoothly bounded compact domain in a
compact manifold. This is an elaboration of the classical method of multiple layer potentials.
After a short discussion of this method we consider the theory of homogeneous distributions
on R™. This is useful in our subsequent discussion of boundary value problems and provides an
interesting concrete complement to the rather abstract general theory developed earlier in the
course. We then turn to boundary value problems. We analyze the smoothness and boundary
regularity of multiple layer potentials for the Laplace equation. This allows the reduction of a
boundary value problem to the solvability of a system of pseudodifferential equations on the
boundary itself. After considering several different boundary value problems for smooth data
we establish the Sobolev regularity properties of the single and double layer potentials. The
estimates allow us to extend the existence results to data with finite differentiability and also
establish the standard “elliptic estimates” for the solutions of elliptic boundary value prob-
lems for the Laplacian. This treatment is culled from material in L. Hormander, The analysis
of Linear Partial Differential Operators, I1I, M. Taylor, Partial Differential Equations, II and
Introduction to the theory of Linear Partial Differential Equations by J. Chazarain and A.
Piriou. I would finally like to thank Dara Cosgrove for the remarkable typing job.

0. PREFACE

A fundamental class of problems in partial differential equations is elliptic boundary value
problems. The classical problems of this type are the Dirichlet and Neumann problems for
the Laplace equation on a smoothly bounded domain, 2 C R™ :

Dirichlet Problem

—_ Au = in Q
Find a function v € C?(2) N C°(Q) such that (D) { u=0 -

ulpo = f

Neumann Problem
. . 2 1/ AU = 0 in Q
Find a function u € C*(Q) N C*(Q) such that (N)

ou __
o — 9

Here % is the outward normal derivative along b2 . We would like conditions under which
(D) and (N) are solvable and relate the regularity of the solution « to the data f or g respec-
tively. A starting point for the analysis of this problem is Green’s formula: We let G(z,y)
denote the fundamental solutions of the Laplace equation in R™,

Gl y) cologlz—yl n=2
z,y) =
Y enlz—yPm n>2
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A simple integration by parts shows that

[ (@030 - 32 @.0uw) do) +ula) ze9
(0.1) / G(z,y)Audy = b
? | (G5 - 5 @ puly) doy) ze’

From this formula several things are apparent

1) We can always reduce the inhomogeneous problem, Au = f to a homogeneous problem

by letting w=v+w where
Av=0
w = /QG(m,y)f(y)dy

2) Suppose that we can show that for f, g € C°°(b€2) the functions which are defind, a priori
in bQ° by

Sf(z) = /b Gla)fw)in(y)

Do(e) = [ 2 v)atw)iots)

have extensions as elements of C°(2) and C>°(QY), respectively. Then Sf |0+, Dg | pa+
are given by linear operators, ST f, D¥g. Let ug and u; denote u|pn and % |- If uis a
harmonic function in €2 then Green’s formula implies that

ug = =STuy + DV ug
So
(0.2) Stuy = (DT — DNug
If we could show that ST were an invertible operator then (0.2) would imply that
(0.3) w = (ST DT = g
Using (0.3) we can solve the Dirichlet problem.
Welet g=(SY) (Dt —I)f, and

u=Df —-S8g
So That uo = D f — ST(SH) " '(DT — I)f
=f

as desired.
If Sf and Dg have smooth extensions it would also follow that

0, Sf =571

9,Dg =Dig
so that
uy = D ug — S uy
so if D} is invertible then
wo = (D) (1 + 81w

and we could therefore solve the Neumann problem.
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In the next few sections we will show that Sf and Df have the smooth extension property
posited above. This is established by using the Fourier representation of the Green’s function

and techniques from the theory of pseudodifferential operators. In fact we show that, for each
k € Ny there are ¢DOs D, S& € U*(bQ2) such that

OF)*Sf=SEf
(OF)*Df =Dif f .

With this information we can give sufficient conditions for a more general boundary value
problem:

A =
(0.4) u=0
boug +biuy =g b; € \I/*(bQ)

to be Fredholm problems. This will be the case if the pseudodifferential system

(D+ — I)UQ — S+U1 _ 0

bouo + biug \y
is elliptic. In this case (0.4) is solvable for g satisfying finitely many linear conditions. We also
establish that the solution u depends on the boundary data in a specific way: for example in

the Dirichlet problem
1

Ul zrs(0) < Cs HfHHs_%(bQ) s>1
and for the Neumann problem
1Ol < Csllgl o3y 5> 1

In fact as it requires no additional effort we establish these results for the A, defined by a
metric g on a smooth, compact manifold with boundary.

1. INTRODUCTION

Let M be a smooth compact manifold with nonempty boundary. Choose a smooth Rie-
mannian metric g on M. This defines a second order elliptic operator, A4 acting on C*°(M).
If the metric is given in local coordinates, (x1,...,zy) by

d82 = Zgijdmidmj
then

A,f(a) = % S 0wigJgou, f(x)

where ¢*/ is the matrix inverse to g;; and g = det g;;. The symbol of this operator is easily
seen to be

a2(Ag)(z,€) = |5

and therefore the operator is elliptic. In this chapter we consider boundary value problems
of the form:

Azu=0
(11) ! du

bou|pn + 015 o = g -
Here b; € ¥*(bM) are pseudodifferential operators and % is the outer normal derivative of
u along bM. Without loss of generality we can assume that M is a domain in a compact
manifold, M, and that the metric g has a smooth extension to a metric on g.

In a previous section we analyzed Ag on M and showed that there is an operator Gy €
U~2(M) such that

A§G0 = GQA§ =71 — o
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where mo(f) = /M\deg.

Choose a point p € M \M and define: the function G on M x M by
G(z,y) = Go(z,y) — [Go(p, y) + Go(x,p)].

A simple calculation shows that

1 1
Asz = AgG(.II,y) = 6m — V - [(Sp - V]
where V = Vol(]\/l\ ). Thus if we select a function u € C°(M) then
(Gg, Agu) = u(x) .

=0, — b

For each = € M, G,(y) is an integrable function in C°°(M\{z}). Choosing 1 € C(U,)
such that ¢(z) = 1 and U, is a neighborhood of z with U, CC M we see that

(Gz, Dgu) = (Gz, Agopu) + (Gz, Ag(1 — ¢)u)
—u(@)+ [ GL)Ay(1 - dudy.

We can integrate by parts in the second term to obtain

— u(z) + /b (Gl 2~ 0., Gu0)uly) do(y).

If Ayf =0 then we obtain Green’s formula:

(1.2 u@) = [ (0,Galu)uts) ~ Gal)32) doty)
For (x,y) in a neighborhood of M x M, G(x,y) is the Schwarz kernel of a pseudodifferential
operator of order -2 which differs from Go(x,y) by a smooth kernel, thus ¢(G) = o(Gp).

