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1.1 Introduction

The object of these lectures is to give an introduction to the theory of holomorphic functions of several
variables. Unlike the theory for functions of one complex variable, there are no ‘physical problems’ underlying
this subject. The earliest work in the subject is due primarily to Poincaré. He was interested in filling gaps
in the proofs of several important results in the theory of Riemann surfaces. These questions involved the
study of mermorphic functions on the Jacobian variety which could in turn be rephrased as questions about
meromorphic functions on Cn. Among other things Poincaré proved a generalization of the following theorem
of Weierstraß :

Theorem 1.1.1. Suppose that f(z) is a meromorphic function in the whole complex plane C then there
exist two entire functions p(z), q(z) such that

f(z) =
p(z)

q(z)
.

He also considered the problem of generalizing the Riemann mapping theorem:

Theorem 1.1.2. Suppose that D ⊂ C is simply connected and ∂D consists of more than two points, then
there exists a holomorphic function defined in D which carries D one to one, onto the unit disk.

While the Weierstraß theorem generalized, an entirely different proof was required. The Riemann map-
ping theorem is simply false in more than one variable. The problems of uniformization and biholomorphic
equivalence remain active areas of research.

In addition to the two problems considered by Poincaré , there were two other, one variable theorems
that formed the main impetus in the development of several complex variables. The first was the Mittag
Leffler theorem

Theorem 1.1.3. Let {zk} be a set of points in C with no finite point of accumulation and {pk(z)} a set
of polynomials without constant term. Then there exists a meromorphic function f(z) with singularities at
{zk} and principal part at zk given by pk(

1
z−zk

).

The other was the theory of analytic continuation and its extension to the theory of Riemann surfaces.
The theory of compact Riemann surfaces, should more properly be considered as a motivation for algebraic
geometry whereas in several complex variables one is generally more concerned with the non–compact case.
There are of course, many points of contact between these two subjects though they remain quite distinct.
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The first few lectures are devoted to a quick review of the one variable theory. The proofs we give for the
main theorems are not the usual, one variable arguments but rather introduce techniques which generalize
to the many variables case. As will soon become apparent the main thrust is directed towards the analysis
of the ∂–equation. In one complex dimension it reads:

∂z̄u =
1

2
(∂x + i∂y)u = f.

In one form or the other we will be studying this equation for most of the semester.
The next order of business is to understand the local theory of holomorphic functions of several vari-

ables. As in the one variable case, there are several different characterizations of holomorphy, though their
equivalence is a bit subtler. Much of the local theory follows from a simple generalization of the Cauchy
integral formula. However there are some notable differences which start to appear at this stage. They
mostly have to do with the problem of extending holomorphic functions. Next we introduce several different
different notions of geometric and analytic convexity. Of course we will consider the local theory of the
∂–equation which is already a good deal richer than in the one variable case.

The Bergmann kernel function and its elementary properties will be introduced. We then consider the
analytic geometry of the unit ball and the polydisk in order to show that these are biholomorphically inequiv-
alent. The next several topics are purely several variables and have no one dimensional analogues. These
are concerned with the boundary behavior of holomorphic functions, CR–structures and the Lewy extension
theorem. These results give an indication of the importance of geometric notions like pseudoconvexity.

Finally we present Hörmander’s L2–method for solving the ∂–equation in pseudoconvex domains. These
results are then applied to solve the “Cousin problems” in this context. The solutions of these problems bring
us very close to generalizations of the Weierstraß and Mittag–Leffler theorems. However to complete the
picture we need some basic understanding of the geometry of analytic varieties. The fundamental tools for
this study are the Weierstraß preparation and division theorems and some elementary commutative algebra.
Hopefully we will finish the course by proving that, under suitable hypotheses, a mermorphic function defined
in a pseudoconvex domain in Cn is the quotient of two holomorphic functions.

1.2 The Cauchy Integral Formula

The fundamental tool for studying holomorphic functions in one variable is the Cauchy integral formula.
This formula is actually a special case of the Stokes formula. Recall that if ω = adx+ bdy is a smooth one
form defined in a neighborhood of a bounded domain, Ω ⊂ R2 with a smooth boundary then

dω = (bx − ay)dx∧ dy.

Stokes’ formula states that ∫
Ω

dω =

∫
∂Ω

ω.

In order to evaluate the line integral we need specify an orientation for the boundary of Ω. The ordered basis
{∂x, ∂y} defines a global orientation for R2. Along ∂Ω we can define an outward pointing unit normal vector
field ν. The orientation for ∂Ω is fixed by choosing the unit tangent vector field τ so that the ordered basis,
{ν, τ} give the aforementioned orientation to R2 along ∂Ω.

If ∂Ω has a single component, then we can parametrize it by a map (x(t), y(t)) : [0, 1]→ ∂Ω. The map
has the correct orientation provided

(x′(t), y′(t)) = λ(t)τ(t),

where λ(t) > 0. The line integral above is simply:

1∫
0

[a(x(t), y(t))x′(t) + b(x(t), y(t))y′(t)]dt.
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More useful in the study of functions of a complex variable is a version of Stoke’s theorem making use
of complex notation. Essentially we introduce complex valued coordinates for points in the plane:

z = x+ iy, z̄ = x− iy.

Since x = 1
2
(z + z̄) and iy = 1

2
(z − z̄) any function in R2 can be thought of as a function of these variables,

F (z, z̄) = f(
1

2
(z + z̄),−i

1

2
(z − z̄)).

We have coordinate vector fields and differentials given by:

(1.2.1)
∂z =

1

2
(∂x − i∂y), ∂z̄ =

1

2
(∂x + i∂y)

dz = (dx+ idy), dz̄ = (dx− idy).

The Taylor series of a smooth function in complex notation is

f(z, z̄) ∼
∑
0≤i,j

∂iz∂
j
z̄f(a, ā)

(z − a)i(z̄ − ā)j

i!j!
.

Using these coordinates we can express the differential of a function

(1.2.2) df = ∂zfdz + ∂z̄fdz̄.

Any one form ω can be expressed relative to this basis:

ω = adz+ bdz̄.

