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Abstract. In these lecture notes we introduce some of the concepts and results
from microlocal analysis used in the analysis of boundary value problems for
elliptic differential operators, with a special emphasis on Dirac-like operators.
We first consider the problem of finding elliptic boundary conditions for the∂̄-
operator on the unit disk. The rather explicit results in this special case delineate
the route we follow for general first order elliptic systems on manifolds with
boundary. After some geometric and functional analytic preliminaries, needed
to do analysis on manifolds with boundary, we define and describe pseudodif-
ferential operators satisfying the transmission condition. These operators behave
well on data with support in a compact subset with a smooth boundary, and
include the fundamental solutions of elliptic differential operators. Using the
fundamental solution, we define the Calderon projector and establish its basic
properties. We then consider boundary conditions defined bypseudodifferential
projections, and find a simple criterion for such a boundary operator to define
a Fredholm problem. This includes standard elliptic boundary conditions, as
well as certain subelliptic problems. A formula is given forthe index of such a
boundary value problem in terms of the relative index between projectors on the
boundary.
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Introduction

These notes provide an outline for lectures delivered by theauthor at the Fields In-
stitute on December 13, 2006. The topic of the lectures is theapplication of pseudodif-
ferential operator techniques to solve boundary value problems for first order differential
operators. These techniques have their origins in the single and double layer potential tech-
niques introduced to solve the classical Dirichlet and Neumann problems for the Laplace
operator. In the late nineteenth and early twentieth centuries, this subject was called po-
tential theory. The emphasis was on the analysis of the mapping properties of operators
defined by convolution with the fundamental solution. A classical treatment of this ap-
proach is given in [16], a more modern treatment in [20]. These analytic techniques were
the origin of the theory ofsingular integral operators, which is, in turn, one of the sources
of the theory of pseudodifferential operators. In their latter manifestation, these methods
came to the fore in the analysis of boundary value problems for the Dirac operator on a
manifold with boundary, see [19, 1, 2, 3, 5]. The boundary conditions we consider are
defined by pseudodifferential operators, frequently specialized to pseudodifferential pro-
jections. The common theme throughout is the reduction of a boundary value problem to
the solution of a pseudodifferential equation on the boundary itself.

We assume a familiarity with the basics of functional analysis, including the theory of
L2-Sobolev spaces, and elementary aspects of the theory of pseudodifferential operators.
Since it is the principal topic of these lectures, we recall the definition and basic properties
of Fredholm operators:

Definition 1 Let X,Y be Banach spaces andA : X → Y a bounded linear operator.
An operator,A, is aFredholm operatorprovided:

1. kerA is finite dimensional.
2. Im A is a closed subspace ofY.
3. cokerA = Y/AX is finite dimensional.

It is important to recall that if a bounded linear operator has a range of finite codimension,
then its range is automatically closed. The fundamental invariant of a Fredholm operator
is its index,which is defined by

Ind(A) = dim kerA − dim cokerA. (1)

If A : X → Y is a unbounded operator, then the domain ofA, Dom(A), is generally
not all of X. If A is a closed operator, then Dom(A) is a Banach space with respect to the
graph norm:

‖x‖2
A = ‖x‖2

X + ‖Ax‖2
Y. (2)
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If X andY are Hilbert spaces, then, with respect to this norm, the graph is as well. An
unbounded operator is Fredholm provided,A : (Dom(A), ‖ · ‖A) → (Y, ‖ · ‖Y) is a
Fredholm operator.

A useful criterion for an operator to be Fredholm is the existence of an almost inverse:

Proposition 1 A necessary and sufficient condition for A: X → Y to be Fredholm is
the existence of an operator B: Y → X, such that the differences

K1 = IdX −B A K2 = IdY −AB (3)

are compact operators.

A parametrix for an elliptic pseudodifferential operator on a compact manifold pro-
vides just such an almost inverse.

If the error terms,K1, K2, are trace class operators, then there is a very useful formula
for the index:

Ind(A) = tr K1 − tr K2. (4)

Proofs of these results and many other facts about Fredholm operators can be found in [17].

1 The Basic Example

Before going on, we consider, in detail, a simple case, whichreveals the main ideas
needed to treat the general case. We let� = D1, the unit disk in the complex plane. The
operator we study is thē∂-operator,

∂̄u = 1

2
(∂x + i ∂y)u. (5)

The Cauchy-Pompieu formula states that, ifu ∈ C
1(�), then

u(z) = 1

π

∫

D1

∂̄u(w, w̄)dxdy

w − z
+ 1

2π i

∫

bD1

u(w, w̄)dw

w − z
. (6)

From the perspective of pseudodifferential operators, this follows from the fact that[π(w−
z)]−1 is a fundamental solution for thē∂-operator,

∂̄
1

π(w − z)
= δ(w − z). (7)

As we shall see, the first term in (6) defines a bounded map fromH s(D1) → H s+1(D1),

for everys ∈ R. The second term in formula (6) defines an element of the nullspace of∂̄,
that is a holomorphic function, in the complement ofbD1, The main task before us is to
understand the behavior of this second term asz → bD1.

Using the Fourier representation

u(r, θ) =
∑

n=−∞
un(r )e

inθ , (8)

we see that

‖u‖2
L2 = 2π

∞∑

n=−∞

1∫

0

|un(r )|2rdr, (9)

and, after integrating by parts, we find that

‖∂̄u‖2
L2 = π

2

[ ∞∑

n=−∞

(
r |a′

n(r )|2 + n2|an(r )|2
r

)
dr −

∞∑

n=−∞
n|an(1)|2

]
. (10)
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Our goal is to find boundary conditions for the∂̄-operator, so that the resultant unbounded
operator onL2(D1) is Fredholm and such that the unit ball in the domain of the operator,
with respect to the graph norm, is compact inL2. If the resolvent set is non-empty, then
this implies that the operator has a compact resolvent.

For non-negative integers, defineH k(D1) to be the closure ofC∞(D1) with respect to
the norm:

‖u‖2
Hk =

∑

m+n≤k

‖∂m
x ∂

n
yu‖2

L2(D1)
. (11)

For reals ≥ 0, defineH s(D1) by interpolation. For reals, a distributionu in C
−∞(bD1)

belongs toH s(bD1) provided:

‖u‖2
Hs(bD1)

=
∞∑

n=−∞
|û(n)|2(1 + n2)s < ∞, (12)

whereû(n) = 〈u,einθ 〉.
It is not difficult to show that the first two terms on the r.h.s of (10) define a norm

equivalent to‖∇u‖L2(D1)
. A boundary condition for̄∂ defines a Fredholm operator (with

the unit ball in the domain of the operator, with respect to the graph norm, compact in
L2D) provided that functions in the domain of the operator satisfy an estimate of the form

‖u‖Hs(D1) ≤ C[‖∂̄u‖L2(D1)
+ ‖u‖L2(D1)

], (13)

for ans > 0. Equation (10) shows that the difficulty in proving this estimate results from
the boundary terms{an(1) : n > 0}, in (10). All other terms on the right hand side of (10)
are positive. Indeed if̄∂u = 0, then

u(r, θ) =
∞∑

n=0

unr neinθ . (14)

In this case the negative boundary term in (10) exactly balances the other two positive
terms.

While it is not immediate from (10), anL2-functionu such thatf = ∂̄u ∈ L2(D1),

has an important “global” regularity property. Standard interior estimates imply thatu ∈
H 1

loc(D1), and hence has a well defined restriction tobDr , for eachr < 1. Suppose that
ϕ ∈ C

∞(D1), then a simple integration by parts shows that, forr < 1, we have:

∫

bDr

u(r,eiθ )ϕ(r,eiθ )dz = −2i



∫

Dr

f ϕdxdy+
∫

Dr

u∂̄ϕdxdy


 . (15)

As u and f are in L2(D1), the limit, asr → 1, certainly exists on the right hand side
of (15), and therefore, the left hand side also has a well defined limit.

Clearly, the limiting pairing on the left hand side of (15) only depends onϕ ↾bD1,
hence we can set

ϕ =
∞∑

n=0

anz̄n. (16)

The Cauchy-Schwarz inequality then shows that
∣∣∣∣∣

∞∑

n=1

un(1)an+1

∣∣∣∣∣ ≤ ‖ f ‖L2

√√√√
∞∑

n=0

|an|2
2(n + 1)

+ ‖u‖L2

√√√√
∞∑

n=0

n|an|2
2

. (17)

This estimate proves the following basic result:



Pseudodifferential Methods for Boundary Value Problems 5

Theorem 1 Suppose that u and̄∂u are in L2(D1), then r 7→ u(r, ·), is continuous as

a map from(0,1] to H− 1
2 (bDr ).More explicitly,

∞∑

n=−∞

|un(r )|2√
1 + n2

(18)

is uniformly bounded for r∈ (0,1], and

lim
r→1−

∞∑

n=−∞

|un(r )− un(1)|2√
1 + n2

= 0 (19)

In other wordsu has distributional boundary values in the negative order Sobolev

space,H − 1
2 (bD1). As a corollary we can also use the Cauchy-Pompieu formula fordata

of this type. This leads naturally to the question: in what sense does the limit

lim
z→bD1

1

2π i

∫

bD1

u(1,eiθ )deiθ

eiθ − z
(20)

exist? For the case at hand this question can be answered by a direct calculation. For
z ∈ D1, the Cauchy kernel can expanded to give

1

eiθ − z
= e−iθ

∞∑

n=0

(e−iθz)n. (21)

Using the expansion in equation (21) we deduce that

lim
r→1−

∫

bD1

u(1,eiθ )d(eiθ )

eiθ − reiφ
=

∞∑

n=0

un(1)einφ . (22)

Indeed, ifu(1, ·) ∈ H s(bD1) for anys ∈ R, then this limit exists inH s(bD1).