We use formula (1.2) to reduce the solution of the boundary value problem, (1.1) to the
solution of a pseudodifferential equation on bM. At the same time we obtain conditions on
bo, by that imply that the solution to (1.1) satisfies standard “elliptic estimates”: If s € R
greater than % then

lullreary < Qs oatl et gy + 1320 o2 oary) -

For f € C°°(bM) we define two operators:
S = [ Gawfwisw) —zeu

this is called a single layer potential;

Df) = [ 0,6l wiat)
this is called a double layer potential.
A harmonic function satisfies
u(z) = Dug(z) — Sur(x)

where ug = u|ppr and u; = % |bas - Suppose we show that

Su(x) = xEIgIM Su(z)

Du(z) = xH?M Du(z)
exist. Then for a harmonic function

ug = DUQ —Su1 .
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If we could show, for example, that
(I — D)UQ = —Su1

can be solved, either for ug or u; then we could substitute into the boundary condition to
obtain:

(13) (bl — bQ(I — D)_lS)ul =4g.

Thus a reasonable condition to impose on by, by is that by — bo(I — D)~1S is an elliptic
operator. Then a solution to (1.3) exists for g satisfying finitely many linear conditions.

We will in fact show that for f € C>°(bM) Sf, Df have extensions as elements of C°° (M)
and show that
OFSf v = A" f, AR e TF1(bM)
8;Dflva = B f, BF € U*(bM) .

Computing the principal symbols of these operators will allow us to analyze (1.1). Finally
we prove estimates

1l any < Call Il .-
1D ary < Gl

In addition to the general calculus of pseudodifferential operators on manifolds which we have
already developed, we require some specialized tools to carry through this analysis: the theory
of homogeneous distributors. In the next section we present such a theory. After that we
analyze the single and double layer potentials and apply this analysis to study (1.1). In the
final section we prove the estimates given in (1.4).

3 (bM) R
S_L(bM) S € K.
H 2

(1.4)

2. HOMOGENEOUS DISTRIBUTIONS

Suppose that some m € R, ¢ € C°(R™) satisfies:
dp(Ax) =A""o(x) A€ (0,00),
we say that ¢ is homogeneous of degree m. Such a function certainly defines an element of
(Ce2(R™\{0}))" by

L =ow= [ v

If we define 9 (x) = A" (Az) then a simple change of variables shows that

This is the weak formula of homogeneity. If £ € C~>°(R™ \ {0}) satisfies (2.1) then we say
that ¢ is homogeneous of degree m. In this section we consider the problem of extending £,
as a distribution in S’(R™) and the extent to which the extended distribution can be made
homogeneous.

We begin with the one dimensional case. For s € C we define

eslogz  if >0
2.2 T
(2:2) T+ {0 ifz<0.

Here log z is defined so that logz € R if z > 0. If R(s) > —1 and ¢ € S(R) then

nw = [ st = [ ot



6 CHARLES EPSTEIN

converges absolutely and evidently defines a homogeneous distribution of degree s. In fact
I3 (¢) is an analytic function of s in R(s) > —1. If R(s) > 0 we can integrate by parts k-times

to obtain
s+k

23) 1w - [ ot

From (2.3) it follows that I (¢) has a meromorphic extension to the entire complex plane
with simple poles at the negatlve integers, —

T _ 1)k, lk—1]
81_1}{1 (S+k)]$+k( k 1/ 1/’ _1d :( lgkw_ 1)' (0)

For s ¢ —N it is easy to verify that
Y= I3 (Y)
defines a distribution which is homogeneous of degree s. Note that for R(s) > 0

(£13)(¥) = I (—y)

= —/Oo sy (x)dx
0
zs/ o5 Y (z)da
0
=sI57'(y) .
Thus
(2.4) (L1)(W) =sIT () for R(s) >0

as both sides of (2.4) are meromorphic the equation extends to s ¢ —Nj. Note also that for

R(s) > —1:
(@I5)(¢) = IL(zy)

= / xirpdr
0

_ /0 et yde
1)

Therefore as above
eIt =I5 s¢ -N.

Finally observe that for ¢ € C°(R\{0})
I (¥) z/ z*Y(x)de s¢ —N
0

so I3 is an extension of z° as a homogeneous distribution in S’(R). We are left with the
cases: s € —N. We define an extension by subtracting the pole:

C1\k o (E—1)
N R e

= lim
s——k 0

AT C)) (=D*yH ()
((s—l—l) s +k)+(s+k)(k:—1)!>dm

2.5 = “a ))d UG D(0
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the sum is absent if £ = 1.

Let us investigate the homogeneity of I _:k . A calculation using the previous formula shows
that:

(1t

T2 () = N | I2H W) = gy log ol 1(0)

In other words, I_;k is not homogeneous of degree (—k) as

k=1
(2.6 ) = M IH0) = X oA 0 0).

In fact there is no homogeneous extension of m;k, any other extension, ¢ would differ from
I_;k by a distribution supported at zero, hence

=174+ ol
J

But §() is homogeneous of degree —(i + j) and therefore no such sum can ever remove the
log term in (2.6). Observe that

(m/))(j) = ) = gyll 4 jylbi—1l
Using this relation in the definition of I_;k we easily show that
al P =17"
and by induction
(2.7) IR =17k
Finally we obtain that
Lk = -1

—1)k—1y(k)
(2.8) = kIR (y) — D H0)

k
The failure of I_;k to be homogeneous is reflected in the failure of the Euler equation
20, 17" # —kITF.
We define another homogeneous distribution on R by setting
0 x>0

= .
- |z|* <0

As (z° %) = (x5, 9) where ¥)(z) = 1h(—z) the extension of this family follows in a straight
forward way from our analysis of 7. Every homogeneous function of degree s on R\{0} is
of the form

p=a_x° +ayzi,arcC.

So we see that if s ¢ —N then ¢ has a unique extension as a homogeneous distribution in

S'(R). If s = —k then ¢ may or may not have a homogeneous extension:
~ —1)k=1 — Xk log AylF=1(0 -
<w7w>\> —A k<¢7w> = ( ) (k - lg)' w ( )(a—i- + (_l)k 1(1—) .