We call a dz the (1, 0)–part and b dz̄ the (0, 1)–part. This splits Λ1R2 into two subbundles denoted by Λ1,0C
and Λ0,1C. Using this splitting we define two differential operators

∂f = { the (1, 0) part of df} = ∂zfdz,

∂f = { the (0, 1) part of df} = ∂z̄fdz̄.
.

Evidently d = ∂ + ∂, we can extend these definitions to one forms as well:

(1.2.3) ∂ω = ∂zb dz ∧ dz̄, ∂ω = ∂z̄a dz̄ ∧ dz.

Note that
∂∂ = 0, ∂∂ = 0

and since d = ∂ + ∂ these imply that
∂∂ + ∂∂ = 0.

If ω is a (1, 0)–form, then dω = ∂ω. From this observation we derive the form of Stokes’ theorem used
in one complex variable.

Proposition 1.2.4. Let D ⊂ C be a smooth bounded domain and let ω be a (1, 0)–form C1 in D then

(1.2.5)

∫
D

∂ω =

∫
∂D

ω.

The boundary is given the induced orientation.

Mostly we will use the following special case of (1.2.5):
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Cauchy’s Integral Formula 1.2.6. Let D be a smoothly bounded domain in C and let f ∈ C1(D) then
for z ∈ D we have

(1.2.7) f(z) =
1

2πı

∫∫
D

dw ∧ ∂f

w − z
+

∫
∂D

fdw

w − z

 .
Proof. This formula follows from (1.2.5) by taking ω = f dw

w−z in the domain D \ B(z, ε). In such a domain

∂w̄
1

w−z = 0 and furthermore 1
w−z is locally integrable, allowing ε→ 0 gives (1.2.7).

At this point we are ready to define holomorphic functions. The definition we give is one that generalizes
most easily.

Definition 1.2.8. For a domain D ⊂ C a function f ∈ C1(D) is said to be holomorphic (or analytic) if

(1.2.9) ∂f = 0.

The set of holomorphic functions in D will be denoted by H(D).

To study holomorphic functions it is essential that we have a method for solving the inhomogeneous
∂–equation:

∂u = f

First suppose that f ∈ C∞c (C) and set

u(z) =
1

2πı

∫∫
D

f(w)dw ∧ dw̄

w − z

 .
By changing variables we see that

u(z) =
1

2πı

∫∫
D

f(w + z)dw ∧ dw̄

w

 ;

This can evidently be differentiated under the integral sign to give

∂u =
1

2πı

∫∫
D

∂w̄f(w + z)dw ∧ dw̄

w − z

 .
Applying (1.2.7), recalling that f is compactly supported we see that

∂u = f.

From the computation it is clear that the argument only requires f to be once differentiable and compactly
supported.

A more general result is summarized in the following proposition

Proposition 1.2.10. Suppose that dµ is a finite measure supported in a compact set K ⊂ C then

u(z) =
1

2πı

∫∫
dµ(w)

w− z

is holomorphic outside K. If U ⊂ K is a open set in which dµ = φdz ∧ dz̄ for φ ∈ Ck(U), then u ∈ Ck(U)
and

(1.2.11) ∂u = φdz̄.
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Proof. The first assertion follows easily by differentiating under the integral. In fact, off of the support of dµ
we can differentiate arbitrarily often, so u(z) ∈ C∞(Kc). To prove the other assertion, fix a point p ∈ U and
a positive number r such that B(p, r) ⊂⊂ U . Choose a smooth function ψ compactly supported in B(p, r)
and identically 1 in B(p, 1

2r). Clearly

(1.2.12) u(z) =
1

2πı

∫∫
ψφdw ∧ dw̄

w − z
+ v(z),

where by the above argument v(z) is inH(B(p, 1
2r))∩C

∞(B(p, 1
2r)). Denote the first term by u′(z). It suffices

to show that u′(z) is in Ck(B(p, 1
2r)) and satisfies

(1.2.13) ∂z̄u
′ = ψφ.

To obtain the smoothness we change variables in the integral by setting variables w′ = w − z, then we can
differentiate k times under the integral and obtain a continuous integrand. It follows from (1.2.7) that

(1.2.14) ∂

∫∫
B(p,r)

(ψφdw̄ − ∂u′)dw

w − z
= 0, z ∈ B(p, r).

Since each term is separately differentiable, (1.2.13) follows from the special case considered above.

As a corollary of (1.2.7) and (1.2.10) we have the standard form of the Cauchy integral formula for
holomorphic functions:

Corollary 1.2.15. If f(z) is a holomorphic function in an a neighborhood of a compact set K with smooth
boundary, then

(1.2.16) f(z) =
1

2πı

∫
∂K

f(w) dw

w − z
.

From this corollary most of the important local properties of holomorphic functions follow easily.

1.3 Elementary facts about holomorphic functions of one variable

Most of these facts follow by standard arguments from the Cauchy integral formula so detailed proofs
are usually omitted.

Corollary 1.3.1. If u ∈ H(Ω) then u ∈ C∞(Ω) as well and therefore ∂zu ∈ H(Ω).

Proof. Immediate from (1.2.10) with dµ a measure concentrated on a curve as in (1.2.16).

An interesting fact about holomorphic functions is summarized in the following theorem

Theorem 1.3.2. For every compact subset K ⊂⊂ Ω, every open neighborhood K ⊂⊂ U ⊂⊂ Ω and j ∈ N
there is a constant Cj such that

(1.3.3) sup
z∈K
|∂jzu(z)| ≤ Cj‖u‖L1(U), ∀u ∈ H(Ω).

Proof. We choose a function ψ ∈ C∞c (U) such that ψ = 1 on a neighborhood of K. Then it follows from
(1.2.7) that

(1.3.4) ψ(z)u(z) =
1

2πı

∫
U\K

u∂ψ ∧ dz

z − w
.

Since ∂ψ = 0 in a neighborhood of K, we can differentiate under the integral in (1.3.4) so long as z ∈ K.
The assertion of the theorem follows easily from this.
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Corollary 1.3.5. If un is a sequence of functions in H(Ω) that converge locally uniformly to a function u(z)
then u ∈ H(Ω).

Proof. The previous theorem allows us to estimate the derivatives ∂z(un − um) on compact subsets of Ω,
since ∂z(un − um) = 0 it follows that all first derivatives of the sequence un also converge locally uniformly
in Ω. Therefore the limit u is in C1(Ω) and

∂zu = lim
n→∞

∂zun = 0.

