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Introduction

These notes provide an outline for lectures delivered byatitbor at the Fields In-
stitute on December 13, 2006. The topic of the lectures isapiication of pseudodif-
ferential operator techniques to solve boundary valuelpros for first order differential
operators. These techniques have their origins in theesgryd double layer potential tech-
niques introduced to solve the classical Dirichlet and Naamproblems for the Laplace
operator. In the late nineteenth and early twentieth c@guthis subject was called po-
tential theory. The emphasis was on the analysis of the mgggioperties of operators
defined by convolution with the fundamental solution. A slaal treatment of this ap-
proach is given in [16], a more modern treatment in [20]. Ehasalytic techniques were
the origin of the theory o$ingular integral operatorswhich is, in turn, one of the sources
of the theory of pseudodifferential operators. In theitdamanifestation, these methods
came to the fore in the analysis of boundary value problemshi® Dirac operator on a
manifold with boundary, see [19, 1, 2, 3, 5]. The boundaryditions we consider are
defined by pseudodifferential operators, frequently spizeid to pseudodifferential pro-
jections. The common theme throughout is the reduction afuamtiary value problem to
the solution of a pseudodifferential equation on the bouniself.

We assume a familiarity with the basics of functional anialyiacluding the theory of
L2-Sobolev spaces, and elementary aspects of the theory afpdiferential operators.
Since it is the principal topic of these lectures, we rec¢wldefinition and basic properties
of Fredholm operators:

Definition 1 Let X, Y be Banach spaces aWd: X — Y a bounded linear operator.
An operatorA, is aFredholm operatoprovided:

1. kerAis finite dimensional.
2. ImAis a closed subspace ¥f
3. cokerA = Y/AX s finite dimensional.

It is important to recall that if a bounded linear operatas haange of finite codimension,
then its range is automatically closed. The fundamentariant of a Fredholm operator
is itsindex,which is defined by

Ind(A) = dim kerA — dim cokerA. (1)

If A: X — Y is aunbounded operator, then the domaigDom(A), is generally
not all of X. If Ais a closed operator, then D@#) is a Banach space with respect to the
graph norm:

X114 = X% + [I1AXI3. )
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If X andY are Hilbert spaces, then, with respect to this norm, thelgisas well. An
unbounded operator is Fredholm provided,: (Dom(A), | - la) — (Y,] - lly) is a
Fredholm operator.

A useful criterion for an operator to be Fredholm is the exist of an almost inverse:

Proposition 1 A necessary and sufficient condition for. X — Y to be Fredholm is
the existence of an operator :Br — X, such that the differences

Ki=Ildx —BA Ky =Idy —AB 3)
are Compact Operators.

A parametrix for an elliptic pseudodifferential operatar @ compact manifold pro-
vides just such an almost inverse.
If the error termsKy, Ko, are trace class operators, then there is a very useful farmul
for the index:
Ind(A) = trK1 — trKo. 4)
Proofs of these results and many other facts about Fredhmémators can be found in [17].

1 The Basic Example

Before going on, we consider, in detail, a simple case, whisleals the main ideas
needed to treat the general case. Weldet D;, the unit disk in the complex plane. The
operator we study is th&-operator,

The Cauchy-Pompieu formula states that  ¢1(Q), then

u(@) = %/6u(w,u3)dxdy+ 1 / u(w,zb)dw. ©)

w—2 2ri w—2z

D1 bDl
From the perspective of pseudodifferential operators,fitiows from the fact thatr (v —
2)]~tis a fundamental solution for thzoperator,
5 1

w(w — 2)
As we shall see, the first term in (6) defines a bounded map H&aGD1) — H S+1(Dl),
for everys € R. The second term in formula (6) defines an element of the ragispfo,
that is a holomorphic function, in the complementodd;, The main task before us is to
understand the behavior of this second term as bD;.

Using the Fourier representation

= 6(w — 2). (7)

ur,0) = > un(r)em, ®)
n=—00
we see that
0 1
iz, =22 " [ lun(e)Prer, (9)
n=—000

and, after integrating by parts, we find that

o0

2 2 S
||5U||2|_2=%[ > (r|ag(r>|2+M)dr— > n|an(1>|2] (10)

n=-00 n=-o00
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Our goal is to find boundary conditions for theoperator, so that the resultant unbounded
operator onL2(D1) is Fredholm and such that the unit ball in the domain of the @ipe,
with respect to the graph norm, is compactifi If the resolvent set is non-empty, then
this implies that the operator has a compact resolvent.

For non-negative integers, defif(D1) to be the closure 66> (D1) with respect to
the norm:

lulZe = D Ialopul?z o, (1)
m+n<k

For reals > 0, defineHS(Dy) by interpolation. For rea, a distributionu in €=>°(bDy)
belongs toH S(b D;) provided:

oo
Ulsppy = D, 1GMIPA+n?® < oo, (12)
N=—0o0
whereli(n) = (u, €n?).

It is not difficult to show that the first two terms on the r.hfs(b0) define a norm
equivalent to|| Vul|| L2(Dy)- A boundary condition fop defines a Fredholm operator (with
the unit ball in the domain of the operator, with respect t® ¢haph norm, compact in
L2D) provided that functions in the domain of the operator $atis estimate of the form

lullHs(py < C[||5U|||_2(D1) +llull 2oyl (13)

for ans > 0. Equation (10) shows that the difficulty in proving this estie results from
the boundary termgn (1) : n > 0}, in (10). All other terms on the right hand side of (10)
are positive. Indeed ifu = 0, then

o0
u@r,0) = > unr"e’. (14)
n=0

In this case the negative boundary term in (10) exactly lw&arnhe other two positive
terms.

While it is not immediate from (10), ah?-functionu such thatf = ou € L?(Dy),
has an important “global” regularity property. Standariior estimates imply that €
H|]6C(Dl)’ and hence has a well defined restrictiorbid,, for eachr < 1. Suppose that
¢ € €*(Dy), then a simple integration by parts shows thatrfer 1, we have:

/u(r,em)(p(r,em)dz:—Zi /f¢dxdy+/ué¢dxdy . (15)
b Dy Dy Dy

As u and f are inL2(Dy), the limit, asr — 1, certainly exists on the right hand side
of (15), and therefore, the left hand side also has a well défimit.

Clearly, the limiting pairing on the left hand side of (15)lpdepends orp [up,,
hence we can set

o
n=0
The Cauchy-Schwarz inequality then shows that

> Un(Dant1

n=1
This estimate proves the following basic result:

=Ifl + [Jull2 a7
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Theorem 1 Suppose that u angu are in L2(D1), thenr— u(r, -), is continuous as
a map from(0, 1] to H‘%(b Dr). More explicitly,

00 2
Z [Un(r)| . (18)
ne—oo V14n
is uniformly bounded for i (0, 1], and
Jun(r) — un(D)1?
lim =0 19
r—1- Z V1+n2 (19)

In other wordsu has distributional boundary values in the negative orddrofaw

spaceH ‘%(b D;). As a corollary we can also use the Cauchy-Pompieu formulddita
of this type. This leads naturally to the question: in whatsgedoes the limit

, 1 u(1, €%)de’

im — [ ———— 20

z—bDy 27i el —z (20)
bD;

exist? For the case at hand this question can be answered ipgca achlculation. For
z € D1, the Cauchy kernel can expanded to give

1 o
_ Al —i0_\n
Z_e E_ e"2)". (21)
Using the expansion in equation (21) we deduce that
. u(l, ele)d(ele) ing.
i [ e - Z“ e @2

bD;

Indeed, ifu(1, -) € H3(bDy) for anys € R, then this limit exists inHS(b D1).