So ¢ has an extension as a homogeneous distribution iff ay = (—1)¥~la_ = 0. For example

the functions 2% have extensions as homogeneous distributions. We denote these by z=*. If
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k =1 then
e () =27 () — 27" (¥)

= [ ogrvrys - [ OOO log(~)4 (x)d

—€

:—11m[ log 2 (z)da + / log(—m)w’(m)dm]

:_hm[logw L w_oodﬂﬂ-log( i) [ - [ ]
P [~ M8 timuo) - v(-o)loxe
e[ e

So
e =py. [ 1D

—0o0

(o)
dx = —/ log | 2|y’ (x)dx
—o0
which implies that
Oz loglz| =21

Another interesting and important family of homogeneous distributions arise from a slightly
different regularization of x°:

((z £40)°, —hm/m:l:ze

It turns out that the functions T = ((x + i€)*, 1)) are entire functions of s if ¢ > 0 with
uniform limits as € | 0. ¥F is clearly uniformly analytic in Re s > —1. We use Taylor’s
formula to obtain:

o

where 7y (z . Clearly |r(x)| = o(|z|*) and therefore all terms but the

third integral are analytlc in Res > —k. Let C* = {|z| = 1; £Imz > 0}. By Cauchy’s
theorem:

1
/ (z +ie)*zide = / (z +i€)* 2 dz
-1 ct

These are uniformly entire functions of s as € | 0. This shows that (z £ ¢0)® is well defined
for all s. For Res > —1  ((z £140)%,¢¥») = A *((x £40)*,9). As both sides are entire, this
identity persists for all s and therefore (x & i0)® is a homogeneous distribution of degree s.
Using Cauchy’s theorem we see that

k+1 (s
x+40)* — (z —i0)~ = wm(o)zj 27 *dz
(@i = @iy e = [ ()t

=
o ET(0)
= (2mi) 1)

Before proceeding to the n-dimensional case, we compute the Fourier transforms of these
distributions. First we make a general observation about the Fourier transform of a homoge-
neous distribution:
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Suppose ¢ € §'(R™) satisfies:

<¢7 1/)>\> =" <¢7 1/’)
then

<$7 1/)>\> = <¢7 12)\)\>
A simple calculation shows that 12)}\ &) = 12)\(5 /A) = )\”% (€). Thus

(@, 92) = Ao, P1/n) = A" (9, 9)
Hence the Fourier transform is homogeneous of order —(n + s).

We now compute the Fourier transforms of 2% ,s ¢ —N. For Re s > —1 we see that

[e )
x% (§) = lim e e Tt dy
el0 Jo

o0
= lim e @(eFi8) 5 gy
el0 Jo

We compute this using the Cauchy integral formula

arg z(e+ i€) = 0, defines the contour, Ff:‘g

/ e~ eti8) s g, —
re,

It is elementary to show that along {|z| = R} ﬂl“f:’g | e=#(¢+i€) |< e=<F and therefore as
R + 0o we obtain:

/oo e—ac(e—i—ii)msdm — /oo e—ac( Y : )s dy
0 0 e+’ (e+1f)
I'(s+1)
(e +ig)
[(s 4 1)et =+
T (et
—mi(s+1)

Thus ﬁ({) _ F(S(z-_l);))s:l for Re s > —1. These two functions are meromorphic in

C and so must coincide for s ¢ —N. We compute

— —

1~
() = limat ™ (&) = Zdo(€)

—mie 1
=limI'(e)e > (£ —i0)° — -

el0
T(et1)et ¢ —1
(2.9) lim (et et ¢ for £ >0
_ €l0 €
D(e+1)e = |¢]c — 1
Ji L€ De = €] for £ < 0
€l0 €

e
=log €] + 5 sen E+T'(1).

—

To compute m;k one simply uses (2.8). From the definition of 27! and (2.9) we obtain

—

£ 1(€) = i sgn ¢
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As Oz F = —kz=*+D)  we see that
R (€) = KI(=1)" (i) i sgn &
= mik!(—i)* "1 Lsgn €.

We now consider this extension problem in dimensions greater than 1. Suppose that
¢ € C*(R™\{0}) and for some m € C satisfies:

(2.10) d(Az) = Ao (x) for A € Ry

We want to extend ¢ to R™ as a distribution which satisfies (2.10) in so far as this is possible.
For ¢ € C°(R™\{0}) we have the relation:

60) = [ Sl)is(o)is
= [ e) [ vt dote)

If we interpret

/0 )t = )

= R (¢)(w)
then we can use the one dimensional results to obtain the desired extension:
(211) @)= [ SR, e SE)

As rPt71 € 8'(R) and w — (rw) is a smooth mapping of S"~! into S(R) it is clear that
Ry (1) (w) € C(S"1) so that (¢,1)) is well defined even if ¢ s € C~=°°(S"71) . It defines
a distribution which is homogeneous so long as m € {—n,—n —1,...}.

This extension process has several nice properties:
1) If P(x) is a homogeneous polynomial then

(P(z)¢) = P(x)¢ forallme C.
2)Ifm¢ {1—n,—n,...} then
(0z:0) = Oz i=1,....n
Both statements are immediate consequences of (2.11).
If m = —(n + k) then ¢ is not always a homogeneous distribution:
with 1(Az) = A"p(\x)
@2) = [ 60) R () )dr(w)

_1\k
(2.12) = [ R )) - 10sx S0k ur)

Thus we see that

<$7 1/)>\> - )\k—i—n <$7 1/’) =

0} do(w) .

r=

— Akt log A\(—1)k
k!

> ap(0)M(¢w™)

|e|=k
where
M(pw®) = /| | d(w)wdo(w) .
w|=1
The log-term vanishes if and only if
M(pw*) =0  Va with |a|=k.
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As in the one dimensional case, if the extension (Z is not homogeneous then it is not possible
to find a homogeneous extension. This is because any other extension differs from ¢ by a
distribution supported at 0 and therefore a finite sum of the form > c,0%dy . As this is
itself a sum of homogeneous distributions no such sum can suffice to remove the log-term in
(2.12). Note that if ¢(—z) = —(—1)*¢(z) then S(w*¢) = 0V a with |a| = k . This condition
is satisfied by ratios of homogeneous polynomials in odd dimensions.

The Fourier transforms of homogeneous distributions are again homogeneous distributions:
<$7 1/)>\> = <$7 12)\)\>
¢, Y1)
= A~ (i) (g @
— A Gy

If $ is homogeneous of degree m then ¢ is homogeneous of degree —(m+n). fm=—(k+n)

and (Z is not homogeneous then (Z also transforms with a log-term:

=~ 2 *1lo
(2.13) (G0 = 274Gy - 2B DY S 60 @, )

From (2.13) we easily obtain that if ¢ is homogeneous of degree —(k + n) then

¢ = 61+ log|a|p(x)
where (Zl is homogeneous of degree k and p(z) is a homogeneous polynomial of degree k.