We denote the projection operator defined on the right hand side of (22) by5+. As
we shall see, this operator is a pseudodifferential operator of degree zero. For the moment,
we compute its principal symbol:

σ0(5+)(eiθ , ξ) =
{

1 if ξ > 0

0 if ξ < 0.
(23)

To see this, we use oscillatory testing: chooseφ,ψ smooth with compact support, so that
ψ(x) = 1, anddφ(x) = ξ, then

σ0(Q)(x, ξ) = lim
λ→∞

e−iλφQ(ψeiλφ)(x). (24)

For the case at hand, letφ± = ±θ, and chooseψ with ψ(eiθ0) = 1, then

lim
n→∞

e−inφ±5+(ψeinφ± )(eiθ0) =
{

limn→∞
∑∞

j =−nψ j ei j θ0 = ψ(eiθ0) (+)
limn→∞

∑∞
j =nψ j ei j θ0 = 0 (−)

(25)

The operator5+ is usually called the Cauchy, or Szegő projector, though itagrees with
what is, more generally, called the Calderon projector for∂̄.

We now define boundary value problems for the∂̄-operator onD1. Let R denote a
pseudodifferential projection acting on distributions defined on the boundary. We define
an operator(∂̄,R) as the unbounded operator onL2(D1) with the domain

Dom(∂̄,R) = {u ∈ L2(D1) : ∂̄u ∈ L2(D1) andR(u ↾bD1) = 0}. (26)
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Recall that pseudodifferential operators act on spaces of distributions, hence Theorem 1
and the fact thatR is a pseudodifferential operator show that the boundary condition makes
sense. It is elementary to prove that this is a closed operator. We now compute the formal
adjoint of this operator. A functionv is in the domain of theL2-adjoint if and only if there
exists anf ∈ L2(D1) so that, for everyu ∈ Dom(∂̄,R) we have:

〈∂̄u, v〉 = 〈u, f 〉 (27)

Takingv ∈ C
∞(D1) and integrating by parts we see that

〈∂̄u, v〉 − 〈u, ∂̄∗v〉 = 〈u,e−iθ v〉bD1. (28)

For u ↾bD1 we can take any function of the formRg, whereg ∈ C
∞(bD1). Since the

boundary term must vanish, for all suchu,we see that(Id −R
∗)e−iθ v ↾bD1= 0 is necessary

as well. Hence the adjoint boundary condition is that definedby the projector Id−R
∗.We

usually suppose thatR is self adjoint, so that is the same as the boundary conditiondefined
by Id−R.

We now give a condition that implies that this is a Fredholm operator. Our condition
is expressed in terms of thecomparison operator

T = R5+ + (Id −R)(Id −5+). (29)

Theorem 2 The operator(∂̄,R) is a Fredholm operator provided thatT is an ellip-
tic pseudodifferential operator. If the resolvent set is non-empty, then the resolvent is a
compact operator.

Proof First suppose thatu lies in the nullspace of(∂̄,R). In this case∂̄u = 0 and
thereforeT(u ↾bD1) = R(u ↾bD1) = 0. As T is an elliptic operator, this shows thatu
belongs to a finite dimensional space of smooth functions. Thus the nullspace of(∂̄,R) is
finite dimensional and contained inC∞(D1).

The key to proving the theorem is to show that the range of the operator has finite
codimension and that, for data in the domain, we have an estimate like that in (13). If we
let C denote the operator defined by the Cauchy kernel, then we needtwo basic estimates:
for s ∈ R, the following operators are bounded

u ∈ H s(D1) 7→ Cu ∈ H s+1(D1)

f ∈ H s(bD1) 7→ C( f ⊗ δν) ∈ H s+ 1
2 (D1).

(30)

Hereδν is theδ-measure normal tobD1. The map fromH s(bD1) to H s+ 1
2 (D1) is denoted

K, and called the Poisson operator. The hypothesis of the theorem implies that there is a
pseudodifferential operator,U of degree 0 so that

TU = Id −K1, UT = Id −K2, (31)

whereK1, K2 ∈ 9−∞(bD1), and have finite rank.
Let v ∈ L2(D1) and set

u1 = Cv andu0 = −KUR(u1 ↾bD1). (32)

From the Cauchy-Pompieu formula it follows that, in the sense of distributions,∂̄(u0 +
u1) = v. Moreover, the fact thatu → u ↾bD1 is bounded fromH 1(D1) → H

1
2 (bD1)

and (30) imply that bothu0, andu1 belong toH 1(D1); there is a constantC so that

‖u0 + u1‖H1(D1)
≤ C‖v‖L2. (33)

It remains to check the boundary condition. To that end we state a simple but fundamental
lemma.
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Lemma 1 If T f ∈ Im R, then

T5+ f = T f. (34)

Proof The proof is an elementary computation: IfT f ∈ Im R, then

T f = RT f = T5+ f. (35)

We see that the boundary value ofu0 is −5+UR(u1 ↾bD1), and

TUR(u1 ↾bD1) = (Id −K1)R(u1 ↾bD1). (36)

Assume thatv is chosen so that

K1R(u1 ↾bD1) = 0; (37)

this amounts to imposing finitely many, bounded linear conditions. With this assumption
we see that

TUR(u1 ↾bD1) = R(u1 ↾bD1) ∈ Im R, (38)

hence the lemma implies that

T5+UR(u1 ↾bD1) = TUR(u1 ↾bD1) = R(u1 ↾bD1). (39)

Putting the pieces together, we have shown that, ifv ∈ L2(D1) satisfies the finitely many
linear conditions in (37), then there is a solutionu ∈ Dom(∂̄,R) to the equation

∂̄u = v, (40)

which satisfies‖u‖H1(D1)
≤ C‖v‖L2(D1)

. Hence the range of the operator is of finite codi-
mension and therefore closed. The nullspace is finite dimensional and this suffices to show
that the operator is Fredholm.

To show that Dom(∂̄,R) ⊂ H 1(D1), we suppose that̄∂u = f, R(u ↾bD1) = 0. Let
u1 = C f ∈ H 1(D1). Thenu0 = u − u1 satisfies,

∂̄u0 = 0 andR(u0 ↾bD1) = −R(u1 ↾bD1) ∈ H
1
2 (bD1). (41)

Since∂̄u0 = 0, we see that

−R(u1 ↾bD1) = T(u0 ↾bD1) (42)

and therefore

(Id −K2)u0 ↾bD1= −UR(u1 ↾bD1) ∈ H
1
2 (bD1). (43)

As K2 is a smoothing operator, we see that there is a constantC1, such that ifu ∈
Dom(∂̄,R), then

‖u‖H1(D1)
≤ C1[‖∂̄u‖L2(D1)

+ ‖u‖L2(D1)
]. (44)

This estimate implies that Dom(∂̄,R) ⊂ H 1(D1), which implies that the unit ball in the
domain of the operator, with respect to the graph norm, is compact inL2. If the resolvent
set is non-empty, then the resolvent is compact.

In fact much more is true: for eachs ∈ [0,∞), there is aCs, so that if∂̄u = f ∈ H s(D1),

andR(u ↾bD1) = 0, thenu ∈ H s+1 and

‖u‖Hs+1(D1)
≤ Cs[‖ f ‖Hs(D1) + ‖u‖L2(D1)

]. (45)
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As a corollary of this theorem we can identify theL2-adjoint of(∂̄,R) with the opera-
tor defined by(∂̄∗,eiθ (Id −R)e−iθ ). The condition thatT be an elliptic pseudodifferential
operator, coupled with the fact thatR is a projection implies that

σ0(R)(e
iθ , ξ) =

{
1 if ξ > 0

0 if ξ < 0.
(46)

There are many possible projections satisfying this condition.
These estimates imply a fundamental relationship between the projectorsR and5+.

Corollary 1 If T is an elliptic pseudodifferential operator, then the restriction

R : Im5+ −→ Im R (47)

is a Fredholm operator. We denote this restriction byR
5+ .

Proof The operatorQ = 5+UR is a parametrix forR5+ :

QR5+ = 5+UT5+ = 5+(Id −K2)5+
R5+Q = RTUR = R(Id −K1)R.

(48)

The conclusion follows from Proposition 1.

Definition 2 The index ofR5+ is called therelative indexof (5+,R), denoted
R-Ind(5+,R).

The relative index of the boundary projectors equals the index of the boundary value
problem.

Theorem 3 If R is a self adjoint projector defining a Fredholm boundary value prob-
lem for ∂̄ , then

Ind(∂̄,R) = R-Ind(5+,R). (49)

Proof It is easy to see that the nullspace of(∂̄,R) agrees with that ofR5+ . A function
u in the nullspace of(∂̄,R) belongs to ker̄∂ and thereforeu ↾bD1∈ Im5+. The boundary
condition,Ru ↾bD1= 0, shows thatu ↾bD1 is in the nullspace ofR5+ . On the other hand,
if f ∈ Im5+, then there is a holomorphic functionu, with u ↾bD1= f. This shows that

ker(∂̄,R) = kerR
5+ . (50)

The cokerR5+ consists of functionsf ∈ Im R such that(Id −5+) f = 0. The
nullspace of(∂̄,R)∗ consists of functionsv such that

∂̄∗v = −∂zv = 0 and(Id −R)e−iθv ↾bD1= 0. (51)

This implies thatv ∈ ker(∂̄,R)∗ if and only if z̄v ↾bD1 represents an equivalence class in
cokerR5+ . This completes the proof of the theorem.

Combining this result with (48) and the trace formula, equation (4), we obtain a trace
formula for Ind(∂̄,R) :

Ind(∂̄,R) = tr5+K25+ − tr RK1R. (52)

Remark 1 In Hyunsuk Kang’s thesis, [15], a variety of boundary projectors of this
type are constructed. She considers the following geometric situation: suppose thatγ :
S1 → C

k is a smooth, oriented real curve. LetP denote theL∞-closure of the algebra
of polynomials inC

k restricted toγ (S1), and Pγ its pullback toS1, via γ. Finally let
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Rγ denote the orthogonal projection onto theL2-closure ofPγ . The oriented curveγ (S1)

bounds a holomorphic curveX in C
k \ γ (S1) if and only if the restriction,R5+

γ :
Rγ : Im5+ −→ Im Rγ (53)

is a Fredholm operator. In this case, there is a formula for the relative index, R-Ind(5+,Rγ ),

in terms of analytic and geometric invariants ofX. For example, ifX is a smooth holomor-
phic curve of genusg then

R-Ind(5+,Rγ ) = g (54)

It is clear that the main conclusions of Theorem 2 remain trueif there is anµ < 1
so that the operatorU : H s(bD1) → H s−µ(bD1), for all s ≥ −1

2. In the 1-dimensional
case such examples are not naturally occurring, though in higher dimensions they are quite
important.