We denote the projection operator defined on the right hathel &fi (22) byIl,. As
we shall see, this operator is a pseudodifferential opeddiegree zero. For the moment,
we compute its principal symbol:

i 1if&E>0
) (€7, &) = 23
oo(I1)(e”, <) [ 0ifé <0, (23)
To see this, we use oscillatory testing: chogses smooth with compact support, so that
w(X) =1, andd¢(x) = £, then

o0(Q)(x.¢) = Jim e Qye?)(x). (24)
—00
For the case at hand, l¢t. = +6, and choosey with y(€%) = 1, then

limnosoo 372 pj€! % = y (@) (+)
liMn 00 252, wj€lf =0 )
The operatoil is usually called the Cauchy, or Szegb projector, thougtgiees with
what is, more generally, called the Calderon projectopfor

We now define boundary value problems for theperator onD1. Let % denote a

pseudodifferential projection acting on distributiondided on the boundary. We define
an operatofo, %) as the unbounded operator bA(D1) with the domain

Dom(3, ®) = {u € L%(D1) : éu € L(D1) and®(u [pp,) = O}. (26)

lim eI () () = [ (25)
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Recall that pseudodifferential operators act on spacesstitiitions, hence Theorem 1
and the fact tha® is a pseudodifferential operator show that the boundargitiom makes
sense. Itis elementary to prove that this is a closed opei®now compute the formal
adjoint of this operator. A function is in the domain of thé2-adjoint if and only if there
exists anf € L2(D1) so that, for every € Dom(d, %) we have:

(ou,v) = (u, f) (27)
Takingo € €>°(D1) and integrating by parts we see that
(0u,v) — (U, 3*v) = (u,e"v)pp,. (28)

Foru [pp, we can take any function of the forfRg, whereg € €°°(bDy). Since the
boundary term must vanish, for all suchwe see thatld —%*)e" 1%y |y, p,= Ois necessary
as well. Hence the adjoint boundary condition is that defimethe projector Id-%*. We
usually suppose that is self adjoint, so that is the same as the boundary conditdined
by Id—%.

We now give a condition that implies that this is a Fredholrerapor. Our condition
is expressed in terms of tlkemparison operator

T =RI4 + (Id=R)(1d —114). (29)
Theorem 2 The operator(@, ®) is a Fredholm operator provided that is an ellip-

tic pseudodifferential operator. If the resolvent set iswenpty, then the resolvent is a
compact operator.

Proof First suppose thai lies in the nullspace ofd, ®). In this casedu = 0 and
therefore7 (u [bp,) = R(U [pp,) = 0. As J is an elliptic operator, this shows that
belongs to a finite dimensional space of smooth functionssThe nullspace a@, ®) is
finite dimensional and contained % (Dy).

The key to proving the theorem is to show that the range of thexaior has finite
codimension and that, for data in the domain, we have an awitike that in (13). If we
let ¢ denote the operator defined by the Cauchy kernel, then wetnedaasic estimates:
for s € R, the following operators are bounded

ue HS(D1) — %u € HStY(Dy)

s (30)
f € H3(bDy) > €(f ® 8,) € HSTZ(Dy).

Hered, is thed-measure normal toD;. The map fromHS(bD;) to H st+3 (D1) is denoted
H, and called the Poisson operator. The hypothesis of thegheonplies that there is a
pseudodifferential operatot, of degree 0 so that

JU =1d—Kyz, UT =1d—Kp, (31)

whereK1, Ko € ¥~*°(bD;), and have finite rank.
Letv € L?(Dy) and set

u; = %o andug = —f]fou%(ul [bDl). (32)

From the Cauchy-Pompieu formula it follows that, in the seadistributionsd(ug +

u1) = o. Moreover, the fact thal — u [pp, is bounded fromH (D) — H%(bDl)
and (30) imply that botlig, andu; belong toH(D1); there is a constar@ so that

luo + Ully1(p,y = Cllvll 2. (33)

It remains to check the boundary condition. To that end wie staimple but fundamental
lemma.
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Lemmal If I f € Im®R, then
I f =91 (34)
Proof The proofis an elementary computationdif € Im%, then

Tt =RTf =TI, 1. (35)

We see that the boundary valuewfis —I1,U%R (U1 [bp,), and
TUR(U1 [op,) = (Id —K1)R(U1 [bD,)- (36)
Assume thab is chosen so that
K1%(u1 Tbp,) = 0; (37)

this amounts to imposing finitely many, bounded linear ctods. With this assumption
we see that

TUR(U1 [bDy) = R(U1 [bD,) € IMR, (38)
hence the lemma implies that
T UR(UL [bD,) = TUR(U1 [bDy) = R(U1 [bD,). (39)

Putting the pieces together, we have shown that,df L2(_D1) satisfies the finitely many
linear conditions in (37), then there is a solutioe Dom(o, %) to the equation

ou=no, (40)

which satisfiegju|| H1(Dy = Cllvll2(p,- Hence the range of the operator is of finite codi-
mension and therefore closed. The nullspace is finite dirmeakand this suffices to show
that the operator is Fredholm.

To show that Dortp, %) ¢ H(Dj), we suppose thatu = f, (U [pp,) = O. Let
u; =€ f € HY(Dy). Thenug = u — uy satisfies,

duo = 0 and?(Uo lbpy) = —9t(U1 [bp,) € HZ(BDy). (41)
Sincedug = 0, we see that
—% (U1 [bp;) = T (Uo [bDy) (42)
and therefore
(1d —K2)Uo [6py= —UF(Uz [opy) € H2(bDy). (43)

As K3 is a smoothing operator, we see that there is a con€ansuch that ifu €
Dom(o, %), then

IUlly2(p,y < Callloull 2oy + IUllLzpy]- (44)

This estimate implies that Do, ) ¢ H1(Dy), which implies that the unit ball in the
domain of the operator, with respect to the graph norm, ispamhinL2. If the resolvent
set is non-empty, then the resolvent is compact. O

In fact much more is true: for eache [0, 0o), there is &Cs, so thatifou = f € HS(Dy),
and®(u [pp,) = O, thenu € HS*1 and

IUllyst1cpy) < Cslll fllvspy) + IUllL2(py - (45)
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As a corollary of this theorem we can identify thé-adjoint of (8, %) with the opera-
tor defined by(e*, €?(Id —%)e~'?). The condition thag be an elliptic pseudodifferential
operator, coupled with the fact th&tis a projection implies that

w0 .. | 1ife>o0
oo(%)(e ,é)—[ 0if & <0, (46)

There are many possible projections satisfying this coomit
These estimates imply a fundamental relationship betwepriojectorsk andIl .

Corollary 1 If 7 is an elliptic pseudodifferential operator, then the régfon
R:ImIy — MR (47)
is a Fredholm operator. We denote this restrictiondby+ .
Proof The operatoQ = I1, UR is a parametrix fofR 1+
QRIT; = M4 UT Ty = I (Id —Kp) T4
R4 Q = RIUR = R(Id —K1)%.

The conclusion follows from Proposition 1. O

(48)

Definition 2 The index of&!+ is called therelative indexof (IT,, %), denoted
R-Ind(TT 4, R).

The relative index of the boundary projectors equals thexraf the boundary value
problem.

Theorem 3 If % is a self adjoint projector defining a Fredholm boundary \&frob-
lem foro, then

Ind(2, ®) = R-Ind(IT, B). (49)

Proof Itis easy to see that the nullspacg®f %) agrees with that ak !+, A function
u in the nullspace ofd, %) belongs to keé and therefore [pp,€ Im 1. The boundary
condition,2Ru [pp,= 0, shows thatl [pp, is in the nullspace oftI+. On the other hand,
if f eImIl4, then there is a holomorphic functien with u [pp,= f. This shows that

ker(d, ®) = kerd !+, (50)

The cokg@t“+ consists of functionsf € Im®% such that(ld—I1;)f = 0. The
nullspace ofo, )* consists of functions such that

0*v = —o,0 = 0 and(ld —R)e™%v [pp,= 0. (51)
This implies thab € ker(6, %)* if and only if zo [pp, represents an equivalence class in
coker® '+ This completes the proof of the theorem. O

Combining this result with (48) and the trace formula, etpra(4), we obtain a trace
formula for Indo, R) :

Ind(d, R) = tr I KoII, — tr RK %R, (52)

Remark 1 In Hyunsuk Kang’s thesis, [15], a variety of boundary préges of this
type are constructed. She considers the following geomsitaation: suppose that :
St — €K is a smooth, oriented real curve. L@tdenote theL>-closure of the algebra
of polynomials inCX restricted toy (S%), and %, its pullback toSt, via y. Finally let
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%, denote the orthogonal projection onto th&closure of®, . The oriented curve (Sh
bounds a holomorphic curwé in CK \ y (S) if and only if the restriction?]t?+ :

Ry IMIT, —> MR, (53)

is a Fredholm operator. In this case, there is a formula foretative index, R-Ind1, R, ),
in terms of analytic and geometric invariantsXfFor example, ifX is a smooth holomor-
phic curve of genug then

R-Ind(I4, ®,) = g (54)

It is clear that the main conclusions of Theorem 2 remain ifrtieere is any < 1
so that the operatdu. : HS(bD;) — HS#(bDy), forall s > —%. In the 1-dimensional
case such examples are not naturally occurring, thouglyimehidimensions they are quite
important.