In all cases it is easy to show that if ¢ € C°°(R™\{0}) is homogeneous of degree m then

~

fg R\ {0} is smooth as well. To prove this we select a function x € C°(R™) so that x =1 in
"\{0
a neighborhood of 0. Then
o=x0+[(1-x)d".

The first term is analytic as )gg is a compactly supported distribution. Using the oscillatory
integral definition of [(1 — x)¢$]" we obtain that

~ e~
(2.14) (1= X)) (€) = /A"[(l ~ 9@ T de

Any derivatives applied to 1 — x again leads to the Fourier transform of a function in C°(R™),
the only term which is therefore not obviously smooth in R™\{0} is:

1 iz
|§|—2k /(1 —X)(AFp)e @ dx
Since A*¢ is homogeneous of order m — 2k. For any fixed j there is a k so that this expression

is absolutely convergent along with all derivatives of order j. This completes the proof.

We close with a simple application of these ideas:

Let P(D) = Z aoD® be an elliptic operator, that is

|a|=m
PE)= ) aat”
|a|=m

is nonvanishing in R™\{0}. There exists a fundamental solution E of the form

E(x,y) = eo(r —y) +log |z — ylp(z — y)
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where eg is homogeneous of degree m —n and p is a polynomial of degree m — n (identically

zero if m < n .) To see this we observe that if E=_

(€
then

~

~

POE= (PO 5g5)

1
1

This implies that P(D)E = dg .

3. ELLIPTIC BOUNDARY VALUE PROBLEM FOR THE LAPLACIAN

3.1. Multiple layer potentials. As it introduces no additional complexity we consider the
somewhat more general problem of a boundary value problem for the Laplace, Ay, of a metric,
g on a compact domain, {2 with smooth boundary in a compact manifold, X. In section 2
we showed that there is a fundamental solution defined on a neighborhood, €21, of Q. This is
represented by a function @ € C*°(Q; x Q;\A) which satisfies:

(3.1) AYQ(z,y) = d2(y) z €M

in the distribution sense, that is
[a@uaswave) =s@)  voecr@).,
Q is the Schwartz kernel of a DO in ¥~2(;), its principal symbol, o_»(q) satisfies:

(3.2) 7 5(Q)(x,€) = ¢, -
For f € C*° (b)) we define:

Sf(x) = /b Q@) f()doty)

and

Dir) = [ ¥

Q2 8l/y

(z,y)f(y)do(y)

Here do is the surface measure on b2 and 9, is the outer normal derivative along bQ). It is
immediate from (3.1) that Sf,Df € C*() and:

A Sf(z) =ADf(x) =0  for x € Q\bQ2 .
If Aju =0 in 2 then Green’s formula states that
(3.3) u(z) = Dug(z) — Suz(x)

Here ug = u| andwu; = %

b We now consider the operators D, S and prove the following
basic result:

Theorem 3.1. If f € C®(bQ) then Sf, Df have extensions as elements of C=(Q). For
each k € Ny there are DO Sy, Dy, in V*=1(bQ) and U*(bQY) respectively such that:

k —
oLst|, = St

(3.4) k=0,1,...
OLDf| = Dif
Moreover
_ 11
(35) 0'_1(50)(33,5) - i|§|g (m,é_) c T*bQ '

o-1(Do)(x, &) = 3
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In the theorem we use the metric induced on b2 from the metric defined on X.

Proof: A more invariant description of the operators, S and D takes advantage of the fact
that pseudodifferential operators act on distributions. Let d,q denote the distribution:

(6:0i0) = [ odo
b0
Then the operators S and D are defined for f € C*(b2) by:

Sf=Q(fova)
Df = —Q(9,(f512)) .

From these formulae it is apparent that, as distributions

(3.6)

singsupp Sf C supp f

(3.7) singsupp Df C supp f .

From (3.7) it is clear that to prove the theorem it suffices to work in a single local coordinate
patch. We choose coordinates to simplify the form of the metric, [£|2: Let U be a small disk
centered on a point p € b2 and let (z1,...,x,) be coordinates defined on U N bQ. We define
o to be the signed geodesic distance from a position U to a point on bS2. We take xgy to
be positive for points in Q and negative for points in X\, this function is smooth in some
neighborhood of bQ2. In a possibly smaller neighborhood, U of p, we can use (zg,Z1,...,Zn)
as coordinates. In such a coordinate patch the metric takes the form:

ds® = dzj + Z gij(xo, x)dx;dx;

4,j=1

the principal symbol of Ay is then 02(Ay) = &5 + |£|2 where we use the notation:

€2 =" g7&¢;.

4,j=1

Since it entails no further effort and is useful for subsequent applications we will consider
the limiting behavior as 2o — 0 from above and below. We use (4) to denote ¢ \, 0 and (—)
to denote xo 0. Recall that in our domain, €2, the variable zo > 0. Relative to €2, 0y,

GL'():O
is the inward pointing unit normal vector.

The complete symbol of @, in this local coordinate system takes the form:

-3
U(Q)(mo,m;fo,f) = Q(m07m;§07§) ~ (gg + |§|_z2;)_2 + Z aj(m()?m;&)?g) ’

j=—o00

here a; is homogeneous in (&g, &) of order j in (£p,£). In the sequel, the statement that a
function of the form k(zg, z; &, £) ‘is homogeneous’ means that it is homogeneous as a function
of (&, &). For our applications we require a more precise statement than this: for each j there
is a smooth family of homogeneous polynomials, p;(xo, z; o, ) and an integer k;, such that:

pj(m(hm; 5075) )
€l

In other words, the terms in the asymptotic expansion of o(Q) are rational functions in (o, &).
This is a simple consequence of the parametrix construction. For f € C&°(U [ bQ2) we see
that

aj(l?(),li; 5075) =

f(zo,x /n / PRERPRELS iof(g) (20, x; €0, &) (;j())gil
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In the case at hand the £y-integral converges absolutely, in other cases one uses (3.6) to give
such expression meaning as an oscillatory integral. If (a,b) is a function in C°°(R?) such

that
1 la]? + b|* > 1
b) =
wl(a ) {0 |a|2+|b|2 <%

then
-3
(3.8) TN (@0, 3 &0, €) = q(wo, w3 €0, &) — $1(€o, [€]6) (63 + 1E12) 7+ D a))
j=—N

belongs to S~ (N+1 (R+1; R+,

We have the following simple lemma:
Lemma 3.1. : If N > 1 then for f € C>*(R")

dod
15 T 15 T

(39) RNf o, T /n / f oo TN('I:();'I: 5075) (27T)n+1
belongs to CN~L(R"*1) moreover Ry f(0,z) = pn(f)(z), where py € U~V (R™).