A similar discussion applies to study higher order ellipticequations as well. For ex-
ample ifP = 1 = (∂2

x +∂2
y), thenG(x, y) = [2π]−1 log |z−w| is a fundamental solution.

Green’s formula states that, ifu ∈ C
2(D1), then

u(z) =
∫

D1

1u(w)G(z, w)d Aw +
∫

bD1

[u(w)∂νwG(z, w)− ∂νwu(w)G(z, w)]dsw, (55)

hereν is the outward unit normal vector tobD1. If 1u = 0, then u is determined by
its Cauchy data(u, ∂νu) ↾bD1 . The Green’s function satisfies estimates much like those
satisfied by the Cauchy kernel. The Calderon projector,P, takes a pair of functions defined
on the boundary( f, g) to the pair(u, ∂νu) ↾bD1, whereu is the element of ker1, given by

u(z) =
∫

bD1

[ f (w)∂νwG(z, w)− g(w)G(z, w)]dsw. (56)

Boundary conditions are now defined by pseudodifferential projectionsR acting on the pair
(u, ∂νu) ↾bD1 . The BVP is elliptic if the comparison operatorT = RP+ (Id−R)(Id −P)

is elliptic. For simplicity we will largely stick to the caseof first order systems in the
sequel.

2 Manifolds with Boundary

Let� be a closed,n-dimensional manifold with boundary. As local models we have

B1 = {x ∈ R
n : ‖x‖ < 1} andB

+
1 = {x ∈ R

n : ‖x‖ < 1 andxn ≥ 0}. (57)

The interior of� has a cover by open sets{U j } and the boundary has a cover by open sets
{Vk} such that, for eachj there is a homeomorphismϕ j : U j → B1 ⊂ R

n, and for eachk
there is a homeomorphismϕk : Vk → B

+
1 ⊂ R

n
+. In the later caseϕk(Vk∩b�) ⊂ bB

+
1 . The

pairs(U j , ϕ j ) are called interior coordinate charts and(Vk, ϕk) are boundary coordinate
charts. On the nontrivial intersections of the coordinate charts we require that the induced
maps from subsets ofR

n to subsets ofRn be diffeomorphisms, e.g. IfU j ∩ U j ′ 6= ∅, then

ϕ j ◦ ϕ−1
j ′ : ϕ j ′(U j ∩ U j ′) −→ ϕ j (U j ∩ U j ′), (58)

is a diffeomorphism.
A function,r,which is non-negative (or non-positive) in the interior of� and vanishes

to order one (dr 6= 0) along the boundary is called a defining function for the boundary of
�. The normal bundle to the boundary is the line bundle along theboundary

Nb� = T� ↾b� /T b�. (59)
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The dual bundle, the co-normal bundle,N∗b�, is the sub-bundle ofT∗� ↾b� consisting
of 1-forms that annihilateT b�. It is spanned at every point,x by drx. The geometry of�
near to the boundary is described by the tubular neighborhood theorem:

Theorem 4 (The tubular neighborhood theorem) If � is a manifold with boundary,
then there is a neighborhood U of b� that is diffeomorphic to b�×[0,1). It can be realized
as a one sided neighborhood of the zero section within Nb�.

Using the identification ofU with a neighborhood of the zero section, it is easy to
show that� can be embedded as a subset of the smooth manifold without boundary:�̃ ≃
� ∐b� �. The interior of� is an open subset of̃�. If � is a compact manifold with
boundary, theñ� is a compact manifold without boundary. If we fix an orientation on�,
then�̃ ≃ � ∐b� [−�], where[−�] denotes� with the opposite orientation, is also an
oriented manifold.

We useC
∞(�),C

k(�), etc. to denote smooth, respectivelyC
k-functions on the inte-

rior of �, andC
∞(�),C

k(�), these classes of functions on the closure. IfF → � is a
vector bundle, thenC∞(�; F),C

k(�; F) are the sections ofF, that are smooth, respec-
tively. If it is clear from the context, we often omit explicit mention of the bundle from the
notation. When doing analysis on a manifold with boundary itis very useful to be able to
extend functions from� to �̃. Seeley proved a very general such result:

Theorem 5 (Seeley Extension Theorem)If � is a manifold with boundary, then there
is a continuous linear map

E : C
∞(�) −→ C

∞(�̃). (60)

For each k∈ N0 there is also a continuous linear map Ek : C
k(�) → C

k(�̃).

Recall that, fors ∈ R, the L2-Sobolev spaceH s(Rn) is defined as those tempered
distributionsu ∈ S

′(Rn) whose Fourier transform̂u is a function, which satisfies:

‖u‖2
s =

∫

Rn

|û(ξ)|2(1 + |ξ |2)sdξ < ∞. (61)

Let X be a compact manifold without boundary, having coordinate cover (U j , ϕ j ). Let
{ψ j } be a partition of unity subordinate to this cover. A distribution u ∈ C

−∞(X) belongs
to H s(X), if for every j , the compactly supported distribution(ψ j u)◦ϕ−1

j , defined onRn,

belongs toH s(Rn). It is a well known result that the Sobolev spaces are invariant under
such changes of coordinate and therefore, the spaceH s(X) is well defined as a topological
vector space. A norm, which defines this topology is given by

‖u‖2
Hs(X) =

∑

j

‖(ψ j u) ◦ ϕ−1
j ‖2

Hs(Rn). (62)

Defining function spaces on manifolds with boundary is a bit more involved, we return to
this question in Section 3

Good references for the material in this section are [14] and[22].

3 Function Spaces on Manifolds with Boundary

To extend the results of the previous section to the case of a general manifold with
boundary we introduce function spaces that are adapted to the study of boundary value
problems. Let� denote a compact manifold with boundary, which we often think of as a
subset of its double,̃�. There is a certain amount of subtlety involved in the definitions of
spaces of distributions on a manifold with boundary, which,in the end, has to do with what
one means by regularityup to the boundary. We usually think of� as a closed subset of
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�̃, but in this section we often emphasize that point by writing�. In general we assume
that a smooth metric is fixed oñ� and let∂ν denote differentiation with respect to the unit
vector field,ν, normal tob�.

The main distinction derives from whether one wishes to consider a function to be
smooth on� if the function and all its derivatives extend smoothly tob�, or one wishes
to consider a function to be smooth on� if the function and all its derivatives vanish along
b�. In the latter case, its extension by zero to all of�̃ is smooth. We denote the former
space of functions byC∞(�) and the later bẏC∞(�). The elements of the dual space of
C

∞(�) are called supported distributions and are denoted byĊ
−∞(�). The elements of

the dual space oḟC∞(�) are called extendible distributions, and are denoted byC
−∞(�).

An important difference between these two spaces concerns the action of differential
operators. As usual this is defined by duality: ifP is any differential operator thenPt maps
both spaces of smooth functions to themselves, and therefore we can define an action ofP
on eitherĊ−∞(�) or C

−∞(�) by duality:

〈Pu, ϕ〉 d= 〈u, Ptϕ〉. (63)

If u ∈ C
−∞(�), then we takeϕ ∈ Ċ

∞(�) in equation (63), while ifu ∈ Ċ
−∞(�),

then we takeϕ ∈ C
∞(�). Of courseC

∞(�) is a subset of botḣC−∞(�) andC
−∞(�). If

u ∈ C
∞(�), then the meaning ofPu depends on whether we think of it as an extendible or

a supported distribution. The difference in the two definitions is a distribution with support
onb�. For example, ifu ∈ C

∞(D1) andP = ∂̄ then

∂̄extu − ∂̄suppu = δ(r − 1)
u(1,eiθ )eiθdθ

2
. (64)

A distributionu ∈ Ċ
−∞(�) if and only if there is an elementU ∈ C

−∞(�̃) such that
suppU ⊂ �, which definesu. In this caseu is defined on an elementϕ ∈ C

∞(�) by

u(ϕ) = U(ϕ̃), (65)

whereϕ̃ is any extension ofϕ to an element ofC∞(�̃), for example the Seeley extension
Eϕ. Because suppU ⊂ �, the value ofU(ϕ̃) is independent of which extension is used.
The H s-norm is defined on supported distributions by setting

‖u‖s = ‖U‖Hs(�̃). (66)

The subspace oḟC−∞(�) for which this norm is finite is denoted bẏH s(�). The important
thing to note about this space is that in order foru to be smooth in this sense, that is
belonging toḢ s(�), for a large value ofs, it must have many derivatives in�, which
vanishat the boundary. This is because suppU ⊂ �. The spacėC∞(�) is a dense subset
of Ċ

−∞(�).
On the other hanḋC∞(�) is a closed subspace ofC

∞(�̃) and therefore the Hahn-
Banach theorem implies that ifu ∈ C

−∞(�), then there isU ∈ C
−∞(�̃) that extendsu.

We define theH s-norm for this space of distributions by

‖u‖s = inf
U extendingu

‖U‖Hs. (67)

The subspace ofC−∞(�) for which this norm is finite is denoted byH s(�). From the
definition of the norm, it is again clear that a distributionu is smooth in this sense if it has
many derivatives withsmooth extensionsto b�, rather than having to vanish to high order
alongb�. The spaceC∞(�) is dense inC

−∞(�). It is clear that for everys ∈ R, we
have a natural map:̇H s(�) → H s(�). This map turns out to be injective ifs ≥ −1

2 and
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surjective ifs ≤ 1
2 . TheL2-pairing on� betweenC∞(�) andĊ

∞(�) can be extended to
show that, for alls ∈ R, we have the isomorphisms

[H s(�)]′ ≃ Ḣ −s(�) and[Ḣ s(�)]′ ≃ H −s(�). (68)

If s > 1
2, then restriction to the boundary extends to define a continuoustracemap:

τ : H s(�) −→ H s− 1
2 (b�). (69)

Because this map is not defined fors = 1
2, it is convenient to work with spaces that

treat regularity in the tangential and normal directions slightly differently. These spaces
greatly facilitate the analysis of differential operatorsdefined onL2(�). We first define
these spaces for the half spaceR

n
+. Let x′ = (x1, . . . , xn−1), ξ

′ = (ξ1, . . . , ξn−1), and
define the tangential Fourier transform to be

ũ(ξ ′, xn) =
∫

Rn−1

u(x′, xn)e
−ix ′·ξ ′

dx′. (70)

Form a non-negative integer ands ∈ R we define

‖u‖2
(m,s) =

m∑

j =0

∫

Rn−1

∞∫

0

|∂ j
xn ũ(ξ ′, xn)|2(1 + |ξ ′|2)s− j dξ ′dxn. (71)

The spaceH(m,s)(Rn
+) is the closure ofC∞

c (R
n
+) with respect to this norm. It consists of all

distributions inC
−∞(Rn

+) such that∂ j
xn ũ is a function for 0≤ j ≤ m, and the norm in (71)

is finite. The corresponding space of supported distributions,Ḣ(m,s)(Rn
+), is defined as the

closure ofC∞
c (int R

n
+) with respect to this norm.