Corollary 1.3.6. If un ∈ H(Ω) and the sequence |un| is uniformly bounded on compact sets then there is
a convergent subsequence.

Proof. By (1.3.3) the first derivatives of un are uniformly bounded on compact subsets of Ω. Thus we can
apply the Arzela–Ascoli theorem to extract a uniformly convergent subsequence on such a compact subset.
By exhausting Ω by a nested family of compact subsets and applying a diagonal argument we obtain a locally
uniformly convergent subsequence on Ω.

Corollary 1.3.7. The sum of a power series

u(z) =
∞∑
n=0

anz
n

is holomorphic in the interior of the circle of convergence.

This is an alternative definition of a holomorphic function: one that is represented in a neighborhood
of every point by a convergent power series in z. In fact this is equivalent to the previous definition. The
easy direction follows from (1.3.7) the harder direction is

Theorem 1.3.8. If u(z) is holomorphic in B(0, r) then

(1.3.9) u(z) =
∞∑
n=0

u[n](0)zn

n!
.

with uniform convergence on every compact subset of B(0, r).

Proof. We give a slightly different proof from the usual. The Cauchy integral formula can be differentiated
to give

(1.3.10) u[n](z) =
n!

2πı

∫
|w|=r2

u(w)dw

(w − z)n+1
,

for an r2 ≤ r. If
M(ρ) = sup

|z|=ρ
|u(z)|

then (1.3.10) implies that

(1.3.11) |u[n](z)| ≤
r2M(r2)n!

(r2 − |z|)n+1
.

These are called the Cauchy Estimates. From (1.3.11) it is immediate that (1.3.9) converges uniformly on
any B(0, r1) with r1 < r2 < r. To see that it converges to u(z) we use the integral form of the remainder
term in Taylor’s theorem

(1.3.12) u(ρeiθ)−
n∑
j=0

u[j](0)(ρeiθ)j

j!
= Rn(ρe

iθ) =
1

n!

ρ∫
0

ei(n+1)θu[n+1](seiθ)(ρ− s)nds.

6



Using the estimates (1.3.11) in (1.3.12), for |z| < r2, we derive

(1.3.13) |Rn(z)| ≤
C(n+ 1)

(r2 − |z|)2

(
|z|

r2

)n+1

.

From (1.3.13) we deduce that
lim
n→∞

|Rn(z)| = 0, if |z| < r2.

This establishes the equivalence of the two definitions of holomorphic. From the power series represen-
tation we derive the uniqueness of analytic continuation.

Corollary 1.3.14. If u(z) is holomorphic in a connected set Ω and there exists a z0 ∈ Ω at which

(1.3.15) u[n](z0) = 0 ∀n ∈ N0

then u is identically zero in Ω.

Proof. The set of points which satisfy (1.3.15) is evidently a closed subset of Ω. From (1.3.8) it is also open,
by hypothesis it is non–empty and therefore it must be all of Ω.

Using Cauchy’s formula we can prove an very important result of Riemann’s on the continuation of an
analytic function defined in a punctured neighborhood:

The Riemann Extension Theorem 1.3.16. Suppose that f(z) is holomorphic in B(a, r) \ {a} and

|f(z)| = o(|z − a|−1)

as z approaches a, then f has an extension as an analytic function on B(a, r).

Remark. A more precise formulation would be: there exists an analytic function, F defined on B(a, r) such
that

F �B(a,r)\{a}= f.

The extension is obviously unique. This result is essentially optimal as f(z) = 1
z just barely fails to satisfy

the necessary estimate and has no extension across 0.

Proof. The proof is an elementary application of the Cauchy formula: for each 0 < ε < ρ we can express
f(w) for ρ < |w| < r as the integral:

(1.3.17) f(w) =
1

2πı

 ∫
|z−a|=r

f(z)dz

z −w
−

∫
|z−a|=ε

f(z)dz

z −w

 .
The second integral in (1.3.17) is estimated by

εMε

ρ− ε
.

Here Mε = max
|z|=ε

|f(z)|. The estimate on |f(z)| as z → a implies that this term tends to zero as ε→ 0. Hence

we have a representation for f(w) given by

f(w) =
1

2πı

∫
|z−a|=r

f(z)dz

z −w
.

But the integral on the right hand side evidently defines a function analytic in B(a, r). This completes the
proof of the theorem.

Finally we have the maximum principle
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The Maximum Principle 1.3.18. Let Ω be a bounded domain and let u ∈ C(Ω)∩H(Ω) then the maximum
of |u| is attained on the ∂Ω.

Proof. If B(z0, ρ) ⊂ Ω we can use the Cauchy integral formula to express

u(z0) =
1

2π

2π∫
0

u(z0 + ρeiθ)dθ.

Taking absolute values we obtain that

|u(z0)| ≤ max
|z−z0|=ρ

|u(z)|.

The inequality is strict unless u(z) = u(z0)∀ z ∈ B(z0, ρ). Therefore |u(z)| does not assume its maximum at
an interior point unless u(z) is constant in that connected component of Ω.

From the power series representation of a holomorphic functions we deduce the following “normal form”
theorem

Corollary 1.3.19. For a function, u holomorphic in B(0, r) there is a unique n ≥ 0 and a holomorphic
function v(z) with v(0) 6= 0 such that

u(z) = znv(z)

in B(0, r).

In fact we can introduce a new complex parameter w = z(v(z))
1
n . This defines a nonsingular change of

variable near to w = z = 0. In terms of this new coordinate

(1.3.20) u(w) = wn.

From (1.3.20) we see that, up to a local change of variable, the mapping of R2 to itself defined by a
holomorphic function is locally determined the integer n appearing in (1.3.19)

There is one further characterization of holomorphic functions. A differentiable function is holomorphic
if the induced mapping of R2 is conformal relative to the flat metric. Computing the Jacobian shows that this
is equivalent to the Cauchy–Riemann equations. However this geometric characterization does not generalize
to higher dimensions. So we will not pursue it here.

We conclude this section with one of the most celebrated theorems of one complex variable and perhaps
all of mathematics, the Riemann mapping theorem.