A similar discussion applies to study higher order elligguations as well. For ex-
ampleifP = A = (8+45), thenG(x, y) = [2r]~* log|z— w| is a fundamental solution.
Green’s formula states that life ¢%(D1), then

u(z):/Au(w)G(z, w)d A, + /[u(w)ava(z, w) — 8y, U(w)G(z, w)lds,, (55)
D1 bD1

herev is the outward unit normal vector toD;. If Au = 0, thenu is determined by

its Cauchy datgu, 6,u) [pp, . The Green’s function satisfies estimates much like those
satisfied by the Cauchy kernel. The Calderon projeétptakes a pair of functions defined
on the boundaryf, g) to the pair(u, 6,u) [bp,, Whereu is the element of keA, given by

u(2) = / [ ()60, G(Z, w) — G(0)G(Z, w)ldS,. (56)
bD1

Boundary conditions are now defined by pseudodifferent@fgtions acting on the pair
(u, d,u) Tbp, - The BVP is elliptic if the comparison operat®r= RP + (Id —R)(Id —P)

is elliptic. For simplicity we will largely stick to the casef first order systems in the
sequel.

2 Manifolds with Boundary
Let Q be a closedn-dimensional manifold with boundary. As local models weéav
By ={xeR": ||x|| <1} andBf = {x € R": ||x|| < 1 andx, > 0}. (57)

The interior ofQ has a cover by open s€fd;j} and the boundary has a cover by open sets
{Vk} such that, for eaclp there is a homeomorphisg) : Uj — By € R", and for eactk
there is a homeomorphisp : Vi — Bf C R Inthe later casek(VkNbQ) C ij. The
pairs(Uj, ¢j) are called interior coordinate charts af\, ¢x) are boundary coordinate
charts. On the nontrivial intersections of the coordindi@rts we require that the induced
maps from subsets &" to subsets oR" be diffeomorphisms, e.g. Wj N U;, # @, then

piop;t i (Ui NUj) — ¢ (Uj NUj), (58)

is a diffeomorphism.

A function,r, which is non-negative (or non-positive) in the interio€®ind vanishes
to order onedr # 0) along the boundary is called a defining function for theriary of
Q. The normal bundle to the boundary is the line bundle alondpthendary

NbQ = TQ [pa /TbQ. (59)
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The dual bundle, the co-normal bund*bQ, is the sub-bundle of *Q [pqo consisting
of 1-forms that annihilat@ bQ. It is spanned at every poimt,by dryx. The geometry of2
near to the boundary is described by the tubular neighbattieeorem:

Theorem 4 (The tubular neighborhood theorem) If Q is a manifold with boundary,
then there is a neighborhood U ofXthatis diffeomorphicto 2 x [0, 1). It can be realized
as a one sided neighborhood of the zero section withi®2Nb

Using the identification ofJ with a neighborhood of the zero section, it is easy to
show thatQ can be embedded as a subset of the smooth manifold withontlaop Q ~
Q Lpo Q. The interior ofQ is an open subset @®. If Q is a compact manifold with
boundary, theif2 is a compact manifold without boundary. If we fix an oriergaton(,
thenQ ~ Q Iy [—Q], where[—Q] denoted2 with the opposite orientation, is also an
oriented manifold.

We use€® (Q), €X(Q), etc. to denote smooth, respectivéd§-functions on the inte-
rior of Q, and€¢>*(Q), %k(ﬁ), these classes of functions on the closureF If~ Q is a
vector bundle, thef6> (Q; F), €K(Q; F) are the sections df, that are smooth, respec-
tively. If it is clear from the context, we often omit explichention of the bundle from the
notation. When doing analysis on a manifold with boundary itery useful to be able to
extend functions frons2 to Q. Seeley proved a very general such result:

Theorem 5 (Seeley Extension Theoremlf Q is a manifold with boundary, then there
is a continuous linear map B
E: ¢®(Q) — €>°(Q). (60)
For each ke N there is also a continuous linear map E€K(Q) — €K(Q).

Recall that, fors € R, the L?-Sobolev spacddS(R") is defined as those tempered
distributionsu € ¥'(R™) whose Fourier transforinis a function, which satisfies:

ui? = [ 16 R@+ P2z < o (61)
Rl‘l

Let X be a compact manifold without boundary, having coordinatec(Uj, ¢j). Let
{w} be a partition of unity subordinate to this cover. A disttibn u € €~°°(X) belongs
to HS(X), if for every j, the compactly supported distributi¢p; u) ogoj_l, defined orR",
belongs toHS(R™). It is a well known result that the Sobolev spaces are invatiader
such changes of coordinate and therefore, the sH&¢X) is well defined as a topological
vector space. A norm, which defines this topology is given by

ulFisxy = D2 11w u) 0 05 HEs@n)- (62)
j

Defining function spaces on manifolds with boundary is a lmterinvolved, we return to
this question in Section 3
Good references for the material in this section are [14][28H

3 Function Spaces on Manifolds with Boundary

To extend the results of the previous section to the case ehargl manifold with
boundary we introduce function spaces that are adaptecketsttidy of boundary value
problems. LeQ denote a compact manifold with boundary, which we oftenktiuihas a
subset of its double. There is a certain amount of subtlety involved in the definisi of
spaces of distributions on a manifold with boundary, whichhe end, has to do with what
one means by regularityp to the boundaryWe usually think ofQ as a closed subset of
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Q, but in this section we often emphasize that point by wriiign general we assume
that a smooth metric is fixed dd and letd, denote differentiation with respect to the unit
vector field,v, normal tobQ.

The main distinction derives from whether one wishes to iclamsa function to be
smooth onQ if the function and all its derivatives extend smoothiyo@, or one wishes
to consider a function to be smooth oxif the function and all its derivatives vanish along
bQ. In the latter case, its extension by zero to alkbfs smooth. We denote the former
space of functions b (Q) and the later b (Q). The elements of the dual space of
¢>°(Q) are called supported distributions and are denote@ b3 (Q). The elements of
the dual space o€ () are called extendible distributions, and are denote@ by (Q).

An important difference between these two spaces conceenadtion of differential
operators. As usual this is defined by dualityPifs any differential operator the®' maps
both spaces of smooth functions to themselves, and thereforcan define an action &f
on either¢=>°(Q) or ¢=°°(Q) by duality:

(Pu, p) < (u, Ply). (63)

If u e € °°(Q), then we takep € €>(Q) in equation (63), while ifu € €~°(Q),
then we take € €°°(Q). Of course€6™(Q) is a subset of bot = (Q) and¢~°(Q). If

u € € (Q), then the meaning d®u depends on whether we think of it as an extendible or
a supported distribution. The difference in the two defimit is a distribution with support
onbQ. For example, it € €>° (D7) andP = 4 then

u(l, €?)e?de
5 .

A distributionu € €~°°(Q) if and only if there is an elemet € 6~°°(Q) such that
suppU c Q, which definesl. In this caseu is defined on an elemente €°°(Q) by

u(p) =U(®), (65)

whereg is any extension of to an element ok (Q), for example the Seeley extension
Eg. Because supp C Q, the value ofU (9) is independent of which extension is used.
The H3-norm is defined on supported distributions by setting

Iulls = IVl hs(&)- (66)

The subspace & ~>°(Q) for which this norm is finite is denoted byS(Q). The important
thing to note about this space is that in order @ioto be smooth in this sense, that is
belonging toHS(Q), for a large value o6, it must have many derivatives @, which
vanishat the boundary. This is because stpr Q. The spac&™(Q) is a dense subset
of 6= (Q).