These spaces are useful for two reasons:

Theorem 6 If m is a positive integer and0 ≤ j < m, then the map

C
∞(Rn

+) ∋ u → ∂
j
xnu(·, xn),

for xn ≥ 0, extends as a continuous map from H(m,s)(R
n
+) → H s+m− j − 1

2 (Rn−1). More-

over, xn → ∂
j
xnu(·, xn) is continuous from[0,1) to Hs+m− j − 1

2 (Rn−1).

Of particular note is the fact thatH
1
2 (Rn

+) ⊃ H(1,− 1
2 )
(Rn

+). While the restriction to

the boundary is not defined foru ∈ H
1
2 (Rn

+), it is defined, as an element ofL2(bR
n
+), for

u ∈ H(1,− 1
2 )
(Rn

+).
Because they behave well under localization and change of coordinate, these spaces

can be transferred to a manifold with boundary. For� a compact manifold with bound-
ary we letH(m,s)(�), Ḣ(m,s)(�) denote the corresponding function spaces. Suppose that
(V, ϕ) is either a boundary or interior coordinate chart, andψ ∈ C

∞
c (V). A distributionu,

defined on�, belongs to one of these spaces if(ψu) ◦ ϕ−1 belongs to the corresponding
space inRn

+. Using the tubular neighborhood theorem, Theorem 6 extends to this situation:

Theorem 7 Let� be a compact manifold with boundary, r a defining function for

b�,
◦
� = {r > 0}. If m is a positive integer and0 ≤ j < m, then the map

C
∞(�) ∋ u → ∂ j

ν u(·, r ),

for r ≥ 0, extends as a continuous map from H(m,s)(�) → H s+m− j − 1
2 (b�). Moreover,

r → ∂
j
ν u(·, r ) is continuous from[0,1) to Hs+m− j − 1

2 (b�).
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The connection with the analysis of boundary value problemsfor differential operators
is provided by the following weak, but extremely useful regularity theorem. In the situation
described in Theorem 7, a differential operator,P of degreem is calledtransversely elliptic
if the principal symbolσ0(P)(x,dr) is invertible for all x ∈ b�. In other words, the
boundary of� is non-characteristic forP.

Theorem 8 Suppose that� is a compact manifold with boundary and P is a trans-
versely elliptic operator or order m. If u ∈ L2(�) = H(0,0)(�), and Pu∈ L2(�), then
u ∈ H(m,−m)(�).

As suggested by the identification,L2(�) = H(0,0)(�) we interpretu as an extendible
distribution when definingPu. The theorem has a very useful corollary, which is a gener-
alization of Theorem 1.

Corollary 2 If u, and Pu both belong to L2(�), then, for0 ≤ j < m the maps

r 7→ ∂
j
ν u(r, ·) are continuous from[0,1) to H−( 1

2+ j )(b�). In particular,

Ŵu = (u(r, ·), ∂νu(r, ·), . . . , ∂m−1
ν u(r, ·)) ↾r=0

is well defined as a vector valued distribution on the boundary.

The range ofŴ consists of distributional sections of a vector bundleE → b�. Sup-
pose thatR is a pseudodifferential operator defined onb�, which acts on sections ofE.
We define an unbounded operator(P,R) on L2(�), u 7→ Pu, with domain

Dom(P,R) = {u ∈ L2 : Pu ∈ L2 andRŴu = 0}. (72)

It is not difficult to show that these operators are closed. The question of principal interest
is to know when these operators are Fredholm.

Good references for the material in this section are [13], [22], and [18].

4 Estimates for Operators Satisfying the Transmission Condition

In the sequel we let� be a compact manifold with boundary,�̃, its double andE, F
complex vector bundles over̃�. We suppose thatP is a first order elliptic, differential op-
erator from sections ofE to sections ofF. In general we are rather sloppy about which
bundle is which, largely leaving them out of the notation, except when absolutely neces-
sary.

The ellipticity of P means that for each non-zeroξ ∈ T∗
x �̃, the principal symbol,

p0(x, ξ) is an invertible element of Hom(Ex, Fx). This implies that there is a parametrix
for P, that is an operatorQ ∈ 9−1(�̃; F, E) so that

P Q = IdF −K1 QP = IdE −K2 (73)

with K1, K2 smoothing operators of finite rank. (The smoothing operators are those with
Schwartz kernels inC∞(�̃× �̃) tensored with the appropriate vector bundle.) The symbol
of the operatorQ has an asymptotic expansion:

σ(Q) ∼
∑

j ≥0

q j (74)

For eachx, q0(x, ξ) = p0(x, ξ)−1; more generallyq j (x, ξ) is arational functionof ξ of
degree−1 − j . Indeed, the denominator ofq j is just a power of detp0(x, ξ). This implies
that Q is an operator satisfying the following condition.
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Definition 3 A classical pseudodifferential operator inQ ∈ 9∗(�̃) satisfies thetrans-
mission condition, if, wheneveru ∈ C

∞(�) and we denote byu0 the extension ofu, by
zero, to all of̃�, thenQu0 ↾int� extends to define an element ofC

∞(�).

There is a simple symbolic criterion for a classical pseudodifferential operator to sat-
isfy the transmission condition. It is a local condition; weintroduce coordinates,x =
(x′, xn) in a neighborhood,U of a pointp ∈ bY so thatp ↔ x = 0, U ∩ bY = {xn = 0}
andxn > 0 in the interior ofY∩U. Assume thatQ is a classical pseudodifferential operator
of orderm such that the (complete) symbol ofQ has an asymptotic expansion:

σ(Q)(x, ξ) = q(x, ξ) ∼
∞∑

j =0

q j (x, ξ), (75)

where
q j (x, λξ) = λm− j q j (x, ξ) for λ > 0. (76)

The operator satisfies the transmission condition with respect toY, provided

q j (x
′, xn, ξ

′, ξn)− e−π i (m+ j )q j (x
′, xn,−ξ ′,−ξn) for j = 0,1, . . . , (77)

vanish to infinite order along the inward pointing co-normalbundle tobY, i.e., where
xn = 0, ξ ′ = 0 andξn > 0. As shown in [14], this is a coordinate invariant condition and
so can be used to check the transmission condition for pseudodifferential operators defined
on manifolds.

In our applications the terms in the asymptotic expansion ofσ(Q) are homogeneous,
rational functions ofξ, which therefore satisfy the following condition:

q j (x, λξ) = λm− j q j (x, ξ), for all λ ∈ C
∗. (78)

We call these properties thestrengthened transmission condition. In the arguments that
follow we often use this stronger condition as it simplifies the exposition.

Γ+

R

Figure 1 The integration contour.

To understand the analytic properties underlying the transmission condition we con-
sider a functionu ∈ C

∞
c (R

n
+). If

a(x′, ξn) =
∞∫

0

u(x′, xn)e
−ixnξndxn, (79)

thena(x′, ξn) has an asymptotic expansion

a(x′, ξn) ∼
∞∑

j =1

∂
j
xnu(x′,0)

(i ξn) j
=

∞∑

j =1

a j (x
′, ξn). (80)
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Let Ŵ+ ⊂ C be the contour(−∞, R] ∪ {Reiθ : θ ∈ [π,0]} ∪ [R,∞), see Figure 1. The
functiona j satisfies

a j (x
′, ξn) = a j (x

′,1)ξ− j
n . (81)

For such a function, the oscillatory integral
∫

Ŵ+

a j (x
′, ξn)eixnξndξn, (82)

is well defined. In fact, ifxn > 0, then a simple contour deformation argument shows
that this integral vanishes. As an oscillatory integral, this remains true for a function of the
form a(x′)ξ j

n , for any j ∈ Z. Indeed, forxn > 0, andl ∈ N, as an oscillatory integral,
∫

Ŵ+

ξ
j

n eixnξndξn = [∂xn]l
∫

Ŵ+

ξ
j

n (i ξn)
−l eixnξndξn. (83)

Choosingl > j + 1, it follows easily that the right hand side is zero, forxn > 0.
Now suppose thatv is a compactly supported distribution with a representation, as an

oscillatory integral, of the form:

v(x′, xn) = 1

2π

∞∫

−∞

b(x′, ξn)eixnξndξn, (84)

whereb is a classical symbol having an asymptotic expansion

b(x′, ξn) ∼
∞∑

j =0

b j (x
′, ξn), (85)

with b j (x′, ξn) = b j (x′,1)ξm− j
n , for all j . As b is a symbol, the functions{b j (x′,1)} are

in C
∞(Rn−1). For anyN > 0, andxn > 0 we observe that

v(x′, xn) = v(x′, xn)−
1

2π

N∑

j =0

∫

Ŵ+

b j (x
′, ξn)e

ixnξndξn

= 1

2π

[ ∫

|ξn|>R

[b(x′, ξn)−
N∑

j =0

b j (x
′, ξn)]eixnξndξn+

R∫

−R

b(x′, ξn)eixnξndξn −
0∫

π

N∑

j =0

b j (x
′, Reiθ )eixn Reiθ

Rdeiθ
]

(86)

The integrals over compactly sets define smooth functions inR
n
+, and the integral over

|ξn| > R is a CN−|m|−1(R
n
+) function. As N is arbitrary, the restriction ofv to intR

n
+

extends to define an element ofC
∞(R

n
+). This simple analytic continuation argument ex-

plains the essence of the transmission condition. In this section we use this sort of contour
deformation to establish mapping properties forQ acting onH s(�) as well as its effect on
distributions supported onb� itself. The result we obtain is:

Theorem 9 Suppose that Q is a classical pseudodifferential operator of order m,
on �̃, satisfying the strengthened transmission condition with respect to�. For s ≥ 0,
Q : H s(�) → H s−m(�).
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To prove this theorem we use the following local result.