Definition 1.3.21. Two domains Ω1,Ω2 are biholomorphically equivalent if there is a mapping

Φ : Ω1 −→ Ω2

such that both Φ and Φ−1 are holomorphic.

As a simple application of (1.3.19) we see that a holomorphic mapping is locally one to one if and
only if its derivative never vanishes. Thus it follows easily from the inverse function theorem that if Φ is
holomorphic and one to one then Φ−1 is automatically holomorphic as well.

The Riemann Mapping Theorem 1.3.22. Suppose that Ω is a simply connected open subset of C with
∂Ω 6= ∅ then Ω is biholomorphically equivalent to B(0, 1).

The proof of this theorem would take us too far afield, suffice to say that it does not generalize to higher
dimensions. This theorem implies that any two simply connected domains (not all of C) are biholomorphically
equivalent. Notice that it makes no assumptions whatsoever about the regularity or even the topology of ∂Ω.
We will see that this statement fails completely in higher dimensions and that there is an infinite dimensional
“space” of biholomorphically inequivalent domains diffeomorphic to the unit ball.
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1.4 The Runge approximation theorem, the holomorphic convex hull

In this section we consider a theorem which describes the relationship of functions of H(Ω1) and H(Ω2)
when Ω1 ⊂⊂ Ω2. As we shall see, this is a fundamental step in understanding the solvability properties of
the equation

∂u = f

on planar regions. This should not be too surprising as H(Ω) = ker ∂ �Ω. This in turn will allow us to study
the types of meromorphic functions which can be defined on very general planar regions. The methods we
employ generalize to both the Riemann surface case and to several variables.

The basic observation is that given f(z), holomorphic in B(0, r), for any r1 < r and any M > 0, we can
find a polynomial pM (z) such that

max
z∈B(r1 ,0)

|f(z) − pM (z)| ≤
1

M
.

In this simple case we merely take some sufficiently large partial sum of the Taylor series of f(z) about 0.
On the other hand for f(z) holomorphic in the annular region, r < |z| < R, we do not expect to be able to
approximate on compact subannuli by polynomials but rather by meromorphic functions of the form

N∑
n=−M

anz
n.

These are functions holomorphic in C \ {0}. The situation is summed up by the following theorem

Runge Approximation Theorem 1.4.1. Let Ω be an open set in C and K a compact subset of Ω. The
following conditions on Ω and K are equivalent:

1.4.2 Every function which is analytic in a neighborhood of K can be approximated uniformly by
functions in H(Ω).

1.4.3 The open set Ω \K = Ω ∩Kc has no component which is relatively compact in Ω
1.4.4 For every z ∈ Ω \K there is a function f ∈ H(Ω) such that

(1.4.5) |f(z)| > sup
K
|f |.

Proof. The easiest implication is that (1.4.4)=⇒(1.4.3). For suppose that Ω \ K has relatively compact
component L. This implies that ∂L ⊂ ∂K. The maximum principle implies that for u ∈ H(Ω) ⊂ H(L)

sup
L
|u| ≤ sup

∂L
|u| ≤ sup

K
|u|.

However this contradicts (1.4.4).
Next we will verify that (1.4.2)⇐⇒(1.4.3). First suppose that (1.4.2) holds but that Ω\K has a relatively

compact component L. Let w ∈ L; the function h(z) = (z − w)−1 is holomorphic in a neighborhood of K.
Thus we can find sequence fn ∈ H(Ω) for which

(1.4.6) sup
K
|fn − h| ≤

1

n
.

Evidently it follows from (1.4.6) that

(1.4.7) sup
K
|(z −w)fn − (z − w)h| ≤

C

n
,

for some fixed constant C. As before ∂L ⊂ ∂K and therefore by the maximum principle, (1.4.7) must hold
on K ∪ L. From this we conclude that (z −w)fn converges to (z − w)h uniformly for z ∈ L. However

(z −w)fn(z) �z=w= 0, ∀n, but (z −w)h(z) �z=w= 1.
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This contradiction proves the assertion.
To obtain the other direction we use the Hahn–Banach Separation Theorem,(1.A.30). We recall what

this theorem says in the case at hand: Let that SK denote the closure, in the sup–norm topology on K of
the linear subspace of C0(K) defined by the restrictions of functions holomorphic in a neighborhood of K.
We also let SΩ denote the closure in C0(K) of the linear subspace defined by restrictions to K of functions
in H(Ω). Clearly SΩ ⊂ SK , if they are not equal then there is a function f ∈ SK \ SΩ. The Hahn Banach
theorem would ensure the existence of a continuous linear function ` : C0(K)→ C such that

` �SΩ= 0 but `(f) = 1.

By the Riesz representation theorem the linear functional ` would be represented by a finite measure
supported on K,

`(g) =

∫
K

gdµ.

To show that SΩ = SK it therefore suffices to show that any finite measure supported on K, dµ such that∫
u(z)dµ(z) = 0, ∀u ∈ H(Ω)

also annihilates any function which is holomorphic in a neighborhood of K.
Let dµ be such a measure then the function

(1.4.8) φ(z) =

∫
dµ(w)

z − w
,

vanishes for z ∈ Ωc. This function is holomorphic for z ∈ Kc. By our assumption that Ω\K has no relatively
compact components it follows that every component ofKc meets a component of Ωc. From this we conclude
that

(1.4.9) φ(z) = 0 for z ∈ Kc.

If ψ is a function, holomorphic in a neighborhood of K, then we can choose a C∞ function χ supported
in the domain of holomorphy of ψ and identically equal to 1 on K. From (1.2.7) we have the representation
of ψ for z ∈ K:

(1.4.10) ψ(z) =
1

2πı

∫∫
Kc

ψ(w)dw ∧ ∂χ

w − z
.

 .
Combining this representation with (1.4.9) and changing the order of the integrations we obtain that∫

ψ(w)dµ(w) = 0.