On the other han&>(Q) is a closed subspace @P°(Q) and therefore the Hahn-
Banach theorem implies thatuf € ¢~°°(Q), then there id) € €~°°(Q) that extends!.
We define theH S-norm for this space of distributions by

lulls = Jnf Ul (67)
The subspace 66~°°(Q) for which this norm is finite is denoted iy $(Q). From the
definition of the norm, it is again clear that a distributiois smooth in this sense if it has
many derivatives witlsmooth extensiorte bQ, rather than having to vanish to high order
alongbQ. The spaceé¢™(Q) is dense if¢=>°(Q). It is clear that for eveng € R, we
have a natural mapdS(Q) — HS(Q). This map turns out to be injective sf > —% and

extU — ésup;JJ =d(r -1 (64)
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surjective ifs < 3. The L?-pairing onQ betweeri¢>(Q) and¢>(Q) can be extended to
show that, for alk € R, we have the isomorphisms

[H3(Q)] ~ H™3(Q) and[H3(Q)]' ~ H5(Q). (68)
If s> % then restriction to the boundary extends to define a contistrace map:

7 HS(Q) —> HS 2 (bQ). (69)

Because this map is not defined for= % it is convenient to work with spaces that
treat regularity in the tangential and normal directiongtgly differently. These spaces
greatly facilitate the analysis of differential operatoefined onL2(€2). We first define
these spaces for the half spaRg. Let X' = (X1, ...,X%n-1),¢ = (£1,...,&-1), and
define the tangential Fourier transform to be

(&, %n) = / u(x’, xp)e X <'dx. (70)
RN-1
Form a non-negative integer arsd= R we define

m e .
1Ullns = > / / 0%, (&, Xn) [P(1 + €177 A& d . (71)
1=Ogn-1 0

The spacéd(m,s)(R) is the closure 0%30(@1) with respect to this norm. It consists of all

distributions in<6—°°(RT‘L) such thaby, U is a function for 0< j < m, and the normin (71)
is finite. The corresponding space of supported distrilmstib'l(m,s)(ﬂ%i), is defined as the
closure of62°(int R} ) with respect to this norm.

These spaces are useful for two reasons:

Theorem 6 If m is a positive integer an@l < j < m, then the map
€ (RY) 3 U — a4, U(:, Xn),

for x, > 0, extends as a continuous map from)(R7) — Hs+m‘j‘?l([R“‘1). More-
over, % — d%,U(-, X) is continuous fronf0, 1) to HS+M-1-3 (R1-1).

Of particular note is the fact th&ﬂ%(ﬂ%ﬂ) D H(L_%)(Rﬂl). While the restriction to
the boundary is not defined fare H %(Ri), it is defined, as an element b?(bIRQ), for
ue H(l,—%)(Rl)'

Because they behave well under localization and changeartigzwate, these spaces
can be transferred to a manifold with boundary. Eba compact manifold with bound-
ary we letHm,5)(€), H(m,s)(Q) denote the corresponding function spaces. Suppose that
(V, ¢) is either a boundary or interior coordinate chart, and €2°(V). A distributionu,

defined on2, belongs to one of these spacesiifu) o ¢ —1 belongs to the corresponding
space irR"} . Using the tubular neighborhood theorem, Theorem 6 extenitiss situation:

Theorem 7 Let Q be a compact manifold with boundary, r a defining function for
bQ, Q = {r > 0}. If m is a positive integer and < j < m, then the map
€™(Q) > u— aluC,r),
forr > 0, extends as a continuous map fromH) () — Hs+m‘j‘%(b§2). Moreover,
r — 8Ju(-, r) is continuous fron0, 1) to H3+m‘j‘?1(bQ).
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The connection with the analysis of boundary value probliemdifferential operators
is provided by the following weak, but extremely useful riegity theorem. In the situation
described in Theorem 7, a differential opera®nf degream s calledtransversely elliptic
if the principal symbolsg(P)(x, dr) is invertible for allx € bQ. In other words, the
boundary ofQ2 is non-characteristic foP.

Theorem 8 Suppose thaf is a compact manifold with boundary and P is a trans-
versely elliptic operator or order mif u € L2(Q) = H0,0(Q), and Pue L?(Q), then

As suggested by the identification?(Q) = H(0,0)(€2) we interpreu as an extendible
distribution when definindg®u. The theorem has a very useful corollary, which is a gener-
alization of Theorem 1.

Corollary 2 If u, and Pu both belong to 4(Q), then, for0 < j < m the maps
r > a)u(r, ) are continuous fronf0, 1) to H~G+1) (bQ). In particular,

l'u= (u(r9 ')9 al)u(rs ')9 sy a}r}n—lu(r’ )) rr:O
is well defined as a vector valued distribution on the bougdar

The range ofl" consists of distributional sections of a vector bunlle> bQ. Sup-
pose thatr is a pseudodifferential operator definedla®, which acts on sections d@&.
We define an unbounded operaté, ) on L2(Q), u — Pu, with domain

Dom(P,®) = {ue L?: Pue L?and®Tu = 0}. (72)

It is not difficult to show that these operators are closed dhestion of principal interest
is to know when these operators are Fredholm.
Good references for the material in this section are [13],[@nd [18].

4 Estimates for Operators Satisfying the Transmission Conttion

In the sequel we le@ be a compact manifold with boundagy, its double ancE, F
complex vector bundles ove€r. We suppose tha® is a first order elliptic, differential op-
erator from sections oE to sections ofF. In general we are rather sloppy about which
bundle is which, largely leaving them out of the notationcept when absolutely neces-
sary.

The ellipticity of P means that for each non-zefoe T;‘fz, the principal symbol,
Po(X, &) is an invertible element of Ho(kx, Fx). This implies that there is a parametrix
for P, that is an operato® € ¥~1(Q; F, E) so that

PQ=Idp —K; QP=Idg —K3 (73)
with K1, K2 smoothing operators of finite rank. (The smoothing opesatioe those with

Schwartz kernels i (Q x Q) tensored with the appropriate vector bundle.) The symbol
of the operatoQ has an asymptotic expansion:

a(Q) ~ D qj (74)
j=0

For eachx, qo(x, &) = po(x, &)~L; more generally; (x, &) is arational functionof & of
degree-1— j. Indeed, the denominator gf is just a power of depo(x, £). This implies
that Q is an operator satisfying the following condition.
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Definition 3 A classical pseudodifferential operator@e P*(Q) satisfies thérans-
mission conditionif, wheneveru € 6°°(Q2) and we denote byo the extension ofi, by
zero, to all ofQ, thenQup [intq extends to define an element ¢ (Q).

There is a simple symbolic criterion for a classical pseuffiereéntial operator to sat-
isfy the transmission condition. It is a local condition; weroduce coordinates; =
(X', Xxn) in @ neighborhood, of a pointp € bY so thatp <+ x =0, U NbY = {x, = 0}
andx, > 0inthe interior ofY NU. Assume thaQ is a classical pseudodifferential operator
of orderm such that the (complete) symbol Qfhas an asymptotic expansion:

o
7 (Q(x, &) = q(x,&) ~ D qj(x, ), (75)
j=0
where .
aj(x, A&) = A" qj(x, &) for 4 > 0. (76)
The operator satisfies the transmission condition witheesiY, provided
q] (Xla Xna 5/9 an) - e_nl(m+1)qj (X/a Xna _6/9 _fn) for J = O) 19 ceey (77)

vanish to infinite order along the inward pointing co-norrbahdle tobY, i.e., where
Xn = 0,¢ = 0 and&, > 0. As shown in [14], this is a coordinate invariant conditioman
so can be used to check the transmission condition for psiffel@ntial operators defined
on manifolds.

In our applications the terms in the asymptotic expansion(@) are homogeneous,
rational functions of, which therefore satisfy the following condition:

qj (x, 4&) = A1 qj(x, &), forall 4 e C*. (78)

We call these properties thatrengthened transmission conditioln the arguments that
follow we often use this stronger condition as it simplifiee exposition.

M+

Figure 1 The integration contour.

To understand the analytic properties underlying the trassion condition we con-
. . —N
sider a functioru € 62°(R,,). If

[e.e]

a(x, &) = / u(x’, Xn)e~Xnénd x,, (79)
0
thena(x’, &) has an asymptotic expansion

]

Bdux,0 & )
a(x', &) ~ ; (:’%),) - ,-Z_laj (X', ). (80)
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LetI'" c C be the contout—oco, R U {Ré&? : 0 € [r,0]} U[R, o0), see Figure 1. The
functiona; satisfies

aj (X', &) = aj (X, D . (81)
For such a function, the oscillatory integral
/ a] (Xla én)eanCfn déna (82)
T+

is well defined. In fact, ifx, > 0, then a simple contour deformation argument shows
that this integral vanishes. As an oscillatory integrak temains true for a function of the

forma(x')&), foranyj € Z. Indeed, forx, > 0, andl € N, as an oscillatory integral,

/ cleninde, = oy, ] / &l (i) exnindz,. (83)
r, ry

Choosind > j + 1, it follows easily that the right hand side is zero, fer> 0.
Now suppose that is a compactly supported distribution with a representatis an
oscillatory integral, of the form:

(0.¢]
o) = 5= [ bIX. Gy, (84)
T
—0oQ
whereb is a classical symbol having an asymptotic expansion
o
b(X', &) ~ D_bj (X', &), (85)
j=0

with bj (X', &) = bj (X, 1)5!1“_", for all j. Asbis a symbol, the functiong; (x’, 1)} are
in %“(R”‘l). For anyN > 0, andx, > O we observe that

1< .
U(X/a Xn) = U(X/, Xn) - E Z/ bJ (X/’é’n)elxnfndé’n
j:Ol"*

2

Iénl>R

1 A .
= 5 |: / [b(x/a fn) - Z b] (X/a fn)]elxnéndfn‘f‘ (86)
j=0

R 0 N _
/ b(x', & )eXndé, — / > bj(x, Ré‘g)eiX"RéﬁRdée}
-R

z =0

The integrals over compactly sets define smooth functiorEiin and the integral over
&l > Ris aCN-IM=1®") function. AsN is arbitrary, the restriction of to intR?
extends to define an element@¥ (@1). This simple analytic continuation argument ex-
plains the essence of the transmission condition. In tlisewe use this sort of contour
deformation to establish mapping properties@acting onH3(Q) as well as its effect on
distributions supported doQ itself. The result we obtain is:

_Theorem 9 Suppose that Q is a classical pseudodifferential operatasrder m,
on Q, satisfying the strengthened transmission condition wépect taQQ. For s > 0,
Q: H3(Q) —» HS™(Q).