Proposition 2 Let Q be an classical pseudodifferential operator of integral degree m
onR

n satisfying the strengthened transmission condition with respect toRn
+. If s ≥ 0, and

f ∈ H s
comp(R

n
−), then, for any k∈ N0, we have:

Q f ↾R
n
+∈ H(k,s−m−k),loc(R

n
+) (87)

Proof Because pseudodifferential operators are pseudolocal, itfollows that the re-
striction Q f ↾int R

n
+ is smooth. AsC∞(R

n
−) is dense inH s(Rn

−), it suffices to show that,

for everys, andk, there is a constantCs,k, such that forf ∈ C
∞(R

n
−), andϕ ∈ C

∞
c (R

n
+),

we have
‖ϕQ( f )‖(k,s−m−k) ≤ Cs,k‖ f ‖Hs(Rn

−). (88)

Let q ∼
∑

q j , whereq j (x, ξ), is a homogeneous rational function inξ, of degreem − j .

Remark 2 The following argument is modeled on the proof of Theorem 18.2.17
in [14]. Letφ ∈ C

∞
c (R), with support in[−1,1], and total integral 1. For eachǫ > 0, we

let φǫ(x) = ǫ−1φ(ǫ−1x). To be entirely rigorous in the derivation of the formulæ below,
we should first work with the regularized functionsfǫ = f ∗xn φǫ, and then allowǫ to tend
to zero. Forǫ > 0 these functions belong toC∞

c (R
n). To highlight the important details,

we proceed somewhat formally, working directly withf ∈ C
∞
c (R

n
−). The more precise

argument is quite standard, and can be found in see [14].

We begin with a lemma. Letψ(ξ ′) be a smooth function, withψ(ξ ′) = 0, if ‖ξ ′‖ < 1,
andψ(ξ ′) = 1, for ‖ξ ′‖ > 2.

Lemma 2 If s ∈ R and f ∈ H s
comp(R

n
−), then

Q0( f ) =


 1

(2π)n

∫

Rn

q(x, ξ)(1 − ψ(ξ ′)) f̂ (ξ)eix ·ξdξ




R
n
+

(89)

belongs toC∞(R
n
+).

Proof of the Lemma For eachN, there is anR so that, if‖ξ ′‖ ≤ 2, then the poles
of {q j (x, ξ ′, ξn) : j = 0, . . . , N} lie insideDR(0). Becausef is supported in the lower
half space, its Fourier transform extends to be a holomorphic function ofξn in the upper
half space. LetC+

R denote the arc, in theξn-plane,{ξn = Reiθ , θ ∈ [π,0]}. Using the
analyticity properties off̂ and theq j , we can therefore argue as in equation (86), that for
xn > 0, we have

Q0( f )(x′, xn) = 1

(2π)n

∫

Rn−1

∫

|ξn|>R


q(x, ξ)−

N∑

j =0

q j (x, ξ)


 eixnξn(1 − ψ(ξ ′))×

f̂ (ξ)dξneix ·ξ ′
dξ ′

+ 1

(2π)n

∫

Rn−1

∫

|ξn|≤R

q(x, ξ)eixnξn(1 − ψ(ξ ′)) f̂ (ξ)dξneix ·ξ ′
dξ ′

− 1

(2π)n

∫

Rn−1

∫

C+
R

N∑

j =0

q j (x, ξ)e
ixnξn(1 − ψ(ξ ′)) f̂ (ξ)dξneix ·ξ ′

dξ ′

(90)
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By takingN large, we can make the difference appearing in the first integral vanish, when
‖ξ‖ → ∞, as rapidly as we like, thereby making the first integral as smooth as we wish.
The other two terms are integrals over compact sets, which therefore defineC∞-functions
in {xn ≥ 0}. The existence of an estimate, as above, follows from the closed graph theorem.

From the lemma it suffices to consider

Q1( f )(x) =


 1

(2π)n

∫

Rn

q(x, ξ)ψ(ξ ′) f̂ (ξ)eix ·ξdξ




R
n
+

, (91)

for f ∈ C
∞
c (R

n
−). For eachj ∈ N0, define the pseudodifferential operator:

Q j 1( f )(x) =


 1

(2π)n

∫

Rn

q j (x, ξ)ψ(ξ
′) f̂ (ξ)eix ·ξdξ




R
n
+

. (92)

For N ∈ N, the differenceQ −
∑

j<N Q j 1 is a pseudodifferential operator of order−N,
and therefore it suffices to prove estimates forQ j 1( f ), j = 0, . . .

To prove these estimates, we take the tangential Fourier transform ofQ j 1( f ). We let

q̃ j (η
′, xn, ξ) =

∫

Rn−1

q j (x
′, xn, ξ)e

−ix ′ ·η′
dx′. (93)

From the symbolic estimates, it follows that, for eachM ∈ N, there is a constant,CM , so
that

q̃ j (η
′, xn, ξ) ≤ CM

‖ξ‖m− j

(1 + ‖η′‖)M . (94)

Fors ≥ 0, there is a universal constant,C′
s so that if f ∈ H s(Rn

−), then

∫

Rn−1

0∫

−∞

| f̃ (ξ ′, xn)|2(1 + ‖ξ ′‖)2sdxndξ ′ ≤ C′
s‖ f ‖Hs(Rn

−). (95)

Moreover, f̂ (ξ ′, ξn) analytically extends to{Im ξn > 0}; for β > 0, the Cauchy-Schwarz
inequality implies the estimate:

| f̂ (ξ ′, α + iβ)|2 =

∣∣∣∣∣∣

0∫

−∞

f̃ (ξ ′, xn)e
−ixn(α+iβ)dxn

∣∣∣∣∣∣

2

≤

0∫
−∞

| f̃ (ξ ′, xn)|2dxn

2β
.

(96)

As q j (x, ξ ′, ξn) is homogeneous inξ, its poles, as a function ofξn, in the upper half
plane, are of the form{‖ξ ′‖wl (ω

′) : j = 1, . . . , L}; we let

wl (ω
′) = αl (ω

′)+ iβl (ω
′). (97)
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Here‖ξ ′‖ω′ = ξ ′. We can use contour integration to evaluate theξn-integral. Assuming,
for the moment, that all the poles ofq j are simple, we obtain that

Q j 1( f )(x′, xn) =
L∑

l=1

i

(2π)n−1

∫

Rn−1

q(l)j (x
′, xn, ξ

′, ‖ξ ′‖wl (ω
′))ψ(ξ ′)

f̂ (ξ ′, ‖ξ ′‖wl (ω
′))eixn‖ξ ′‖wl (ω

′)eix ′·ξ ′
dξ ′,

(98)

where

q(l)j (x, ξ
′, ξn) = (ξn − ‖ξ ′‖wl (ω

′))q j (x, ξ
′, ξn). (99)

Away fromξ ′ = 0, these are homogeneous symbols of degreem− j +1.Clearly it suffices
to separately estimate each term in (98). For eachM, there is a constantCM such that the
tangential Fourier transform ofq(l)j satisfies the estimate:

q̃(l)j (η
′, xn, ξ) ≤ CM

‖ξ‖m− j +1

(1 + ‖η′‖)M . (100)

This shows that the tangential Fourier transform of each term in the sum satisfies the esti-
mate:

|Q̃(l)
j 1 f (η′, xn)| ≤ C

∫

Rn−1

‖ξ ′‖m− j +1ψ(ξ ′)| f̂ (ξ ′, ‖ξ ′‖wl (ω
′))|e−xnβl (ω

′)‖ξ ′‖dξ ′

(1 + ‖ξ ′ − η′‖)M (101)

We apply the Cauchy-Schwarz inequality to the right hand side of (101) to obtain:

|Q̃(l)
j 1 f (η′, xn)|2 ≤ C

∫

Rn−1

‖ξ ′‖2(m− j +1)ψ(ξ ′)| f̂ (ξ ′, ‖ξ ′‖wl (ω
′))|2e−2xnβl (ω

′)‖ξ ′‖dξ ′

(1 + ‖ξ ′ − η′‖)M ×

∫

Rn−1

dξ ′

(1 + ‖ξ ′ − η′‖)M

(102)

For M sufficiently large, the second integral in (102) converges.By ellipticity and com-
pactness, the imaginary part of the exponentβl (ω

′) ≥ β > 0, asω′ varies over the unit
sphere. Using this estimate, and the estimate in (96) we see that

∫

Rn−1

∞∫

0

|Q̃(l)
j 1 f (η′, xn)|2(1 + ‖η′‖)2(s+ j −m)dxndη′ ≤

∫

Rn−1

∫

Rn−1

ψ(ξ ′)‖ξ ′‖2(m− j +1)(1 + ‖η′‖)2(s+ j −m)

(1 + ‖ξ ′ − η′‖)Mβ2‖ξ ′‖2 ×
0∫

−∞

| f̃ (ξ ′, yn)|2dyndξ ′dη′.