This was what we needed to establish.
To complete the proof we need to show that (1.4.2)=⇒(1.4.4). Choose a point w ∈ Kc. Since we have

shown the equivalence of the first two assertions, it follows that no component of Ω\K is relatively compact
in Ω. From this it is clear that we can find an ε > 0 so that the domain K′ = K ∪ B(w, ε) also has this
property. Again by the equivalence of the first two assertions we conclude that H(Ω) is uniformly dense in
the functions holomorphic in a neighborhood of K′. Therefore the function defined by

f(z) =

{
0 z ∈ K

1 z ∈ B(w, ε)

is uniformly approximated by functions in H(Ω). In particular we can find a function u ∈ H(Ω) such that
|u(w)| > 1

2
whereas

sup
K
|u| <

1

2
.

This completes the proof

In proving the equivalence of (1.4.3) and (1.4.4) we verify that a condition of holomorphic convexity is
equivalent to a ‘topological convexity’.
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Definition 1.4.11. If K ⊂⊂ Ω is a compact subset of an open set then we define the holomorphic convex
hull of K ( relative to Ω ) to be

K̂Ω = {z ∈ Ω : |f(z)| ≤ sup
K
|f |, ∀ f ∈ H(Ω)}.

By considering special functions in H(Ω) we can study some of the gross properties of the operation

K −→ K̂Ω. When no confusion can arise we omit explicit reference to Ω. Clearly

(1.4.12)
̂̂
K = K̂.

Let w ∈ Ωc then the function (z −w)−1 ∈ H(Ω), thus we easily obtain that

(1.4.13) dist(K,Ωc) = dist(K̂,Ωc).

Further since eaz ∈ H(Ω) we can show that

(1.4.14) K̂ ⊂ usual convex hull of K.

Exercise 1.

(a) Prove that if K1 ⊂K2 then K̂1 ⊂ K̂2. If K ⊂⊂ Ω1 ⊂ Ω2 then K̂Ω2 ⊂ K̂Ω1 .
(b) Prove (1.4.12), (1.4.13), (1.4.14).

(c) Let L denote the union of the relatively compact components of Ω\K, prove that K̂Ω = K∪L.

(d) Can you explain why holomorphic convex hull is a reasonable name for K̂.

From (1.4.13) and (1.4.14) one can easily deduce that the holomorphic convex hull of K relative to Ω,
is also a compact subset of Ω. From elementary point set topology we know that an open subset can be
exhausted by a nested sequence of compact subsets. Let Lj be such a collection

(1.4.15) Lj ⊂ Lj+1, Ω = ∪Lj .

Exercise 2. Prove the existence of compact sets {Lj} which satisfy (1.4.15).

If we set Kj = L̂j then

Kj ⊂⊂ Kj+1, K̂j = Kj , Ω = ∪Kj .

This proves

Proposition 1.4.16. Any open subset of C can be exhausted by a nested sequence of compact subsets, Ki

which satisfy K̂i = Ki.

One says that an open subset Ω ⊂ C is holomorphically convex if for every compact subset K ⊂⊂ Ω,

K̂Ω ⊂⊂ Ω. As we’ve just seen every open subset of C is holomorphically convex. This simple geometric
proposition plays a crucial role in the analysis of holomorphic functions in open subsets of C. This is a point
where the difference between one and several variables is the most marked. As we shall see, not every open
subset of Cn, n ≥ 2, is holomorphically convex. In fact the characterization of such domains by a relatively
simple geometric property formed a central problem around which several complex variables grew. This is
called the Levi problem.

1.5 Solving the ∂–equation

The most powerful analytic techniques for the study of holomorphic functions of several variables revolve
around solving the ∂–equation

(1.5.1) ∂u = fdz̄.

In this section we prove the following basic existence theorem
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Theorem 1.5.2. Suppose that Ω is an open subset of C and f ∈ C∞(Ω) then there exists u ∈ C∞(Ω) such
that

(1.5.3) ∂u = fdz̄.

Remark. In §1.2 we obtained a solution to equation (1.5.3) for compactly supported f. This theorem is a
global statement to the effect that we can solve this equation throughout a specified domain. Note that no
hypothesis is made on either the regularity of ∂Ω, nor on the behavior of f near ∂Ω. Moreover our technique
of solution gives no information about the behavior of u as we approach the boundary. This suffices for
many applications, however there are techniques which, under suitable hypotheses of Ω and f give a solution
u which is globally estimated in terms of f. Similar results with f ∈ Ck can easily be deduced from this
theorem. Finally note that the solution is never unique as we can always add functions in H(Ω) to obtain
other solutions.

Proof. Let Kj, j = 1, . . . define a exhaustion of Ω by holomorphically convex, compact subsets as in (1.4.16).
Let ψj ∈ C∞c (Kj+1) with ψj = 1 in a neighborhood of Kj . Set

(1.5.5) u1 =
1

2πı

∫∫
ψ1fdw ∧ dw̄

w − z
.

From (1.2.10) it follows that u1 ∈ C∞(C) and ∂u1 = ψ1fdz̄. We will find solutions to our problem on larger
and larger sets using the Runge theorem to control the convergence of our sequence.

As the second step we set

ũ2 =
1

2πı

∫∫
ψ2fdw ∧ dw̄

w − z
.

Then as before ũ2 ∈ C∞(C) and ∂ũ2 = ψ2fdz̄. However we have no a priori control on u1 − ũ2. By our
choice of of ψj it follows that

∂(ũ2 − u1) = 0

on a neighborhood of K1. Since K1 is assumed to be holomorphically convex, (1.4.1) implies that we can
find a p2 ∈ H(Ω) such that

(1.5.6) sup
K1

|ũ2 − u1 − p2| ≤
1

2
.

Set u2 = ũ2 − p2; it satisfies

(1.5.7) u2 ∈ C
∞(Ω), ∂u2 = ψ2fdz̄, sup

K1

|u2 − u1| ≤
1

2
.

As an inductive step suppose that we can find uj ∈ C∞(Ω) such that

(1.5.8) ∂uj = ψjfdz̄, sup
Kj−1

|uj − uj−1| ≤
1

2j−1
.

To verify the inductive hypothesis we argue exactly as above, set

ũj+1 =
1

2πı

∫∫
ψj+1fdw ∧ dw̄

w − z
.