Proof: Proving Ry f(zo, ) has (N — 1)-derivatives is simply a matter of differentiation
under the integral sign. The only degradation to the convergence of the integral arises from

differentiating €*$0%0, but this term can be differentiated (N —1)-times leading to an integrand
which is 0(5%) Restricting to & = 0 gives:
0

Ry f(0,2) = /_ " Feee / TN<0733?50’5>Z—§T°> (zilf)n

Thus we see that

o(pn) = /TN(07$§§0,§)C;—§S

Cap

DOéDB . < .
| g ng(0,$7§07§)| = (1+|§0|+ |§|g)N+1+|B|

Integrating this estimate shows that

C

a b af
This completes the proof of the lemma.

As a simple corollary we have:
Corollary 3.1. Ifk < N—1 then 8';ORNf(mo,m) 18 continuous and 8’;ORNf(0,m) =k (f)(z)
where pk, € WF—N(R") .

Proof: We can simply differentiate (3.9) to obtain:

0% Ry f(zo,x /f mg/ (rn (o, z; €0, €) wofo)i_ff(;fgn
/f wi/?“N(mo,ﬂC €0, ) (i&o) e (;ff (Q(jf)n +1o.t.

Here l.o.t. is a sum of terms of order strictly less that k — N.

The lemma, its corollary and (3.8) show that to prove the theorem it suffices to consider
each term in the asymptotic expansion separately. First we analyze the principal term. We
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define:

ixo-€o d§0d§
o (w0, ) //§N%| 2(JEl)n o, el )e o S

0 al <1
Here 3(a) = {1 :a: =9

We evaluate the &, integral, for ||, > 1, using the Cauchy residue formula we obtain:

et®o-o d_§0 _ e—lzoll&lg
(3.10) /ﬁﬂ%%_2m

Thus we see that

e —lzoll€lg e A€
(3.11) mO; /f )2 | | 2|§|g € (27‘()”

From (3.11) it is clear that Sp f(xo, ) has smooth extensions to R™ x (—oo, 0] and R™ %[0, co)
which in general do not agree across zo = 0. If g is independent of x¢ then

I 8 3 f( f 1/)2 |§| )|§|k ! wcg(;i&)n (_)
1m 0J (Lo, T) =
/ Eva(l€llelE e e e ()
x)
)

{%J( (-)
£

(+)
Note that S;. € U*~(R") and that

Liglk=1 ()
g 1Si= 1
15 {<WW1(H

More generally if g does depend on xg then it follows easily from (3.11) and the fact that
¥2(|€lg)|€|4 1s a symbol that

lim 0 Sof(zo,x)=Si f+E;f  here Ejf € UF2(R").
Iﬁo—}O
This completes the analysis of leading part.
Now we need to consider the lower order terms in the asymptotic expansion for o(Q).
These are expressions of the form:

A; f(z0, ) //f ”%mm%@@*ww&ma%ﬁﬁl

where a; is homogeneous in (&, ) of degree j. In fact a somewhat more precise statement is
true:

(3.12) a; (o, x5 Mo, AE) = N aj(wo, 13 60,€) A € R\{0} .

This follows because a; is a rational function in (£, ). From this we can conclude that taking
the Fourier transform of a; in the {y-variable will not lead to terms of the form log|zo|. Up
to a smoothing term:

(3.13) A;£(0,z) :/f(&)ei”'%z(l&lg)[/“J’(mo,m;&,&)

etéozo

déo|dg .

There are two approaches to evaluating the y-integral. We can use the fact that

aj(zo,; 60, &) = (gg + |§|£27)k,~
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and the Cauchy integral formula to obtain that for [£|, > 1:

for xp < 0:
/OO pj($07m;§07§)eix050 d_&) — 1 8ktj—1[eixogopj($07m;§07§):|

(3.14) I & +leh 2m (k- 1) % (&0 £ il&lg)*  leo=i sen @olel,

e lmollElog (g, @ +il¢] 4, €)

(:l:i|§|g)2kj_1 '

Recall that deg p; — 2k; = —7, while g; is no longer a homogeneous polynomial, a moment’s
reflection shows that:
(315) deg q; — (2](5] — 1) =1 —j .

From (3.13) and the second line in (3.14) it is evident that A, f(zo,x) again has smooth
extensions to R™ x (—o0, 0] and R™ x [0, 00). From (3.14) and (3.15) we conclude that

lim 85 A;f(zo,x) = A5 f(z)  where Aj € WFHI(R™).

xo—0
This analysis used only that j < —2 and the general form of the symbols, {a;}.

There is a second approach to this computation that works in greater generality. To
compute

- d

(3.16) 5(e0,736) = [ as(a, i, it G

T
we r(.awrite a;(xo, x; &0, &) = |§|£17+jaj(m0,m; é—?g,w) where w = ﬁ We let s = é—?g in (3.16) to
obtain:

. 0 .
OZj(.IIQ,.I:; 5) = |§|517+J/ aj(mo,m; S,W)ezswo|5|gds .
—o0

The fact that we can allow the integral to run from —oco to oo is a consequence of (3.12).

To evaluate this integral we make further usage of the homogeneity of a;:
; w
a;(xo, z; 8, w) = s’a;(xo, z;1,—)
s

where again we use (3.12). We use the Taylor expansion for a;:

. o
3 w w
(317) (Ij(.IIQ,.II; 57(*)) = SJ [l |E<:N a(lj(l?(),l?; 1, 0)(;)05 —+ TN(.IIQ,.II; 1, ;)
o>

where 7y (70, 7; 1,y) = 0(|y|N 1) at y = 0.

1 ls| <1

then
0 |s| > 2

Let ¢(s) = {

1, 98

aj($0;$§§): |§|g/aj(l?o,l?;s,w)(b(s)eiswom o

. O0gaj(xo,x;1,0) w
el [ = S 09 +
la|l<N
v (o, @3 1, )87 eIl (1 - o(s))ds
The first term is obviously a smooth function of xo taking values in W/ (R"), its k-fold

wo-derivative takes values in W/ F(R").

To evaluate the second term we observe that

Sj—lal(l _ ¢(S)) =gi—lal ¢(S)§j—|a|
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where s™ denotes the homogeneous distribution on R defined in §2. As ¢(s)s’~®l is a com-
pactly supported distribution, its Fourier transform is a smooth function of zy. On the other
hand, we have computed the Fourier transforms of s7~1¢l and it is:

5T 191(g9) = im(|a] — )X(i0)”! I sgn &
Thus the sum in (3.17) contributes:

j 80z j ] 7170 .
ey > ZUTDO) oinla] - i(imolely) =~ sgn (o)

la|<N

Recalling that j < —3 we see that these terms have smooth extensions to R™ x (—oo, 0] and
R™ x [0,00). The error term ry(xo,;1,%)s’ (1 —¢(s)) is N — (j + 1)-times differentiable. As
N is arbitrary we once again conclude that A; f(xo, x) has smooth extensions to R™ x (—o0, 0]
and R™ x [0,00). Using the various expressions used to evaluate (3.16) we again show that
Aj[k € Uk+1=3(R™), we leave the details of this argument to the reader. This completes the
proof of the statement in Theorem 3.1 regarding Sf. A similar argument could be used to
study Df, however this is not really necessary as the properties of Df are easily deduced from
those of Sf.