16 Charles L. Epstein

To prove this theorem we use the following local result.

Proposition 2 Let Q be an classical pseudodifferential operator of ingdglegree m
onR" satisfying the strengthened transmission condition va#pect td&k"} . If s > 0, and
f € HomdRL), then, for any ke No, we have:

Qf mn € Hiks—m—k),loc(RT) (87)

Proof Because pseudodifferentigl operators are pseudolocfalllatvs that the re-
striction Qf [intry is smooth. A§€°°([Rn_) is dense inHS(R"), it suffices to show that,
for everys, andk, there is a constar@s k, such that forf e %m(@rl), andg € %30(@1),
we have

lo QUF) lk,s—m—k) < Cskll fllHs@n)- (88)
Letq ~ > qj, whereqj(x, £), is a homogeneous rational functiondnof degreem — j.

Remark 2 The following argument is modeled on the proof of Theoren? 1.
in [14]. Let¢ € 6 (R), with supportin[—1, 1], and total integral 1For eache > 0, we
let g (x) = e 1p(e~1x). To be entirely rigorous in the derivation of the formulee bglo
we should first work with the regularized functiohs= f *y, ¢., and then allove to tend
to zero. Fore > 0O these functions belong t62°(R"). To highlight the important details,
we proceed somewhat formally, working directly with e %30(@’1). The more precise
argument is quite standard, and can be found in see [14].

We begin with alemma. Lek (&) be a smooth function, with (¢') = 0, if ||| < 1,
andy (&) =1, for [|¢']| > 2.
Lemma2 Ifs e Rand f € HEmdR™), then

1 R .
Qo(f) = |:W/Q(Xaf)(1— y/(f’))f(é)e'x'fdéj| (89)
fin RY

belongs td@“(@i).

Proof of the Lemma For eachN, there is anR so that, if||¢’|| < 2, then the poles
of {g;(x, &, &) + ] =0,..., N} lie inside Dr(0). Becausef is supported in the lower
half space, its Fourier transform extends to be a holomorfuiiction ofé, in the upper
half space. LeC?,.{ denote the arc, in thé-plane,{¢, = Ré?, 6 e [x,0]}. Using the

analyticity properties off and theg;j, we can therefore argue as in equation (86), that for
Xn > 0, we have

1 N L
Qo= [ f (q(x,@—qu (x,@) &0 (1 — () x

RN-1 &> R j=0

f(&)déne* < de’
o / / q(x, $)Xn (1 — y (&) f(&)déne™ < de’ (90)
(2m)n
RN-1[&|<R

1
()"

N
/ / D 4i (% HENN (L — y (&) f(&)déne™ < de’

_ j=0
RN 1C;E
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By taking N large, we can make the difference appearing in the first integnish, when
IEl — oo, as rapidly as we like, thereby making the first integral asaimas we wish.
The other two terms are integrals over compact sets, whatetbre defin&°°-functions

in {Xn > 0}. The existence of an estimate, as above, follows from thedlgsaph theorem.

([l
From the lemma it suffices to consider
1 ~ _
Qu(f)(x) = {—/Q(X,é)w(é’)f(é)emgdé} , (91)
(2m)"
RN R
for f € C@@"(@E). For eachj € Np, define the pseudodifferential operator:
1 RPN
Qji(H(x) = |:W/QJ (x,é)w(é)f(é)e'xfdé} : (92)
RI‘I

R}

For N e N, the differenceQ — Zj <N Qj1 is a pseudodifferential operator of ordeN,
and therefore it suffices to prove estimates@yi(f), j =0,...
To prove these estimates, we take the tangential Fourigsfoem of Q;1(f). We let

i (1, xn, &) = / qj (X', %n, &)e™X T dx'. (93)
Rn—l

From the symbolic estimates, it follows that, for eddhe N, there is a constan€u, so
that

R SO 1 L (94)
@+ 71D
Fors > 0, there is a universal constall so thatif f € HS(R"), then
0
[ [ 1€ s 1t < Ci e (95)

RnN-1 —00

Moreover, fA(é’,én) analytically extends t¢im &, > 0}; for g > 0, the Cauchy-Schwarz
inequality implies the estimate:

2

0
& a+iB)l = U f(&', xn)e @+ dx,

0 (96)
J 1, %) 2dx
< —0o0
< 25
As qj (x, ¢, &) is homogeneous id, its poles, as a function @, in the upper half
plane, are of the fornf||&’|lw) (@) : j =1,...,L}; welet

w () = a1 (@) + i (). 97)
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Here| ¢ || = &'. We can use contour integration to evaluatedhéntegral. Assuming,
for the moment, that all the poles qf are simple, we obtain that

L .
. ’ | 1 o7 / / / ’
Qi1(H(X xn) = _ /q-< s X, & 1 01 @) (&)
! " Igll(Zn)n 1Rn71 i n (98)
fA(g” 1€ |wy (w’))eixn\lf’l\wl (w’)eix’f’di/’
where
A (. &, &) = G — 1€l (@) (. €', &n). (99)

Away from¢’ = 0, these are homogeneous symbols of degregj + 1. Clearly it suffices
to separately estimate each term in (98). For ddchhere is a constary such that the

tangential Fourier transform qi}') satisfies the estimate:
e
@+l M

This shows that the tangential Fourier transform of eaah farthe sum satisfies the esti-
mate:

3" xn.$) < C (100)

My @)1 o @) e A1 T der
@+ 1 =DM

~ / lI<']
QU (. x)l < C / 101)
RN-1

We apply the Cauchy-Schwarz inequality to the right hand sit{101) to obtain:

[Py @) 1w (@) e A eI Ide
L+ =DM

SWer o2 lI”
|Qj1f(7]»xn)| <C
RN-1

R 1

For M sulfficiently large, the second integral in (102) converd®g.ellipticity and com-
pactness, the imaginary part of the expon@it’) > S > 0, as«’ varies over the unit
sphere. Using this estimate, and the estimate in (96) wehs¢e t

o
| [ 1@ 1 12 Maxed <
RN-1 0

/ / p @IS A+ 1y >
@+ 1 = DM B2 12

(103)

0
x [ 1T ywidyde dy
RN—1 gn-1 —00
One power of||¢’|| in the denominator results from performing tkg-integral, and the
other comes from (96). To complete the proof we use the fatigelementary lemma:

Lemma3 Ift €e Rand M > 2t + n, then there is a constant C so that:
@+ ll7' D
D™ < ca+pen?. (104)

A+ =DM ~
RN-1
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The proof is left to the reader.
Interchanging the order of thg and¢’ integrations in (103), we apply the lemma to
obtain that

o
[ 1G58 P+ 1 2o <

RrR-1 0

0
c [ [Ife. yrdyds. (105
Rn-1 —00
In light of equation (95), this proves the proposition, koe 0, under the assumption that
all poles ofq; are simple. The latter assumption is easily removed, byguSiauchy’s
formula

k! f (w)dw

R

the Leibniz formula, and symbolic estimates. It is seen W@ @iie same result, as in the
simple case, if we replace (96) with the estimate

0
[ 1@, %xn)2d%,
05 £(& a +ip)? < C—=

ﬁZk—i—l (107)

To estimate derivatives in thg direction, we simply differentiate (98). Each derivatiee r
places the symbol, ifi’, with a symbol of one higher degree and the argument is otkerwi
the same. O

Proof of the Theorem Let f € HS(Q). Using the Seeley extension theorem we
know that there is a consta@t, and an extensior’ of f to Q, so that
I lhs@) < Csll fllns@)- (108)
BecauseQ is a pseudodifferential operator of order it follows that there is a constant
C; so that
1QF Iys-m@) < Céll F'lls(cy)- (109)

In light of the definition of the norm okl S(Q), this shows thaQ ' [oe HS"™(Q). If we
let

=] Flaa (110)
0inQ,

then we need only show th&@f_ [oe HS M(Q). To prove this we observe that it is
enough to prove estimates in boundary coordinate charts.
If s—m <0, thenH,s—m)(Q) C HS"™(Q). If s—m> 0, then

1 Hiks-mk(@Q c HMQ). (111)
k<|s—m|+1

The needed estimates follow immediately from the propmsijtand these inclusions, thus
completing the proof of the Theorem. O
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Remark 3 The results in Theorem 10 can easily be extended, by duality +
—%. The strengthened transmission condition is invariant ntrd@sposition, s®@' also

satisfies it. The facts thaHS(Q)I' = H~S(Q) and HS(Q) ~ HS(Q) for s € [—3, 31,
therefore allow us to extend the theorensts —%.