From (1.2.10) we deduce that ũj+1 ∈ C∞(C) and that

(1.5.9) ∂ũj+1 = ψj+1fdz̄.
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From (1.5.9) and the inductive hypothesis we obtain that ũj+1− uj is holomorphic in a neighborhood of Kj

and therefore by (1.4.1) we can find pj+1 ∈ H(Ω) so that

(1.5.10) sup
Kj

|ũj+1 − uj − pj+1| ≤
1

2j
.

Letting uj+1 = ũj+1−pj+1 and applying (1.5.9) and (1.5.10) completes the proof of the inductive hypothesis.
From (1.5.8) it follows that {uk �Kj} is a Cauchy sequence in the uniform topology for any j. Thus the

sequence has a continuous limit, u ∈ C(Ω). If we consider the subsequence uk−uj then we have a uniformly
convergent sequence of holomorphic functions on Kj . Denote the limit of this sequence by hj. By (1.3.5) we
conclude that hj ∈ H(Kj). As

u �Kj= hj + uj,

it is immediate that u ∈ C∞(Kj). Since j is arbitrary,

u ∈ C∞(Ω), ∂u = fdz̄.

Exercise 3.

(1) Show that the Laplace operator ∆ = ∂2
x + ∂2

y satisfies

∆ = 4∂z∂z̄ = 4∂z̄ = ∂z .

(2) Show that ∂zf = ∂z̄ f̄ .
(3) Using these two facts and Theorem 1.5.2 show that for any open set Ω ⊂ C and any f ∈ C∞(Ω)

there is a solution to the equation

∆u = f.

(4) Suppose that u ∈ C2(Ω) satisfies ∆u = 0. Use the two facts above and Theorem 1.5.2 to prove
that u ∈ C∞(Ω).

Exercise 4. Can you formulate and prove a “Runge Theorem” for harmonic functions? Hint: Use the
representation formula for harmonic functions that follows from Green’s formula:∫∫

Ω

[u∆v − v∆u]dA =

∫
∂Ω

[u∂νv − v∂νu]ds.

Recall that ∆ log |z| = 2πδ0(z).

1.6 The Mittag–Leffler and Weierstraß Theorems

In this subsection we use the solvability of the ∂–equation on an open set in C to prove the two main
results from the function theory on such domains. These results describe the sorts of meromorphic functions
which can be defined on such domains. First we give a definition of a meromorphic function which generalizes
to higher dimensions.

Definition 1.6.1. A function f is meromorphic in a domain Ω provided there is a covering of Ω by open
sets Ui such that in each Ui we have functions gi, hi ∈ H(Ui), hi 6≡ 0 satisfying

(1.6.2) f �Ui=
gi

hi
.

A function is meromorphic if it is locally the quotient of holomorphic functions. The set of meromorphic
functions on Ω is denoted by M(Ω). As a simple corollary of the definition we have the following alternate
local representation
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Corollary 1.6.3. Let f ∈ M(Ω) and w ∈ Ω then f has a unique representation in a neighborhood of w as
either

(1.6.4) f(z) =

{ ∑m
j=1

aj
(z−w)j

+G(z), for an m > 0 or,

(z −w)nG(z), for an n ≥ 0.

The function G(z) is holomorphic and nonvanishing at z = w.

Proof. This follows from the definition and (1.3.19).

If the first case in (1.6.4) pertains then f has a pole at w and the polynomial in (z − w)−1 is called
the principle part at w. The Mittag–Leffler theorem deals with the problem of specifying the principle parts
of a meromorphic function. In several variables one studies this problem in a slightly round about manner
which we also adopt in the one variable case for obvious pedagogic reasons. First we state the result that
generalizes directly to several variables; before proving it we show how it solves the Mittag–Leffler problem.

Theorem 1.6.5. Suppose that Ω is an open subset of C and Ui is a locally finite open cover. Suppose that
on the overlaps Ui ∩ Uj we specify functions fij ∈ H(Ui ∩ Uj) that satisfy the following properties:

(1.6.6) fij = −fji
(1.6.7) fij + fjk = fik whenever Ui ∩ Uj ∩ Uk 6= ∅. (cocycle condition)

Then there are functions fi ∈ H(Ui)∀ i, such that

(1.6.8) fij = fi − fj .

Before proving this we show how it implies the classical Mittag–Leffler theorem

Mittag–Leffler Theorem 1.6.9. Let {wi} be a discrete subset of the domain Ω and let {pi} be a collection
of polynomials without constant term. Then there is a function f ∈ M(Ω) such that the poles of f(z) are
exactly the {wi} and the principle part at wi is given by pi((z −wi)

−1).

Proof. Since wi is a discrete subset of Ω we can choose open disks Ui such that wi ∈ Ui and Ui ∩ Uj = ∅ if
i 6= j. Let U0 denote an open set so that wi 6∈ U0, i = 1, . . . and {Ui, i = 0, 1, . . .} is an open cover of Ω. The
only nontrivial intersections are of the form Ui ∩ U0. We define fi0 = pi((z − wi)−1), f0i = −pi((z − wi)−1)
and all other fij = 0. These clearly satisfy (1.6.6) and (1.6.7) so the previous theorem implies that we can
find fi ∈ H(Ui), i = 0, 1, . . . , such that

(1.6.10) pi((z − wi)
−1) − fi = −f0 in Ui ∩ U0.

If we set
f �U0= −f0, f �Ui= pi((z −wi)

−1) − fi,

then it follows from (1.6.10) that f is well defined and satisfies the hypotheses of (1.6.9).

Now we turn to the proof of (1.6.5).

Proof. The proof of this theorem follows a general pattern: first we solve the problem in C∞ then we use
the solvability of the ∂–equation to correct the C∞ solution and obtain a holomorphic solution. To solve the
problem in C∞ we choose a partition of unity subordinate to the cover Ui. This is a family of non–negative
smooth functions {ψi} with suppψi ⊂ Ui and

(1.6.11)
∑

ψi ≡ 1.

Clearly ψj vanishes to infinite order along ∂Uj ∩Ui, ∀ i 6= j. Thus the extension of ψjfij to all of Ui by
zero is in C∞(Ui). Condition (1.6.6) implies that fii = 0, ∀i. Then we define

hi =
∑
j

fijψj.
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Since the cover is locally finite the sum defines a function in C∞(Ui). It follows from (1.6.7) that these
functions satisfy (1.6.8):

hi − hj �Ui∩Uj=
∑
k

(fik − fjk)ψk

=fij
∑
k

ψk

=fij.