Observe that

(318) '730; // iz-€ izo- 50 Zgo) (1?0,15 5075) (f(g))nfl

On the other hand:

8gc08f T, T // ix-€ 1960 50 150) (JIQ, x; 50, 5) f((;;()ifi(fg
3.19 o f
( ) + / / i€ gizo-€o 8_;0(m0, x; &o, f) f((2§)()1f3_(f§

=S1f+8Sf .

The symbol in the second term in (3.19), 8‘1 defines an operator with exactly the same
properties as S itself. Of course, the symbols are different but the orders of the operators
which appear in 0% S; f(0%,x) are identical to those which arose in 9% Sf(0%, z). So we see
that

(3.20) Df = —04,Sf + Sof -

Thus all the required properties of Df follow in a straightforward manner from the analysis
we have just presented. For example, we see that

oo(Dy) = {ﬂ =
0 (_|_

D= o
~—

~—

(8.21) PR
o(DY) = 2 B

1(DY) {+|2£|z (+)
using these calculations we can easily prove the following proposition:
Proposition 3.1. If f € C°°(bQ) then Sf(xo,x) is continuous as xg — 0 whereas
(3.22) DF(0*,2) — DFO,z) = f .

Similarly 0., Df (xo, x) is continuous as xo — 0 whereas

(3'23) 8x03f(0+,1?) - 8acosf(0_7m) =-f.
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3.2. The Calderon projector and Dirichlet to Neumann operator. If u is a harmonic
function in 2 then

u(z) = Dug — Suyq,
where ug = u|bQ and u; = d,u. So in particular

uozD(Tuo—Sgrul
(3.24) and

Uy = Dfuo — Si”ul .
If we let f, g be smooth functions on b2 then

U=Df-Sg

is a harmonic function defined in 2. From Theorem 3.1 it follows that
Uo=D{ f—S¢g
Ui =Dff-Sig

()= =) ()

From (3.24) it follows that C is a projection operator, that is C? = C'. From Theorem 3.1 it
follows that C' is a pseudodifferential operator with principal symbol:

1/ 1 =
@) =3 (g, )

As expected  Tpyin(C)? = 0prin(C). This operator is called the Calderon projector.

(3.25)

We define the operator:

Another operator of considerable interest is the Dirichlet to Neumann operator. As we
shall soon see, the classical Dirichlet problem,

D) {Au =0 in Q
u‘bQ =/

can always be solved. We defined an operator

_ 6_u‘

~ Ov e

Nf

where wu is the solution to (D). Observe that Sg is an elliptic DO on b2 and let P~ denote
a parametrix:

PfSH =T+ef
where Ef € U=°(b2). Using (3.24) we deduce that
ur = (P Df — Py )uo — Ef uy .

So again N is a DO of order 1 with

0'1(./\/')2%

The Dirichlet to Neumann operator plays an important role in geophysical inverse scattering
problems.
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3.3. Elliptic boundary value problems. Now we use the properties of the multilayer
potentials to show that certain boundary value problems for the Laplace operator are solvable
for data satisfying finitely many conditions. Let’s consider the simplest such problem, the
Dirichlet problem. With u = Dug — Su; we see that

(I — D§)up = —Sg uy .
If we can solve for up, then setting
uy =—(S5)'(I - DY) f

we obtain the Cauchy data for the solution to

{Au =0 in Q

u‘bQ =/

i.e. if we set

(3.26) u="Df +8(ST) (I - D) f

then Au=0 and
W = Dfr+ S - D)
=f.
We need to show that Sy is invertible. As its symbol is 1|¢ |, ! it is clear that for every
scR:
Sar H5(92) — H¥H(b92)
is a Fredholm operator of index 0 and kerS’é|r C C*™(bY). To avoid technical difficulties we

now consider only the case of Q C R™. If there is a function fy such that Sy fo = 0 then we
define

u=38 f() .
This function is harmonic in R™\. As its boundary values from inside €2 equal Sg’ f=0

it follows from the maximum principle that U+‘Q = 0. Let U~ denote U . As Sfy is

continuous, it follows that U~ o = 0 as well. On the other hand we know from Proposition
3.1 that 8,Ut — 9,U~ = —f, and therefore
oLU™=f.

d
o= o [ o)
ba |z —y"
it follows that | llim U™ () = 0. We can therefore apply the maximum principle to conclude
A dee]
that U~ |Q = 0. This implies that f = 0, hence Sg’ is an invertible operator. This shows that
the Dirichlet problem always has a smooth solution for a smooth bounded domain, 2 C R"
and f € C™(bQ). Using the formula (3.26) and estimates for S and D proved in the last
section, we will extend this result to f € H*(bQ) for s > 1 as well as obtaining a precise

2
statement of the regularity of the solution, u.

As

Without restricting to 2 C R™ we could have concluded that the range of Sg’ is of finite
codimension. Thus there are finitely many linear functionals ¢4, ..., ¢, so that if

G((I-Dg)f)=0 j=1,....m
then equation
(I = Dg)f = =S5
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has a solution, g. Again setting
u=Df —-S8g
we obtain that
=Dy f—55g
=Dy f+ (I -Dg)f
=f,
as desired. As before, we will be able to apply the estimates proved in the next section
to extend this existance result to boundary data with finite differentiability and also obtain

precise regularity results. In fact, the Dirichlet problem is always solvable on a smooth
compact manifold with boundary.