(103)

One power of‖ξ ′‖ in the denominator results from performing thexn-integral, and the
other comes from (96). To complete the proof we use the following elementary lemma:

Lemma 3 If t ∈ R and M> 2t + n, then there is a constant C so that:
∫

Rn−1

(1 + ‖η′‖)2t

(1 + ‖ξ ′ − η′‖)M ≤ C(1 + ‖ξ ′‖)2t . (104)
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The proof is left to the reader.
Interchanging the order of theη′ andξ ′ integrations in (103), we apply the lemma to

obtain that

∫

Rn−1

∞∫

0

|Q̃(l)
j 1 f (η′, xn)|2(1 + ‖η′‖)2(s+ j −m)dxndη′ ≤

C
∫

Rn−1

(1 + ‖ξ ′‖)2s

0∫

−∞

| f̃ (ξ ′, yn)|2dyndξ ′. (105)

In light of equation (95), this proves the proposition, fork = 0, under the assumption that
all poles ofq j are simple. The latter assumption is easily removed, by using Cauchy’s
formula

k!
2π i

∫

R

f (w)dw

(z −w)k+1
= ∂k

z f (z), (106)

the Leibniz formula, and symbolic estimates. It is seen to give the same result, as in the
simple case, if we replace (96) with the estimate

|∂k
ξn

f̂ (ξ ′, α + iβ)|2 ≤ Ck

0∫
−∞

| f̃ (ξ ′, xn)|2dxn

β2k+1
(107)

To estimate derivatives in thexn direction, we simply differentiate (98). Each derivative re-
places the symbol, inξ ′,with a symbol of one higher degree and the argument is otherwise
the same.

Proof of the Theorem Let f ∈ H s(�). Using the Seeley extension theorem we
know that there is a constantCs, and an extensionf ′ of f to �̃, so that

‖ f ′‖Hs(�̃) ≤ Cs‖ f ‖Hs(�). (108)

BecauseQ is a pseudodifferential operator of orderm, it follows that there is a constant
C′

s so that

‖Q f ′‖Hs−m(�̃) ≤ C′
s‖ f ′‖Hs(�̃). (109)

In light of the definition of the norm onH s(�), this shows thatQ f ′ ↾�∈ H s−m(�). If we
let

f− =
{

f ′ ↾�̃\�
0 in�,

(110)

then we need only show thatQ f− ↾�∈ H s−m(�). To prove this we observe that it is
enough to prove estimates in boundary coordinate charts.

If s − m ≤ 0, thenH(0,s−m)(�) ⊂ H s−m(�). If s − m> 0, then
⋂

k≤⌊s−m⌋+1

H(k,s−m−k)(�) ⊂ H s−m(�). (111)

The needed estimates follow immediately from the proposition, and these inclusions, thus
completing the proof of the Theorem.
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Remark 3 The results in Theorem 10 can easily be extended, by duality to s ≥
−1

2. The strengthened transmission condition is invariant under transposition, soQt also
satisfies it. The facts that[H s(�)]′ = Ḣ −s(�) and H s(�) ≃ Ḣ s(�) for s ∈ [−1

2,
1
2],

therefore allow us to extend the theorem tos ≥ −1
2.

Using essentially the same argument we can treat the case of asingle layer potential:

Theorem 10 Suppose that Q is a classical pseudodifferential operator of order m, on
�̃, satisfying the strengthened transmission condition with respect to�. If r is a defining
function for b�, and f ∈ C

∞(b�), then Q( f ⊗ δ(r )) extends to define a function in
C

∞(�). If s ≥ −1
2 and f ∈ H s(b�), then, for k ∈ N0, we have that Q( f ⊗ δ(r )) ∈

H(k,s−m−k− 1
2 )
(�).

Remark 4 Similar results hold for multiple layer potentials, i.e. distributions of the
form Q( f ⊗ δ[ j ](r )). Detailed proofs of these results, in somewhat greater generality are
given in [14].

5 The Calderon Projection

We now let Q denote a parametrix for a first order differential operator,P acting
between sections of a vector bundlesE, andF :

P : C
∞(�̃; E) −→ C

∞(�̃; F), (112)

A typical example is a Dirac operator.

Example 1 On an-dimensional, complex Kähler manifold,X, the bundle of complex
spinors is isomorphic to the direct sum of the(0,q)-forms:

S/ ≃
n⊕

q=0

30,qX. (113)

In this case the Dirac operator,ð is nothing but∂̄ + ∂̄∗. This is evidently a self adjoint
operator. Notice that the collections of even and odd degreeforms define subbundles ofS/ :

S/e =
n/2⊕

q=0

30,2qX S/o =
n/2⊕

q=0

30,2q+1X; (114)

these are often called the bundles ofevenandoddspinors. The Dirac operator then maps
sections ofS/e to S/o, and vice versa:

ð
eo : C

∞(X; S/eo) −→ C
∞(X; S/oe). (115)

The operatorsðeo are called thechiral Dirac operators. At least formally[ðeo]∗ = ðoe.

Indeed, ifX is compact, thenðeo are Fredholm operators with

Ind(ðe) = dim kerðe − dim kerðo =
n∑

j =0

dim H 0,q(X)(−1)q. (116)

To simplify the discussion a little bit, we assume thatP is actually invertible, so that
Q can be taken to be a fundamental solution; that is the error terms in (73) actually vanish.
For the case of a Dirac operator this can always be arranged.
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The operatorQ is a classical pseudodifferential operator of order−1. Indeed, its sym-
bol has an asymptotic expansion:

σ(Q)(x, ξ) ∼
∞∑

j =0

q j (x, ξ), (117)

with q j (x, ξ) a rational functional ofξ, homogeneous of degree−1− j . The denominator
of q j is a power of det(p0(x, ξ)).

We suppose that a Riemannian metric is fixed on�̃, and Hermitian inner products
on E, F, though this data is often suppressed in what follows. When needed〈·, ·〉E, e.g.
denotes the fiber inner product onE. If H is a Hilbert space, then〈·, ·〉H denotes the Hilbert
space inner product. Fix a defining functionr for b� in �̃, such thatdr has unit length
alongb�.

We let�+ denote the subset of̃� wherer ≥ 0, and�− the subset wherer ≤ 0. We
also letYǫ denote the hypersurface{r = ǫ}. As Q is a fundamental solution, it is clear that
u = Q(g ⊗ δ(r )) belongs to the nullspace ofP on �̃ \ b�. We denote the restrictions
to the components of the complement ofb� by u±. It follows from Theorem 10 that if
g ∈ H s(b�; F ↾b�), thenu± ∈ H(1,s− 1

2 )
(�±; E). Let τǫ denote restriction to{r = ǫ}.

From Theorem 7 it follows thatτǫu is well defined as an element ofH s(Yǫ),moreover the
maps

[0,1] ∋ ǫ 7→ τǫu+
[−1,0] ∋ ǫ 7→ τǫu−

(118)

are continuous. Note, however, that generallyτ0u+ 6= τ0u−.
We need to establish the properties of the maps

P± f = lim
ǫ→0±

τǫQ(σ0(P,±dr)( f ⊗ δ(r ))). (119)

Here f is a distributional section ofE ↾b�, andσ0(P,dr) is the principal symbol ofP
in the co-normal directiondr. If u± belongs to the nullspace ofP on�±, then it follows
from Green’s formula, and the fact thatQ is a fundamental solution that

u±(p) = Q
(
σ0(P,±dr)[u± ↾b�± ⊗δ(r )]

)
(p) for p ∈ �±. (120)

HenceP±u± = u± ↾b�± . This shows thatP± are projection operators. These are the
Calderon projectors for the operatorP.

As Q is a fundamental solution,

P Q [σ0(P,dr) f ⊗ δ(r )] = σ0(P,dr) f ⊗ δ(r ). (121)

Hence, if f is a smooth section ofE alongb� andϕ is a smooth section ofF in �̃, then
∫

b�

〈σ0(P,dr) f, ϕ〉F = lim
ǫ→0+

∫

{|r |>ǫ

〈Q(σ0(P,dr) f ⊗ δ(r )), Ptϕ〉E

= lim
ǫ→0+

[ ∫

{r=ǫ}

〈Q(σ0(P,dr) f ⊗ δ(r )), σ (Pt ,dr)ϕ〉E−

∫

{r=−ǫ}

〈Q(σ0(P,dr) f ⊗ δ(r )), σ (Pt ,dr)ϕ〉E

]

= 〈σ0(P,dr)(P+ + P−) f, ϕ〉L2(b�;F).

(122)
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As ϕ is an arbitrary smooth section ofF andσ0(P,dr) is invertible, we see that

f = (P+ + P−) f. (123)

Arguing as in the previous section we can use contour integration in theξn-variable to
obtain a formula forQ(g ⊗ δ(r )). Hereg is a smooth section ofF ↾b� . As before, this is
a local problem, we introduce coordinates(x′, xn), in a neighborhood ofU of p ∈ b�+
so that

�± ∩ U = {±xn ≥ 0}. (124)

We letψ ∈ C
∞(Rn−1) be a function that is 0 in a neighborhood of 0 and 1 outside the ball

of radius 2; we can again show that, forxn 6= 0, the functions

Q(g ⊗ δ(r ))− 1

(2π)n

∫

Rn−1

∞∫

−∞

q(x′, xn, ξ
′, ξn)ĝ(ξ ′)ψ(ξ ′)eixnξndξneix ′·ξ ′

dξ ′ (125)

extend smoothly to both�±. Thus the restrictions to{xn = 0} are themselves smoothing
operators.