The last equality follows from (1.6.11).
To use the solution of ∂ we need to consider the error introduced in the previous step. Let αi = ∂hi on

Ui. Since the difference hi − hj is holomorphic on Ui ∩ Uj it follows that

(1.6.12) αi �Ui∩Uj= αj �Ui∩Uj .

Thus we obtain a globally defined (0, 1)–form by setting

α �Ui= αi.

We can now apply (1.5.2) to obtain a function u ∈ C∞(Ω) such that

(1.6.13) ∂u = α.

If we set gi = hi − u then (1.6.12) and (1.6.13) imply that

gi ∈ H(Ui)

and of course
gi − gj �Ui∩Uj= hi − hj �Ui∩Uj= fij .

This completes the proof of the theorem.

The techniques introduced in the proof of (1.6.5) form a part of the study of Čech cohomology. We will
discuss this latter in the course.

Using the same general result we can prove the Weierstraß theorem. This theorem shows that we can
entirely specify the poles and zeros of a meromorphic function. Let us suppose that {Ui} is a locally finite
open cover of Ω such that the intersections Ui∩Uj are simply connected. Suppose that fi ∈M(Ui) and that

fij =
fi
fj
∈ H(Ui ∩ Uj)

is non–vanishing. Then we seek a meromorphic function f ∈M(Ω) whose poles and zeros on Ui agree with
those of fi. More precisely

f

fi
∈ H(Ui)

and is non–vanishing. The existence of such a function is easily reduced to the result given (1.6.5). Since
Ui ∩ Uj is simply connected and fij is non–vanishing on Ui ∩ Uj we can define

gij = log fij ∈ H(Ui ∩ Uj).

Since fijfjk = fik it is clear that gij also satisfy a cocycle condition:

nijk = gij + gjk − gik ∈ 2πiZ.

To apply the previous result it is necessary that nijk = 0.
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At this point we need to use a little algebraic topology to obtain new {g′ij} which satisfy (1.6.6) and

(1.6.7). Using Čech cohomology one can show that nijk/(2πi) defines a class in H2(Ω;Z). It is a standard
fact that this group is zero for Ω an open subset of C. For the case of a domain with a smooth boundary this
is easily seen: This group is homotopy invariant and such a domain can be retracted onto a one dimensional
simplicial complex. Since we are using Čech cohomology the triviality of H2(Ω;Z) means that we can find
integers nij such that

nijk = 2πi(nij + njk − nik).

If we set g′ij = gij − 2πinij then

eg
′
ij = fij in Ui ∩ Uj and g′ij + g′jk − g

′
ik = 0.

Therefore we can apply (1.6.5) to obtain gi ∈ H(Ui) so that g′ij = gi − gj. If we set

hi = exp(−gi)fi,

then
hi �Ui∩Uj= hj �Ui∩Uj .

This completes the proof of

The Weierstraß Theorem 1.6.14. Let {wi} be a discrete subset of Ω and {ni} a set of integers then there
exists a function f ∈M(Ω) such that the poles and zeros of f are contained in {wi} and f(z)(z −wi)−ni is
holomorphic and non–vanishing in a neighborhood of wi.

Proof. We choose a locally finite cover of Ω by disks, {Ui} each of which contains at most one wi in its
interior. We then set fi = (z − wj)

nj if wj ∈ Ui. Otherwise we set fi = 1. The argument given above
produces the desired function.

Remarks. If you are uncomfortable with the use of Čech cohomology then you should consult an alternate
proof given in Hörmander. I included it to show, in a simple context, how topological obstructions might
arise in the solution of analytic problems. Indeed if Ω is a compact Riemann surface then H2(Ω;Z) ' Z
and the element of this group defined by n = {nijk/2πı} is not always 0. The functions {fij} define the
transitions funtions for a complex line bundle and n is precisely the Euler class of the line bundle. This is,
of course a topological invariant of the line bundle. A meromorphic function satisfying the conclusions of
the theorem defines a nonvanishing section of the associated line bundle. Such a section can exist only if the
line bundle is topologically trivial and thus the Euler class is 0.

Using a bit more cohomology theory one can show that the class defined by n is equal to N − P where
N is the sum of the orders of the zeros of the {fi} and P the sum of the orders of the poles. It is a relatively
simple matter to prove that for a meromorphic function on a compact Riemann surface N − P = 0. Thus
we have an analytic interpretation for this topological obstruction to finding a mermorphic function with
prescribed zeros and poles. For more on these topics see either [Fo] or [Ch].

This result has many important corollaries

Corollary 1.6.15. Suppose that f ∈M(Ω) then there exists a pair of functions p, q ∈ H(Ω) such that

f =
p

q
.

Thus the local definition of meromorphic functions given above, (1.6.1) actually leads to the same class
of functions as produced by the naive notion of a meromorphic functions.

As another application we construct a function f ∈ H(Ω) which cannot be extended, even as a mero-
morphic function, across any boundary point of Ω. By this we mean that if U is any open subset such that
U 6⊂ Ω and U ∩ Ω is non–empty then there does not exist h ∈M(U) such that

h �Ω∩U= f �Ω∩U .
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Corollary 1.6.16. For any open set Ω ⊂ C there exists a function f ∈ H(Ω) which cannot be extended,
even as a meromorphic function across any boundary point of Ω.

Proof. Choose a discrete subset D = {wi} of Ω such that the closure of D contains ∂Ω. It follows from
(1.6.14) that there exists an f ∈ H(Ω) such that f(wi) = 0 but f 6≡ 0. Suppose that U is an open set with
U ∩ Ω 6= ∅ then U must contain an accumulation point of D in its interior. Thus any function in M(U)
which agrees with f on U ∩Ω must necessarily vanish identically.

The property described in (1.6.16) is very important in higher dimensions though the generalization of
Corollary is very complicated.

Definition 1.6.17. A domain in C on which there is a holomorphic function defined which cannot be
continued across any boundary point is called a domain of holomorphy.

We can rephrase the previous corollary as

Corollary 1.6.16’. Any open subset of C is a domain of holomorphy.