“|bQ

Now we turn our attention to more general boundary value problems:

Au=0 in Q
(Py)
boug + biur = f on b

Here by € U*(bQ) and by € U*~1(bQ). We want conditions which imply that this is an
“elliptic problem”. For us this will be simply the condition that the system of equations:

(3.27) (I _bODO+ Sb?) (ZD - <2>

is elliptic. This is a principal symbol calculation:

Definition: The boundary value problem, P, is elliptic if

€lgok—1(b1) — o (bo)

is elliptic. This is the determinant of the principal symbol of the operator in (3.27). In this
case (3.27) is a Fredholm system, the principal symbol of the parametrix is given by:

1 (Uk—l(bg) 2_}“]) , 5#07

. :
—O'k;(b()) 5

D

where D = %(Uk —1(b1) - %lb?o)) Using the symbol calculus for U* (b)) we easily show that
there exists a matrix of operators,

R S

T U
1 —1(b —
(R Sy_1 ox—1(b1) 20el,
T U D —0Ok (b()) 5

_pt ot
ond (R S)(I D} SO>:I+E,

such that

T U bo b1
I-Df S§\ (R S\ _ ,
( o b))\ v)TITE
_ Pt ot
where E, E' € U=°°(b§2; C?). This shows that I bDO io ) is a Fredholm map whenever
0 1

the boundary problem is elliptic. From this we easily deduce:

Theorem 3.2. If (Py) is an elliptic boundary value problem then it has a smooth solutions
for all f € C(bQY) which satisfy a finite number of linear conditions of the form:

/ fgjdo =0 ji=1...,m
b0
where g; € C*(bS2).
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Corollary 3.2. If (Py) is elliptic then the set of solutions to P, with f = 0 is finite dimen-
stonal.

The classical Neumann problem

N {Au: 0 inQ

%zf on b2

corresponds to by = 0, by = 1, this is obviously an elliptic problem which therefore has a

solution for data which satisfies finitely many conditions. For a domain in Q C X it is a
consequence of Green’s formula,

ov ou
/QuAgv —vAgu = us T Va,

applied to u, a solution of (N) and v = 1 that

-

is a necessary condition for (N) to be solvable. In fact, for this case, this is the only condition
though the proof again requires non-pseudodifferential techniques.

We can consider a more general problem of this type; the oblique derivative problem:

Au=0
(Oy) {

ou
ou 4y ‘ —f.
ov T (u bQ) f

Here Y € C*°(b); THQY) is a smooth vector field tangent to bS2. In this case
ao(b1) =1, o1(bo) = (Y, &) .
Recall that (z,&) € T*b§2. This problem is elliptic if

(6
T

This is the case if Y is a real vector field. There is a very important special case of this
problem which is not elliptic. If Q2 C C" is a domain with a smooth boundary then we choose
a unit vector field, N transverse to b{2 such that JN = T is tangent to ). Here J is the
endomorphism of TC™ which defines the standard complex structure. The complex vector
field Z = N +iJN is of type (0,1), so if u is a holomorphic function in Q then Zu o = 0.
There is an infinite dimensional space of such functions; these functions are also harmonic.
This implies that the oblique derivative problem:

(02) {AnzO in Q
0’7 — -
Zu‘bsz =/

isnot Fredholm: it has an infinite dimensional null space. The endomorphism, J, is orthogonal
and therefore

<1 VEZ£O.

L 2o _uNg

£ €l

attains the value 1 in exactly one codirection. This shows that o is not an elliptic problem in

the sense defined above. This problem is called the -Neumann problem and is of fundamental
importance in the theory of holomorphic functions of several variables.

What does the condition
(3.28) (I — D§)uo+ Sfur =0
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mean? To understand this we consider a simple model situation, the upper half space RTH =
[0,00) x R™. We want to solve the equation

Au=0 in R}
du __

bou‘m b2 =
Take the Fourier transform of the equation in the R™-factor. We obtain

0*u N
(3.29) ﬁ(mo,@ — |€*(x0,€) = 0.

o
The general solution to (3.28) is of the form:
(w0, €) = a_[€leI¢l + 0 (g)e=0 e

The condition (3.28) is

1 €] -~
§(a—(§) + a4 () + %(M(@ —a_(§) =0,

that is a4 (§) = 0. In other words, the exponentially growing part is identically zero. In P.D.E.
the existence of exponentially growing solutions is intimately tied to non-well posedness. If
bo and by are convolution operators, then the boundary condition becomes:

(B0(&) — I€B1(9)) a—(&) = F(©) -
Elliptically is then the condition that we can solve for the remaining coefficient, a_(§) in

terms of the data f({)

A similar interpretation for these conditions exists in the general case: one simply replaces
the operator A, at a boundary point (0, z) with the model problem that comes form freezing
the coefficients of the principal symbol at (0, z):

2

2
oz

We leave this to the interested reader, see also Hormander, vol. 3.

(w0, ) — |€]20(x0,€) =0 .

In the next and final section we prove that the operator S and D extend to define bounded
maps between the L2-Sobolev spaces on b§2 and those of Q.

4. BASIC ELLIPTIC ESTIMATES

In the previous sections we showed that the multiple later potentials S, D define maps
from C*(bQ) to C*°(2). This shows that when an elliptic boundary value problem with
C* boundary data is solvable, the solution is smooth up to b€2. In this section we prove the

following estimates: for each s € R
@) S H5(bQ) — H* 3 (Q)
' D: H*(bQ) — HT3(Q) .

Using these estimates and the density of C°(bQ2) in H*(b2) we can use our previous analysis
to solve elliptic boundary value problems with boundary data of finite differentiability.

To prove (4.1) we introduce local coordinates (zg,x) to flatten out the boundary where,
as before, the lines x =const are arclength parametrized geodesics orthogonal to b€2. Using
partitions of unity it evidently suffices to prove that

~ 3

S: H (R") — Hy ® (R x [0,00)) and
4.1 = +3
(4.1) D Hy (R™) — HLE2 (R™ x [0,00))

where S. ,75 are local coordinate representations of S and D. We start with a lemma:
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Lemma 4.1. Let a(xg,x;&0,&) be a homogeneous function in (&o,&) of the form:

om0 = (TS

where p and q are homogeneous polynomials in (§o,&), with degp — deg ¢ = j. Suppose that
for &€ # 0 q(xo, z;&0,&) = 0 has no real Toots. Let

k('IO;m?g)Z/a(mo,m;go,g)eixoiod%

for xg > 0 and £ # 0 be defined as an oscillatory integral. Then for each pair of multiindices,
(a0, @), (Bo, B) we have the following estimates:

(4.2) (a”20° 07050 k) < (1 + [¢])T a0,

Proof: Using the oscillatory integral definition means simply that for zo > 0 and suffi-
ciently large £,

(4.3) k(xo,x; &) = wO / 850 a(zo, 7; o, &) e ™80 de, .

If ¢ is large enough, then (4.3) is an absolutely convergent expression. Since a is a ratio of
polynomials, we can define the contour of integration to a simple closed curve, I', contained
in the upper half plane which encloses the zeros of ¢(xg, x; §). Thus:

k(lﬁo,l},g) wL’o / 850 a\Zo, T3 5075) ixo: 5Od&o
(4.4)
= /1_‘£ a(m07m;§07§)eixo.£od§0 .