We study the symbolic properties ofP± by evaluating theξn-integrals:

1

(2π)n

∫

Rn−1

∞∫

−∞

q j (x
′, xn, ξ

′, ξn)ĝ(ξ ′)ψ(ξ ′)eixnξndξneix ′·ξ ′
dξ ′, (126)

for xn 6= 0, by using contour integration. Ifxn > 0 then, for eachξ ′, we use a contour
that includes a semi-circle in the upper half plane enclosing the poles ofq j (x′, xn, ξ

′, ξn),
whereas ifxn < 0, then we use a contour in the lower half plane enclosing the poles in
the lower half plane. In fact, the locations of the poles of the q j do not depend onj , but
coincide with the zeros of detp0(x′, xn, ξ

′, ξn). Since

p0(x
′, xn, ξ

′, ξn) = ‖ξ ′‖p0(x
′, xn,

ξ ′

‖ξ ′‖ ,
ξn

‖ξ ′‖ ), (127)

the poles are also homogeneous of degree 1 in‖ξ ′‖. As P is elliptic, p0(x, ω′, ξn) is
invertible forξn on the real axis, hereω′ = ξ ′/‖ξ ′‖. Hence (ifb� is connected) the number
of zeros in each half plane does not depend on(x′, ω′). We let{η±

l (ω
′) : l = 1, . . . , L±}

denote the zeros of detp0(x′,0, ω′, ξn) in the upper (lower) halfξn-plane. The zeros may
also depend onx′, but we suppress that dependence for the time being. Evidently the sets

Z± =
⋃

ω′∈Sn−1

{η±
l (ω

′) : l = 1, . . . , L±} (128)

have compact closures disjoint from the real axis.
Let3± be an interval on the real axis along with a semi-circle in± Im ξn > 0, enclos-

ing Z±. If R> 0, thenR3± denotes the contour scaled by the factorR. As an oscillatory
integral we see that, for±xn > 0, we have

1

(2π)n

∫

Rn−1

∞∫

−∞

q j (x
′, xn, ξ

′, ξn)eixnξndξnĝ(ξ ′)ψ(ξ ′)eix ′·ξ ′
dξ ′ =

1

(2π)n

∫

Rn−1




∫

‖ξ ′‖3±

q j (x
′, xn, ξ

′, ξn)eixnξndξn


 ĝ(ξ ′)ψ(ξ ′)eix ′·ξ ′

dξ ′. (129)
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It is not difficult to see that, forξ ′ 6= 0, the limits asxn → 0± exist, and define homoge-
neous symbols of degree− j :

q̃± j (x
′, ξ ′) = 1

2π

∫

‖ξ ′‖3±

q j (x
′,0, ξ ′, ξn)dξn, (130)

For eachN ∈ N we can also consider the remainder term:

RN
± g = lim

xn→0±

1

(2π)n

∫

Rn−1

∞∫

−∞


q(x′, xn, ξ

′, ξn)−
N∑

j =0

q j (x
′, xn, ξ

′, ξn)




× ĝ(ξ ′)ψ(ξ ′)eixnξndξneix ′·ξ ′
dξ ′

(131)

For large enoughN, we can simply setxn = 0 and obtain an absolutely convergent integral
giving a symbol of order−1 − N onb� :

r N(x′, ξ ′) = 1

2π

∫

Rn−1

∞∫

−∞


q(x′,0, ξ ′, ξn)−

N∑

j =0

q j (x
′,0, ξ ′, ξn)


 dξnψ(ξ

′) (132)

This shows thatP± are classical pseudodifferential operators of order 0, with symbols̃q±
satisfying

q̃±(x′, ξ ′) ∼
∞∑

j =0

q̃± j (x
′, ξ ′)σ0(P,±dr). (133)

We now carry out the detailed computation of the principal symbol, which is homoge-
neous of degree zero. For eachω′ ∈ Sn−2 we letM±(x′, ω′) denote the span of generalized
nullspaces of

{p0(x
′,0, ω′, η±

l (ω
′, x′)) : l = 1, . . . , L±}. (134)

The fiberE(x′,0) is the direct sumM+(ω′, x′) ⊕ M−(ω′, x′). The subspacesM±(ω′, x′)
consists of directionsv such that the system of ODEs:

p0(x
′,0, ω′, ∂xn)v(xn) = 0

v(0) = v,
(135)

has a solution, which is exponentially decaying as±xn → ∞. The principal symbol ofQ
is [p0(x, ξ)]−1 and therefore, up a constant of modulus 1,

q̃±0(x
′, ω′) = 1

2π

∫

3±

[p0(x
′,0, ω′, ξn)]−1dξn. (136)

are easily seen to be projections ontoM±(x′, ω′), alongM∓(x′, ω′).
A good treatment of the Calderon projector, in the general case, can be found in [14];

the case of Dirac operators can be found in [5].

6 Fredholm Boundary Value Problems for First Order Operators

We now examine boundary value problems for the elliptic firstorder operatorP,
considered in the previous section. The domain of the maximal extension ofP as an
unbounded operator onL2, Dommax(P), consists ofL2-sectionsu of E → �, such
that the distributional derivativePu is in L2 as well. It follows from Corollary 2 that

if u ∈ Dommax(P), thenu has distributional boundary values inH − 1
2 (b�). Hence, ifR is
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a pseudodifferential operator acting on sections ofE ↾b�, then we can define the domain
of a closed, unbounded operator acting onL2(�), by

Dom(P,R) = {u ∈ Dommax(P) : R(u ↾b�) = 0}. (137)

We use the notation(P,R) to denote this unbounded operator acting onL2(�).

In this section we consider boundary conditions defined by pseudodifferential projec-
tions. This is not a serious restriction, since the nullspace,NR, of R is a closed subspace.
Under fairly mild conditions, (for example: 0 is isolated inthe spectrum ofR), the or-
thogonal projection,Rpr, ontoNR is a pseudodifferential operator. Evidently(P,R) and
(P,Rpr) are the same operator onL2. It is not necessary to assume thatR is a classical
pseudodifferential operator, but merely that it acts onD

′(b�). We give a condition onR
that insures that(P,R) is a Fredholm operator.

As in the example of̄∂ on D1, our analysis centers on the comparison operator. We
let P denote the Calderon projector forP on�. If R is a projector defining a boundary
condition forP, then we consider the operator:

T = RP + (Id −R)(Id −P). (138)

Assuming thatR : H s(b�)→ H s(b�) for all s ≥ −1
2, it follows from the fact thatP is a

classical pseudodifferential operator of order 0, thatT preserves the same Sobolev spaces.

Definition 4 We say thatR isµ-elliptic if T has parametrixU, for which there exists
aµ ∈ R, such that for everys ≥ −1

2,

U : H s(b�) → H s−µ(b�), (139)

boundedly.

In this case we can selectU so that

UT = Id −K1 andTU = Id −K2, (140)

whereK1, K2 are finite rank, smoothing operators.
The classical elliptic case corresponds toµ = 0. A small modification of the∂̄-

Neumann condition on a strictly pseudoconvex, almost complex manifold gives an example
whereµ = 1

2, see [9, 8, 10].

Theorem 11 Let � be a smooth manifold with boundary and P: C
∞(�; E) →

C
∞(�; F) a first order elliptic differential operator, with fundamental solution Q. Suppose

that R is a pseudodifferential projection acting on sections of E↾b� . If R is µ-elliptic,
withµ ≤ 1, then(P,R) is a Fredholm operator; ifµ < 1, then the unit ball in the domain
of the operator, with respect to the graph norm, is compact inL2. If the resolvent set is
non-empty, then the operator has a compact resolvent.

Before proceeding with the proof of this theorem we observe that Lemma 1 has the
following generalization:

Lemma 4 If T f ∈ Im R thenTP f = T f.

Proof This follows immediately from the fact thatRT = TP.

Proof of the Theorem First we observe that(P,R) has a finite dimensional null-
space. Suppose thatu ∈ Dom(P,R) and Pu = 0. Corollary 2 implies thatu has dis-

tributional boundary values inH − 1
2 (b�), which therefore satisfyR(u ↾b�) = 0. Since

u ∈ kerP, it is clear thatP(u ↾b�) = u ↾b� . Hence

R(u ↾b�) = T(u ↾b�) = 0. (141)
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On the other hand (140) then implies that

(Id −K1)u ↾b�= 0. (142)

As K1 is a smoothing operator, the nullspace of(Id −K1) is finite dimensional. The exis-
tence of the fundamental solutionQ easily implies that elements of kerP are determined
by their boundary values onb�. This shows that the nullspace of(P,R) is finite dimen-
sional.

Now we turn to the proof that the range is of finite codimension, and therefore closed.
Let f ∈ L2(�, F), andu1 = Q f, where, as usual, we extendf, by zero, to all of̃�, and

u0 = −Qσ(P,dr) [UR(u1 ↾b�)⊗ δ(r )] . (143)

We need to show thatu = u0 + u1 ∈ Dom(P,R). That Pu = f, in the sense of distri-
butions, is clear. From Theorem 9 it follows thatu1 ∈ H 1(�), and thereforeUR(u1 ↾b�

) ∈ H
1
2−µ(b�). Hence Theorem 10 and the embedding resultH(1,−µ)(�) ⊂ H 1−µ(�),

imply thatu0 ∈ H 1−µ(�). If µ ≤ 1, thenu ∈ L2(�). To complete the argument, we need
to show thatR(u ↾b�) = 0. This is true, provided thatf satisfies finitely many bounded
linear conditions.

We note that
TUR(u1 ↾b�) = (Id −K2)R(u1 ↾b�). (144)

Recall thatK2 is of finite rank, hence the requirement

K2(R(u1 ↾b�)) = K2R(Q f ↾b�) = 0 (145)

is a finite set of linear conditions onf. As the mapf 7→ Q f ↾b� is bounded fromL2(�)

to H
1
2 (b�), these are evidently defined by bounded linear functionals. Let S denote the

subset ofL2(�; F) where these conditions are satisfied. This is clearly a closed subspace
of finite codimension.

If f ∈ S, then (144) and (145) imply thatTUR(u1 ↾b�) ∈ Im R. Lemma 4 then
implies that

R(u0 ↾b�) = −RPUR(u1 ↾b�)

= −TPUR(u1 ↾b�)

= −TUR(u1 ↾b�)

= −R(u1 ↾b�).

(146)

To pass to the final line we use (145). Thus, iff ∈ S, thenR(u ↾b�) = 0, and therefore
S is a subspace of the range of(P,R). Hence the range of the operator is itself of finite
codimension and therefore it is closed. This completes the proof that(P,R) is a Fredholm
operator providedµ ≤ 1.

Suppose thatu ∈ Dom(P,R) and letu1 = QP(u) ∈ H 1(�). The difference,u − u1
is in the (formal) nullspace ofP, hence

P(u − u1) ↾b�= (u − u1) ↾b� andR(u − u1) ↾b�= −R(u1 ↾b�). (147)

A priori, (u − u1) ↾b�∈ H − 1
2 (b�). The identities in (147) imply that

T(u − u1) ↾b�= −R(u1 ↾b�) ∈ H
1
2 (b�). (148)

Applying U, we see that

(Id −K1)(u − u1) ↾b�= −UR(u1 ↾b�) ∈ H
1
2−µ(b�). (149)

As K1 is a smoothing operator, this shows that(u − u1) ↾b�∈ H
1
2−µ(b�). Theorem 10

implies thatu − u1 ∈ H 1−µ(�) and thereforeu is as well. Thus the domain of(P,R) is
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contained inH 1−µ(�; E). If µ < 1, thenH 1−µ is compactly embedded intoL2, showing
that the unit ball in the domain of the operator, with respectto the graph norm is compact
in L2. If ther resolvent set is non-empty, then the resolvent of(P,R) is a compact operator.
This completes the proof of the theorem.