Using essentially the same argument we can treat the casargjle layer potential:

_ Theorem 10 Suppose that Q is a classical pseudodifferential operatorder m on
Q, satisfying the strengthened transmission condition wagpect ta. If r is a defining
func@n for 02, and f € €*°(bQ), then Qf ® J(r)) extends to define a function in
6>(Q). If s > —3 and f € HS(bQ), then, for ke No, we have that @f ® 4(r)) €
H(k,s—m—k—%)(g)'

Remark 4 Similar results hold for multiple layer potentials, i.e stlibutions of the
form Q(f ® ol/1(r)). Detailed proofs of these results, in somewhat greater géityeare
given in [14].

5 The Calderon Projection

We now letQ denote a parametrix for a first order differential operaf®racting
between sections of a vector bundiesandF :

P :€%®(Q; E) — €¢®(Q; F), (112)
A typical example is a Dirac operator.

Example 1 On an-dimensional, complex Kahler manifola, the bundle of complex
spinors is isomorphic to the direct sum of t{te q)-forms:

n
B~ P A%9X. (113)
q=0

In this case the Dirac operatdd,is nothing butd + ¢*. This is evidently a self adjoint
operator. Notice that the collections of even and odd defprees define subbundles &f:

n/2 n/2
F=Pa®Ix g=pA**x; (114)
q=0 q=0

these are often called the bundlesssEnandodd spinors. The Dirac operator then maps
sections off to &, and vice versa:
3% : 6°(X; F°) — 6™°(X; °). (115)

The operator$€° are called thechiral Dirac operators. At least formallyp®°]* = d°€.
Indeed, ifX is compact, thed®® are Fredholm operators with

n
Ind(3°) = dim kerd® — dimkerd® = > dimH%9(X)(-1)1. (116)
j=0
To simplify the discussion a little bit, we assume tlRais actually invertible, so that

Q can be taken to be a fundamental solution; that is the emasten (73) actually vanish.
For the case of a Dirac operator this can always be arranged.
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The operatoR is a classical pseudodifferential operator of ordér Indeed, its sym-
bol has an asymptotic expansion:

7 (Q(X,&) ~ D qj(x,9), (117)
j=0

with gj (x, &) a rational functional of, homogeneous of degreel — j. The denominator
of gj is a power of defpo(x, £)).

We suppose that a Riemannian metric is fixed(@nand Hermitian inner products
on E, F, though this data is often suppressed in what follows. Whedeéy-, -)g, e.g.
denotes the fiber inner product & If ¥ is a Hilbert space, thef, -)5 denotes the Hilbert
space inner product. Fix a defining functiorior bQ in Q, such thadr has unit length
alongbQ.

We letQ. denote the subset ¢i wherer > 0, andQ_ the subset whene < 0. We
also letY, denote the hypersurfa¢e = ¢}. As Q is a fundamental solution, it is clear that
u = Q(g ® 4(r)) belongs to the nullspace & on Q \ bQ. We denote the restrictions
to the components of the complementtdd by u.. It follows from Theorem 10 that if
g € H3bQ; F [pa), thenus € H(LS_%)(Qi; E). Let 7. denote restriction t¢r = ¢}.
From Theorem 7 it follows that.u is well defined as an element bfS(Y,), moreover the
maps

[0,1] 5 € — zeU4

[-1,0] 5 € — tcU_ (118)
are continuous. Note, however, that generadly; # rou-_.
We need to establish the properties of the maps
Pyf = IimOi 7 Q(oo(P, £dr)(f ® 4(r))). (119)
€—

Here f is a distributional section o [pq, andoo(P, dr) is the principal symbol o
in the co-normal directiodr. If uL belongs to the nullspace & on Q., then it follows
from Green’s formula, and the fact th@tis a fundamental solution that

u+(p) = Q (o0(P, £dr)[us [bo, ®3(r)]) (p) for p € Q. (120)

Hence®iut = ui [pq, . This shows tha# . are projection operators. These are the
Calderon projectors for the operater
As Q is a fundamental solution,

PQ[oo(P,dr)f @ 6(r)] = oo(P,dr)f ® d(r). (121)

Hence, iff is a smooth section d& alongbQ andg is a smooth section df in Q, then

[tooP.dntoone = im [ (Quo(P.dn T @ 60)). Plole

bQ {Ir|>e€
= Iim+[ / (Qoo(P,dr) f ® 6(r)), o (P',dr)p)e—
e—>0 Lo (122)
/ <Q(ao(P,dr>f®5(r)>,a(Pt,dr)¢>E}
{r=—¢}

= (oo(P,dn)(@+ + P_)f, 0) 2(pq: F):



22 Charles L. Epstein

As ¢ is an arbitrary smooth section &fandoo(P, dr) is invertible, we see that
f=@++P)f. (123)

Arguing as in the previous section we can use contour intiegran theé,-variable to
obtain a formula foIQ(g ® J(r)). Hereg is a smooth section df [pqo . As before, this is
a local problem, we introduce coordinaies, x,), in a neighborhood of) of p € bQ
so that

Qi NU = {£x, > 0}. (124)
We lety € €>°(R"~1) be a function that is 0 in a neighborhood of 0 and 1 outside #tie b
of radius 2 we can again show that, fap # 0, the functions

Qg ® () - (2 ; / / A X, & GOy (€)X < de’ (125
Rn—1 —0co
extend smoothly to bot. Thus the restrictions tfx, = 0} are themselves smoothing

operators.
We study the symbolic properties @f. by evaluating th&,-integrals:

/ / 0 (¢, X, & By (&)X dend € de’, (126)

Rn-1 —00

(275)n

for x, # 0, by using contour integration. ¥, > 0 then, for eaclt’, we use a contour
that includes a semi-circle in the upper half plane enctptie poles ofjj (X', xn, &', &),
whereas ifx, < 0, then we use a contour in the lower half plane enclosing thespiol
the lower half plane. In fact, the locations of the poles @fdj do not depend on, but
coincide with the zeros of dgl(x’, Xn, &', &y). Since

PO X &) = 10K X 5 0. (127)

the poles are also homogeneous of degree [I£i. As P is elliptic, po(x, @', &) is
invertible foré, on the real axis, her@ = ¢’/||¢’||. Hence (ifbQ is connected) the number
of zeros in each half plane does not dependxdne’). We Iet{n (@): 1 =1,..., Ly}
denote the zeros of dpp(x’, 0, &', &) in the upper (lower) half,-plane. The zeros may
also depend or’, but we suppress that dependence for the time being. Evjdibetisets

U @) 1=1.. L} (128)
' eSh—1
have compact closures disjoint from the real axis.
Let A+ be an interval on the real axis along with a semi-circlg-itm &, > 0, enclos-
ing Z+. If R > 0, thenRA denotes the contour scaled by the fad®\s an oscillatory
integral we see that, fatx, > 0, we have

/ / A (X', Xn, &', )X dEn g (& (&)e* < de =

Rn—1 —0co

(27t)n

1

(z'n)n/ / A (X', Xn, &', En)€ NG, | Gy (E)e¥dE. (129)

R-1[IC7 A
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It is not difficult to see that, fof’ # 0, the limits asx, — 0% exist, and define homoge-
neous symbols of degree;j :