The last statement follows: if f(&y), g(&) are holomorphic functions in the neighborhood of
a simple closed contour, «y, then

[ owstestende = [ arg

—Lfdg

2005k = (—i)a’ | 053 (Oralzo ai 0, )0 €™ ) dbo
o

by Stokes’ theorem. The estimates now follow easily:

Again we can integrate by parts in &g and apply the Leibniz formula to compute 95°. We
obtain:

(4_5) Bo BZ / 3] 3aaﬁo Zfo)ﬁo J gito- €0d§

As ¢ is homogeneous the length of T'¢ can be taken proportional to | the estimates in (4.2)
follow easily from this, (4.5) and the symbolic estimates satisfied by a. To prove the esti-
mates (4.1") it evidently suffices to prove analogous results for the homogeneous terms in the
asymptotic expansion of the symbols of ) and g—fy. Handling the remainder terms is an easy
exercise which we leave to the reader.

We would like to use the simpler form of the Sobolev norms available for R"*! (as opposed
o (R™ x [0,00)). To that end we extend k(zo,x;£) to all of R"*! in such a way that the

estimates, (4.2), continue to hold. This can be accomplished using the Seeley extension
theorem, (see Melroses notes). Choosing constants {\,} we set:

E(m(); €T 5) = Z )‘Pk(_2pm0’ Z; 5)

p=1
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where we can suppose that k is compactly supported in (g, z). There exist constants, {C}
such that for any s

HkHHs(R"‘H) < CsHk|‘Hs(Rn,+1).
Let

E(C;f) = /]R » ei(wo~Co+w~C)E(m0,m; &)dzodx .

We use Lemma 4.1 to obtain estimates for k:

Lemma 4.2. For all a,b € M there are constants, Cq so that:

(ws) 0] < o+ e i) (1 12 ™

Proof: We use the previous lemma and take ¢ > a and p > 1 to conclude that
102 D2 k(wo, m;.€) < C(1+ €)7o (1 + |2]) 791 + Jao| (1 + €))7 -
Therefore

o

m%%momca+mw“%/ (1+ |zol (1 + [¢]) Tdao < C(L+[g])THe .

—0o0

This easily implies (4.6). Let

u(z) = / ¢ <o, 2 €)(E)de

Because
S(Rn <C S(Rn
g 0 < ol
is suffices to show that
(4.7) ell s gonsey < Clollagany -

Using the weak formulation of the norm we see that it suffices to show that
[(w, ) < Cllollsl@ll 41— 5
for all ¢ € C°(R™*1). Note that
a(0) = [ Flunsy — & 016 d¢
and so by the Plancherel theorem:
(u, ) = /E(yo,y — £,8)3(€)¢(—y0, —y)dyodyds

and therefore:
[(u, ) < Cllll _gyj2 Vo where

Vo) = [ oo,y = GO+ lool + o) H(E) e
Thus we need to prove that
[Vllo < Cllv]ls -

We replace & by its estimate, (4.6), and define
W) = [+ P+ ol + o) 31+ ly— )71+ &2

Evidently |v(yo,y)| < |w(yo,y)| and so it suffices to show that
Wlo < ClVs -

) IB(E)|dé -
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We let %(I)yl = 7o and obtain that

W13 = [ L0+ )W (0 (1 + o))
We use Peetre’s inequality:
(L+[€[%)s < 2811+ [yf?)*(1 + [€ — y*)"
to obtain that:
(L4 [y (1 + )7+ (1 + [yDyo + y)* 72 (1 + |y =€) 7" <

C(1+ s—j+% 14|y — —r+|j—s| 1+ |y0| —q
(1+[gol) (1+]y—¢) ( 1+|y_§|)

so that
W13 <€ [ @+ )7 e )l where

V(Y y0) = /(1 16—y 4 1€ =yl + [yol) U1+ [€])*[B(E)]dE -
In fact by the Cauchy Schwartz inequality:
7, 90) 13 < CIVIIZS* (o)

where
$2(0) = [ (L4 1) (L4 ol + [y
We choose ¢ >n—1,g>s—j+n— 3 and r > |j — s| + ¢ to obtain that
S(yo) < C(L+ [yol) "4
and therefore:
1 g4m
IWIE < CIVIZ [ (+ ol 33y
< VI
This completes the proof.

The proof given here comes essentially verbatim from the book of Chazarain and Piriou.
We apply the estimate (4.7) with j = —2 for S and j = —1 for D to obtain the estimates (4.1').
We apply these results to prove estimates for the solution of the boundary value problems
considered in the previous section.

If u=Df — Sg for f,g € C=(b?) then (4.1) implies that
(4.8 ety < GOyt gy + 1918 )

If {fn,gn} C C=(bS2) are sequences which converge in H*z (bQ) and H*"2(b) to (f,g)
respectively, then w,, = Df, — Sg, converges in H*(Q?) to u = Df — Sg.

If s > % then v has a well defined restriction to b2 and if s > % then % is also well defined.

From (2.26) we see that the solution of the Dirichlet problem: (Au=0in Q, u . f)is
given by
(4.9) u=Df+S8(s§) "I —-Dg)f .
If f € H5(bQ), for s > 0 then u € H*2(Q) satisfies
Au=0 in Q

u =J.
29 f
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The boundary condition has to be interpreted in the sense of traces, i.e. in terms of the
bounded linear map

H*(Q) — H3(bQ) s> % .
Note that (4.8) and (4.9) imply that
[ullrs) < ClIfll
For the more general elliptic boundary value problems, (P,) where we need to solve
Agu=0 in Q
(B) {bo(u‘m) g =

where by € UF(bQ),by € WFL(bQ). If for f € H*(bQ) there is a solution u then u €
Hs+3+k (©). In general this type of boundary value problem makes sense for s + &k > 0.

S‘%(bQ) ’

Theorem 4.1. If (Py) is an elliptic boundary value problem then there is a finite number of
functions {31, ..., ¢Ym} C C®(bQ) such that for s > —k the problem (Py) has a solution u (in
the weak sense) for all f € H*(bQY) which satisfy

(i, =0 i=1,....,m.

The solution u satisfies the estimates:

(4.10) [ull yos g8 gy < CllFllrs o) -

We have proven this theorem for a compact domain with smooth boundary in a manifold.
The operator, A, is the Laplacian defined by a smooth metric. This is just an example of
the sort of results which can be proven by this method for systems of elliptic differential

and pseudodifferential equations on domains in manifolds. Beyond this there is a theory of

subelliptic boundary value problems. In this theory the % appearing on the left hand side of
(4.10) is replaced by a number in the interval [-1,1]. These results can also be proven using

pseudodifferential methods, see M. Taylor, Pseudodifferential Operators.
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