Using the same argument we can also prove higher norm estimates.

Theorem 12 Under the hypotheses of Theorem 11, if f∈ H s(�; F) satisfies finitely
many linear conditions, then there exists a solution u to

Pu = f andR(u ↾b�) = 0. (150)

For each s≥ 0 there is a Cs such that this solution satisfies the estimate

‖u‖Hs+1−µ ≤ Cs‖ f ‖Hs. (151)

For s ≥ 0, there is a C′
s such that if u∈ L2, R(u ↾b�) = 0, and Pu ∈ H s(�) then

u ∈ H s+1−µ(�) and

‖u‖Hs+1−µ ≤ C′
s[‖Pu‖Hs + ‖u‖L2]. (152)

Proof We prove the last statement. Ifu1 = QPu, thenu1 ∈ H s+1(�). Moreover,
P(u − u1) = 0 and

T(u − u1) ↾b�= R(u − u1) ↾b�= −Ru1 ↾b� . (153)

Hence

(u − u1) ↾b�= −URu1 ↾b� +K1(u − u1) ↾b� . (154)

Sinceu = (u − u1)+ QPu,

(u − u1) = Q(σ (P,dr)[(u − u1) ↾b�] ⊗ δ(r )), (155)

and K1 is smoothing operator, we easily obtain that there is a constant C′
s so that (152)

holds.

The analysis of(P,R) also leads immediately to an analysis of the Dirichlet problem

for P : given f ∈ H s(�) andg ∈ H s+ 1
2 (b�) ∩ Im R find u ∈ H s+1−µ(�) such that:

Pu = f andR(u ↾b�) = g. (156)

The analysis above shows that if( f, g) satisfies finitely many bounded linear conditions
ℓi ( f, g) = 0, i = 1, . . . , N, then a solution to this problem exists. The dimension of the
solution space equals the dimension of the nullspace of(P,R).

If R is a classical pseudodifferential operator, then we can easily give symbolic condi-
tions forR to be 0-elliptic operator. The conditions are that for every(x′, ξ ′) ∈ T∗b�\{0},
the restrictions

σ0(R)(x
′, ξ ′) ↾Imσ0(P)(x′,ξ ′) and(Id −σ0(R)(x

′, ξ ′)) ↾Im(Id −σ0(P)(x′,ξ ′)), (157)

are injective. This of course implies thatσ0(T)(x′, ξ ′) is invertible away from the zero
section. If the projections are orthogonal, thenσ0(R)(x′, ξ ′) ↾Imσ0(P)(x′,ξ ′) gives an iso-
morphism onto the image ofσ0(R)(x′, ξ ′) if and only if the complementary restriction
(Id −σ0(R)(x′, ξ ′)) ↾Im(Id−σ0(P)(x′,ξ ′)) gives an isomorphism onto the orthogonal comple-
ment Im(Id −σ0(R)(x′, ξ ′)).
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Example 2 The most important example of an elliptic boundary condition for a first
order system arises in the work of Atiyah, Patodi and Singer.In earlier work, Atiyah
and Bott showed that there is a topological obstruction to the existence of a local, ellip-
tic boundary condition for the Dirac operator on an even dimensional manifold, see [6].
Nonetheless, we can define elliptic boundary conditions using pseudodifferential projec-
tions. In this context one usually supposes that the Riemannian metric,g, reduces to a
product in a neighborhood ofb�, so that a neighborhood ofb� is foliated by totally
geodesic hypersurfaces “parallel” tob�. We let r denote a coordinate labeling these hy-
persurfaces, with‖dr‖g = 1, in the collar neighborhood. If� is an even dimensional
spin or spinC manifold, then the chiral Dirac operator,P is an elliptic, first order operator,
mapping sections of the bundle of even spinors to the bundle of odd spinors. We letc(dr)
denote Clifford multiplication by the 1-formdr; it defines unitary isomorphisms between
the bundles of even and odd spinors. In a neighborhood ofb�, the Dirac operator takes
the form:

P = c(dr)[∂r + B], (158)

whereB is a self adjoint operator acting on sections of the spin-bundle overb�. The spin-
bundle over the boundary is isomorphic to the bundle of even (or odd) spinors restricted
to the boundary. Sinceb� is compact without boundary, the operatorB has a pure point
spectrum extending to±∞. We let R denote the orthogonal projection onto the span of
the eigenspaces ofB, with non-negative eigenvalues. This is a classical pseudodifferential
projection, which has the same principal symbol as the Calderon projector. HenceR is
0-elliptic. It defines the Atiyah-Patodi-Singer boundary condition.

Example 3 As noted above, it is not necessary forR to be a classical pseudodiffer-
ential operator. In a series of papers, [9, 8, 10, 7], the caseof a strictly pseudoconvex,
SpinC-manifold is analyzed. In this context, a modification of the∂̄-Neumann condition
can be defined that gives a12-elliptic operator. In this case, the boundary projectionR

belongs to the Heisenberg algebra defined by the contact structure on the boundary. The
operatorU is a graded elliptic operator in the extended Heisenberg calculus.

While the integrability of the complex structure is not necessary for our analysis of
boundary conditions forð, we restrict our attention to the case of a compact Kähler mani-
fold,�, with a strictly pseudoconvex boundary. The usual convention is to use a defining
function ρ for b�, which is negative in int�. Strict pseudoconvexity is the condition
that, for large enoughλ, the complex Hessian,∂∂̄eλρ, is positive definite alongb�. The
one formθ = i ∂̄ρ ↾b� is real; the strict pseudoconvexity of the boundary impliesthat
subbundleH = kerθ of T b� is a contact structure. There is a special calculus of pseudo-
differential operators,9∗

H , called the Heisenberg calculus defined on a contact manifold,
see [4, 21]. This calculus plays an essential role in the analysis of the∂̄-operator. A strictly
pseudoconvex manifold has an infinite dimensional space of holomorphic functions. As in
the 1-dimensional case, a holomorphic function is determined by its boundary values on
b�. We let S denote the Szegő projector. This is an orthogonal projection operator with
range equal to the set of boundary values of holomorphic functions on�. If the complex
dimension of� is greater than one, then the Szegő projector isnot a classical pseudodif-
ferential operator, but rather an element of90

H (b�).
As noted in Example 1, the bundle of spinors on a complex manifold can be identified

with S/ ≃ ⊕30,q�. Thus a spinor can be decomposed into(0,q)-types:

σ = σ 0,0 + σ 0,1 + · · · + σ 0,n. (159)
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The ∂̄-Neumann condition for(0,q)-forms is the requirement that

[∂̄ρ⌋σ 0,q] ↾b�= 0. (160)

A moments thought shows that this does not impose any condition on(0,0)-forms, and for
this reason, does not lead to a Fredholm boundary value problem forð = ∂̄ + ∂̄∗ acting
on sections ofS/. Indeed, any holomorphic function,f satisfiesð f = 0 and the boundary
condition (160). This situation admits of a simple remedy: we use the condition in (160)
for 2 ≤ q ≤ n. Forq = 0 we impose the condition:

S[σ 0,0 ↾b�] = 0. (161)

In order for the boundary value problem forð to be formally self adjoint, we need to modify
the boundary condition forq = 1 to

(Id −S)[∂̄ρ⌋σ 0,1 ↾b�] = 0. (162)

This boundary condition is defined by the projectorR :

R =




S 0 0 . . . 0
0 (Id−S)∂̄ρ⌋ 0 . . . 0
0 0 ∂̄ρ⌋ . . . 0
...

...
...

. . .
...

0 0 0 . . . ∂̄ρ⌋



, (163)

acting on sections ofS/ ↾b� .

If we let P be the Calderon projector forð, thenT = RP+ (Id −R)(Id−P). In [9, 8,
10, 7] it is shown that the operatorR is 1

2-elliptic; that is:T has a parametrix,U, such that

U : H s → H s− 1
2 for s ∈ R. This result is proved using the extended Heisenberg calculus.

The analysis is closely related to the analysis of the∂̄-Neumann problem on(0,1)-forms
given by Greiner and Stein in [12].

As in Example 1, the operator(ð,R) is self adjoint, but can be split into its chiral parts
(ðeo,R

eo). These operators are also Fredholm, moreover,

(ðeo,R
eo)∗ = (ðoe,R

oe). (164)

In the case of a compact Kähler manifold with strictly pseudoconvex boundary, the index
of (ðe,R

e) is nothing but the holomorphic Euler characteristic of�, with the contribution
of the infinite dimensional groupH 0,0(�) removed:

Ind(ðe,R
e) =

n∑

q=1

dim H 0,q(�)(−1)q. (165)

It is not necessary to use the classical Szegő projector in the definition ofR in order to
get a Fredholm boundary value problem. LetS

′ be a projector in9∗
H (b�) that resembles,

symbolically, a classical Szegő projector. If we letR
′ denote the projector defined in

equation (163), withS replaced byS′, then (ð,R
′) is again a Fredholm operator. The

restriction

S : Im S
′ −→ Im S, (166)

is also a Fredholm operator, we denotes its index by R-Ind(S′,S). Generalizing a classical
result of Agranovich and Dynin, one can show that

Ind(ð,R)− Ind(ð,R
′) = R-Ind(S′,S). (167)
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While they are wildly different types of operators, there iseven a sense in whichR′

andP have a relative index, and indeed:

Ind(ð,R
′) = R-Ind(P,R

′). (168)

In fact, we can use this identity to express the index of(ð,R
′) in terms of a trace on the

boundary:
Ind(ð,R

′) = tr PK1P − tr R
′K2R

′. (169)

This follows, as before, from the fact that

(PUR
′)R′

P = P(Id −K1)P andR
′
P(PUR

′) = R
′(Id −K2)R

′. (170)

A careful discussion of these results would take us too far afield, details can be found in
the papers cited above.
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