~ 1 ,
8ej (X&) = 5 / a (X', 0., &) dn, (130)
e 1A+
For eachN € N we can also consider the remainder term:

1 7 N

N =i / / /9 5 /9 - j /9 5 /9

Rig=lim, e/, J {q(x Xn, &, én) JZéq,(x Xn, & fn):| 13D
x Q& (E)e*nndseX < d¢’

For large enougil, we can simply set, = 0 and obtain an absolutely convergentintegral
giving a symbol of order-1 — N onbQ :

00 N

1

N = oo / / {Q(X/,O,é/,fn)—z QJ(X/,O,f/,fn):| dep (@) (132)
Rn—1 —00 j=0

This shows tha® . are classical pseudodifferential operators of order () gyimbolsj.
satisfying

o0
Gr (X, &) ~ D Gej (X, oo(P, £dr). (133)
j=0
We now carry out the detailed computation of the principatbgl, which is homoge-
neous of degree zero. For eache S"~2 we letM (X', »’) denote the span of generalized
nullspaces of

{po(X', 0,0, " (@', X)) : | =1,..., Ly} (134)
The fiberE(y o) is the direct sunM (o', X') & M_ (', X’). The subspacebl. (o', X')
consists of directions such that the system of ODEs:
po(X’, 0, @', dx,)v(Xn) =0
v(0) =0,

has a solution, which is exponentially decayingtag, — co. The principal symbol of)
is [po(x, &£)]~1 and therefore, up a constant of modulus 1,

(135)

I~ / / 1 ! / —
TeolX, ) = 5- / [po(X', 0, ', &)~ L. (136)

Ax
are easily seen to be projections oMg (X', »’), alongMx (X', ).
A good treatment of the Calderon projector, in the genersé cean be found in [14];
the case of Dirac operators can be found in [5].

6 Fredholm Boundary Value Problems for First Order Operators

We now examine boundary value problems for the elliptic foxxder operatorP,
considered in the previous section. The domain of the maxaxinsion ofP as an
unbounded operator oh?, Dommax(P), consists ofL2-sectionsu of E — Q, such
that the distributional derivativ®u is in L? as well. It follows from Corollary 2 that

if u e Dommax(P), thenu has distributional boundary valuestk ‘?l(bQ). Hence, ifR is
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a pseudodifferential operator acting on section& dfyg, then we can define the domain
of a closed, unbounded operator actingLdiiQ), by

Dom(P, R) = {u € DOMnax(P) : R [pa) = 0}. (137)

We use the notatiofP, %) to denote this unbounded operator acting.31€2).

In this section we consider boundary conditions defined leygsdifferential projec-
tions. This is not a serious restriction, since the nullspag,, of ® is a closed subspace.
Under fairly mild conditions, (for example: 0 is isolatedtime spectrum ofr), the or-
thogonal projectionpr, ontoNg, is a pseudodifferential operator. Eviden¢ly, %) and
(P, Rpr) are the same operator @rf. It is not necessary to assume thais a classical
pseudodifferential operator, but merely that it act<d(hQ). We give a condition ot
that insures thatP, R) is a Fredholm operator.

As in the example 0b on D1, our analysis centers on the comparison operator. We
let % denote the Calderon projector f&ron Q. If % is a projector defining a boundary
condition for P, then we consider the operator:

T =RP + (Id—R)(Id —P). (138)
Assuming thatt : HS(bQ) — HS(bQ) forall s > —1, it follows from the fact that? is a
classical pseudodifferential operator of order 0, thareserves the same Sobolev spaces.

Definition 4 We say that is u-elliptic if 7 has parametri®L, for which there exists

au € R, such that for everg > —1,

A : H3(bQ) — H5 #(bQ), (139)
boundedly.
In this case we can seledt so that
WUT = ld—Ky andgu = Id —Kp, (140)

whereK1, Ky are finite rank, smoothing operators.

The classical elliptic case correspondsgto= 0. A small modification of thes-
Neumann condition on a strictly pseudoconvex, almost cermplanifold gives an example
whereu = 3, see[9, 8, 10].

Theorem 11 Let Q be a smooth manifold with boundary and :P€¢*(Q; E) —
€°°(Q; F) afirst order elliptic differential operator, with fundamehsolution Q Suppose
that % is a pseudodifferential projection acting on sections ofdg . If R is u-elliptic,
with ¢ < 1, then(P, %) is a Fredholm operator; if: < 1, then the unit ball in the domain
of the operator, with respect to the graph norm, is compadt4n|f the resolvent set is
non-empty, then the operator has a compact resolvent.

Before proceeding with the proof of this theorem we obselmat temma 1 has the
following generalization:

Lemma4 If Tf e Im% thenTPf =T f.
Proof This follows immediately from the fact thatT = J%. O

Proof of the Theorem First we observe thatP, %) has a finite dimensional null-
space. Suppose thate Dom(P, %) and Pu = 0. Corollary 2 implies thau has dis-
tributional boundary values iH‘?l(bQ), which therefore satisfyr (u [pg) = 0. Since
u € kerP, itis clear that?(u [pg) = U [pq . Hence

R(U Tbo) = T (U [ba) = 0. (141)
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On the other hand (140) then implies that
(Id —K1)u Jpo= 0. (142)

As K is a smoothing operator, the nullspacelof—K) is finite dimensional. The exis-
tence of the fundamental solutidp easily implies that elements of kBrare determined
by their boundary values dof2. This shows that the nullspace @, R) is finite dimen-
sional.

Now we turn to the proof that the range is of finite codimenséord therefore closed.
Let f € L2(Q, F), andu; = Qf, where, as usual, we exterfdby zero, to all ofQ, and

Up = —Qo (P, dr) [UR (U1 [bo) ® o(r)] . (143)
We need to show that = ug + u; € Dom(P, ®). That Pu = f, in the sense of distri-
butions, is clear. From Theorem 9 it follows that € H1(Q), and therefor@i® (u; [pa
1 .

) € H27#(bQ). Hence Theorem 10 and the embedding rebiglt_,)(Q) C H1-#(Q),
imply thatug € H1=#(Q). If 4 < 1, thenu € L2(Q). To complete the argument, we need
to show thatk(u [po) = 0. This is true, provided thaf satisfies finitely many bounded
linear conditions.

We note that

TUR(U1 [bo) = (Id —K2)R(U1 [ba)- (144)
Recall thatk is of finite rank, hence the requirement
K2(R(U1 [ba)) = KoR(Qf [ba) =0 (145)

is a finite set of linear conditions oh As the mapf — Qf [pq is bounded fronL.2(Q)
toH %(bQ), these are evidently defined by bounded linear functionagt.Sldenote the
subset ofL2(Q; F) where these conditions are satisfied. This is clearly a dlssbspace
of finite codimension.
If f € S, then (144) and (145) imply thaTUR (U1 [bo) € IMR. Lemma 4 then
implies that
R(Uo [ba) = —RPUR(U1 [ba)
= —TPUR(U1 [be)
= —TUR(U1 [be)
= —R(U1 [ba).

To pass to the final line we use (145). Thusfik S, then®(u [pq) = 0, and therefore
Sis a subspace of the range @, %). Hence the range of the operator is itself of finite
codimension and therefore it is closed. This completestbefphat(P, ) is a Fredholm
operator provideg: < 1.

Suppose that € Dom(P, %) and letu; = QP(u) € H1(Q). The differenceu — u;
is in the (formal) nullspace d?, hence

(146)

P(u—u1) [bo= (U—U1) [bo andR(u —u1) [ba= —R(U1 [ba). (147)
A priori, (U—uj) [poe H ‘%(bQ). The identities in (147) imply that
T(u - u1) fba= —9(u1 [ba) € HE(bQ). (148)
Applying U, we see that
(Id —K1)(U — Ug) [ba= ~UTt(Us [be) € HZ*(bQ). (149)

As K is a smoothing operator, this shows tifat— u1) [po€ H ol (bQ). Theorem 10
implies thatu — u; € H#(Q) and thereforai is as well. Thus the domain ¢P, ®) is
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contained inH=#(Q; E). If x4 < 1, thenH1~# is compactly embedded int?, showing
that the unit ball in the domain of the operator, with resget¢he graph norm is compact
in L2. If ther resolvent set is non-empty, then the resolverifyfR) is a compact operator.
This completes the proof of the theorem. O

Using the same argument we can also prove higher norm es8mat

Theorem 12 Under the hypotheses of Theorem 11, i€ HS(Q; F) satisfies finitely
many linear conditions, then there exists a solution u to

Pu= f and®(u [pg) = 0. (150)
For each s> Othere is a G such that this solution satisfies the estimate
lullysi-v < Csll flins. (151)

Fors > 0, there is a G such that if ue L2, R(u lbo) = 0, and Pu e HS(Q) then
u e HS*1=#(Q) and

lUll s < CLLIPUIHs + lull 2]. (152)

Proof We prove the last statement. Uf = QPu, thenu; € HSt1(Q). Moreover,
P(u—u1) =0and

T (u—u1) [be= R(U —U1) [be= —%RU1 [bQ - (153)
Hence

(U—u1) [be= —URU1 [bo +K1(U —U1) [ba - (154)
Sinceu = (U —ujy) + QPuy,

(U—u1) = Qe (P, dr)[(u— u1) [bal ®4(r)), (155)
andK1 is smoothing operator, we easily obtain that there is a emt€X, so that (152)
holds. O

The analysis of P, ®) also leads immediately to an analysis of the Dirichlet peabl
for P : givenf € HS(Q) andg € Hs+%(bQ) NIm& findu € HSt1=#(Q) such that:

Pu= f and®(u [pg) = 0. (156)

The analysis above shows thaf(if, g) satisfies finitely many bounded linear conditions
¢ (f,g) =0,i =1,..., N, then a solution to this problem exists. The dimension of the
solution space equals the dimension of the nullspad®pfr).

If R is a classical pseudodifferential operator, then we caityegige symbolic condi-
tions for% to be 0-elliptic operator. The conditions are that for every¢’) € T*bQ\ {0},
the restrictions

oo(R) (X', &) Timao@)x,eny and(ld —ao(R) (X', &) Tim(id —oo@)(x.¢"))» (157)

are injective. This of course implies the$(7)(x’, &) is invertible away from the zero
section. If the projections are orthogonal, theyiR) (X', &) [imeo@) (. 9ives an iso-
morphism onto the image ofp(R)(x’, &’) if and only if the complementary restriction
(Id —o0(R) (X', &) Tim(1d —ao@)(x',c7)) 9ives an isomorphism onto the orthogonal comple-
ment Im(ld —ao(R) (X, £)).
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Example 2 The most important example of an elliptic boundary condifior a first
order system arises in the work of Atiyah, Patodi and Sinderearlier work, Atiyah
and Bott showed that there is a topological obstruction éekistence of a local, ellip-
tic boundary condition for the Dirac operator on an even disi@nal manifold, see [6].
Nonetheless, we can define elliptic boundary conditionsgupseudodifferential projec-
tions. In this context one usually supposes that the Rielaarmetric,g, reduces to a
product in a neighborhood dfQ, so that a neighborhood &fQ is foliated by totally
geodesic hypersurfaces “parallel’ b62. We letr denote a coordinate labeling these hy-
persurfaces, withldr|g = 1, in the collar neighborhood. If2 is an even dimensional
spin or spi manifold, then the chiral Dirac operatd?,is an elliptic, first order operator,
mapping sections of the bundle of even spinors to the burfdid@spinors. We let(dr)
denote Clifford multiplication by the 1-formr; it defines unitary isomorphisms between
the bundles of even and odd spinors. In a neighborhodi{Xyfthe Dirac operator takes
the form:

P = c(dr)[é + B, (158)

whereB is a self adjoint operator acting on sections of the spindteiaverbQ. The spin-
bundle over the boundary is isomorphic to the bundle of eeerodd) spinors restricted
to the boundary. SinceQ is compact without boundary, the opera®has a pure point
spectrum extending te-co. We let% denote the orthogonal projection onto the span of
the eigenspaces &, with non-negative eigenvalues. This is a classical pseifféoghtial
projection, which has the same principal symbol as the Caidprojector. Hencér is
O-elliptic. It defines the Atiyah-Patodi-Singer boundaoydition.

Example 3 As noted above, it is not necessary #rto be a classical pseudodiffer-
ential operator. In a series of papers, [9, 8, 10, 7], the chsestrictly pseudoconvex,
Spinc-manifold is analyzed. In this context, a modification of théleumann condition
can be defined that gives%':&elliptic operator. In this case, the boundary projectibn
belongs to the Heisenberg algebra defined by the contactsteuon the boundary. The
operatoru is a graded elliptic operator in the extended Heisenbeytis.

While the integrability of the complex structure is not nesary for our analysis of
boundary conditions fad, we restrict our attention to the case of a compact Kahleriman
fold, Q, with a strictly pseudoconvex boundary. The usual converiido use a defining
function p for bQ, which is negative in in€. Strict pseudoconvexity is the condition
that, for large enough, the complex Hessiamgoe’”, is positive definite alonpQ. The
one formé = idp |pq is real; the strict pseudoconvexity of the boundary impthest
subbundleH = kerf of ThQ is a contact structure. There is a special calculus of pseudo
differential operatorsy},, called the Heisenberg calculus defined on a contact manifold
see [4, 21]. This calculus plays an essential role in theyaisabf thes-operator. A strictly
pseudoconvex manifold has an infinite dimensional spacelofiorphic functions. As in
the 1-dimensional case, a holomorphic function is deteeghioy its boundary values on
bQ. We let¥ denote the Szegd projector. This is an orthogonal prajeciperator with
range equal to the set of boundary values of holomorphictioms onQ. If the complex
dimension ofQ is greater than one, then the Szeg6 projectooisa classical pseudodif-
ferential operator, but rather an elemenﬂcﬁ (bQ).

As noted in Example 1, the bundle of spinors on a complex rolthifan be identified
with 3~ &A%9Q. Thus a spinor can be decomposed if@oq)-types:

0 =0%046%1 4. 450N (159)
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Thea-Neumann condition fof0, )-forms is the requirement that
[0p)0 %% Ibo=0. (160)

A moments thought shows that this does not impose any conditi(0, 0)-forms, and for
this reason, does not lead to a Fredholm boundary valuegmofird = & + 6* acting
on sections ofd Indeed, any holomorphic functior, satisfiess f = 0 and the boundary
condition (160). This situation admits of a simple remedy wse the condition in (160)
for 2 < g < n. Forg = 0 we impose the condition:

#1020 Thal = 0. (161)

In order for the boundary value problem fdto be formally self adjoint, we need to modify
the boundary condition fay = 1 to

(Id—N)[opJo®! bal = 0. (162)
This boundary condition is defined by the projecior
¥ 0 o ... ©
0 (Id=%)dp] 0o ... 0
a=1]0 0 op] ... O , (163)
0 0 0 ... op]

acting on sections d [pq .
If we let? be the Calderon projector for, theng = RP + (Id —R)(Id —%). In [9, 8,
10, 7] itis shown that the operat@ris %-elliptic; that is:J has a parametri®, such that

A : HS — HS"3 for s € R. This result is proved using the extended Heisenberg calculu
The analysis is closely related to the analysis ofaHéeumann problem of0, 1)-forms
given by Greiner and Stein in [12].

As in Example 1, the operat@®, %) is self adjoint, but can be split into its chiral parts
(0%°, :2€9). These operators are also Fredholm, moreover,

(0%°, REO)* = (0°°, R°°). (164)

In the case of a compact Kahler manifold with strictly psecwhvex boundary, the index
of (0%, ®) is nothing but the holomorphic Euler characteristi€nfwith the contribution
of the infinite dimensional groupl %-2(Q) removed:

n
Ind(@°, 2% = > dimH%9(Q)(-1)%. (165)
g=1

Itis not necessary to use the classical Szeg6 projectbeidefinition of in order to
get a Fredholm boundary value problem. Eete a projector in?', (bQ) that resembles,
symbolically, a classical Szegé projector. If we #&t denote the projector defined in
equation (163), withf replaced by¥’, then (3, ') is again a Fredholm operator. The
restriction

g:lmY — Im¥, (166)

is also a Fredholm operator, we denotes its index by R#hd’). Generalizing a classical
result of Agranovich and Dynin, one can show that

Ind(@, ®) — Ind@, ') = R-Ind(¥’, ). (167)
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While they are wildly different types of operators, therei®n a sense in whici’
and? have a relative index, and indeed:

Ind@, &) = R-Ind(®, R). (168)

In fact, we can use this identity to express the indexdfr’) in terms of a trace on the
boundary:

INd@, R) = trPK1P — tr R’ KR, (169)
This follows, as before, from the fact that
(PURNYR'P = P(1d —K1)P andR'P(PUR') = R/ (Id —K2)R'. (170)

A careful discussion of these results would take us too fatdafletails can be found in
the papers cited above.
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