The interest in this property stems in large part from the fact that a Riemann surface can be constructed
by analytically continuing the germ of a single meromorphic function. A maximal surface is then the
largest domain of definition of the meromorphic function defined by this germ. The simplest case is then to
understand which planar domain are maximal surfaces for some meromorphic function germ. The corollary
says that any such domain is. In several variables we will quickly learn that this is not the case but that there
are domains D ⊂ Cn with the property that any function f ∈ H(D) actually extends to be holomorphic
on a larger open set D′. A considerable part of the theory of several complex is devoted to characterizing
domains of holomorphy.

Large parts of §1.2–§1.6 are taken from [Hö] where addtional results can be found.

1.A. Review of Functional Analysis

In much of complex variables one deals with spaces of functions that are defined on open sets, as a
consequence they do not have the structure of a Banach space but only that of a Frechet space. As these
are a little less familiar we begin by reviewing the basic facts about such spaces.

Let X be a vector space, we want to define a topology on X such that

(1.A.1) every point of X is a closed set
(1.A.2) the vector space operations are continuous.

A vector space with such a topology is called a topological vector space. Such spaces have some properties
but not many. Our topologies will usually be defined by seminorms. A function p : X −→ R is a seminorm
provided

(1.A.3) p(x+ y) ≤ p(x) + p(y), x, y ∈ X
(1.A.4) p(αx) = |α|p(x), x ∈ X,α ∈ K

Here K is the scalar field over which X is a vector space. If, in addition to these p also satisfies

(1.A.5) p(x) = 0⇐⇒ x = 0

then p is a norm. A topological vector space with the topology defined by a norm is called a normed linear
space, if it is complete, then it is called a Banach Space. A family of seminorms P is called separating if for
every x ∈ X there is at least one p ∈ P such that p(x) 6= 0. We have the following elementary properties for
seminorms

Proposition 1.A.5. Suppose that p is a seminorm on a vector space X. Then

p(0) = 0,

|p(x)− p(y)| ≤ p(x− y),

p(x) ≥ 0,

The set {x : p(x) = 0} is a subspace of X,

The set Bp = {x : p(x) < 1} is a convex set.

(1.A.6)
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We leave the proofs of these facts as exercises. We can use a separating family of seminorms to define
a topology on X as follows:

(1.A.7) For each n ∈ N, p ∈ P define V (p, n) = {x ∈ X : p(x) <
1

n
}.

If we use finite intersections of the collection of sets defined in (1.A.7) to define a local base for a topology
on X then, with this topology, X is a locally convex topological vector space. This means that the open sets
are simply unions of translates of the sets defined in (1.A.7). The translate of a set S by an element a ∈ X
is simply the set

S + a = {x+ a : x ∈ S}.

X is locally convex because (1.A.3) and (1.A.4) imply that each of the sets V (p, n) is a convex set. One
should also observe that each seminorm in P defines a continuous function onX with respect to this topology.

There is only one further property which we require, which is that the separating collection of seminorms
be countable, i.e.

P = {pi : i ∈ N}.

In this situation we can actually define a metric on X which induces the same topology as the local base
defined in (1.A.7):

(1.A.8) d(x, y) =
∞∑
i=1

2−ipi(x− y)

1 + pi(x− y)
.

This metric clearly satisfies
d(x+ z, y + z) = d(x, y), ∀x, y, z ∈ X.

In general a metric which satisfies this condition is called an invariant metric.

Definition 1.A.9. A locally convex, complete topological vector space with the topology defined by an
invariant metric is called a Frechet space.

At this point we should consider some simple examples:

Example 1.A.10. Let Ω ⊂ Rn be a bounded, connected open set. By considering the distance to Ωc we can
construct a continuous function ψ defined on Rn such that ψ(x) ≥ 0 and

(1.A.11) Ωc = {x : ψ(x) = 0}.

Since ψ(x) is continuous the sets
Ka = {x : ψ ≥ a−1}, a > 0

are closed and bounded and therefore relatively compact subsets of Ω and

Ω = ∪a>0Ka.

Let C(Ω) denote the continuous functions on Ω, for each n ∈ N define the function pn : C(Ω) −→ R+

by
pn(f) = sup

x∈Kn
|f(x)|.

It is elementary to verify that each pn defines a seminorm. Let dΩ(f, g) denote the metric defined by these
seminorms as in (1.A.8). The family is separating since, if f ∈ C(Ω) is not identically zero then, there is an
ε > 0 and a ball B(p, r) ⊂⊂ Ω on which f ≥ ε. From (1.A.11) we conclude that B(p, r) ⊂⊂ Kn, for some n.
Thus this family of seminorms makes C(Ω) into a locally convex metric space. All we need to check is that
it is complete.

Let {fm} be a Cauchy sequence. From the definition of the metric it is clear that for each i

(1.A.12) lim
m,n→∞

pi(fm − fn) = 0.
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From the elementary properties of continuous functions on compact sets it is clear that {fm �Kj} converges
uniformly for each j. Let f denote the common limit function. It is clear that f is continuous and

lim
n→∞

dΩ(f, fn) = 0.

Thus C(Ω) with the topology defined by the seminorms is a Frechet space. It is also easy to show that if Li
is another nested family of compact subsets of Ω such that

Ω = ∪∞i=1Li,

then the topology defined by uniform convergence on the Li agrees with that defined above.

For a Frechet space, X with topology defined by a family of seminorms {pi} there is a very simple
criterion for a linear functional

l : X −→ K

to be continuous:

Proposition 1.A.12. A linear functional l is continuous if and only if there exist a set if indices i1, . . . , ik
and a constant M such that

(1.A.13) l(x) ≤M max
j∈1,...,k

pij(x).

As a simple consequence we see that every continuous linear functional on C(Ω) is compactly supported.
This means that we can find a j such that if f �Kj= g �Kj then l(f) = l(g). From this we conclude that l
defines a linear functional on C(Kj). The Riesz–Fischer theorem implies that there is a signed measure dµ
with support on Kj such that for f ∈ C(Kj)

(1.A.14) l(f) =

∫
fdµ.

Clearly (1.A.14) holds for all f ∈ C(Ω).
The fundamental properties of linear transformations on Frechet spaces follow from a general result on

complete metric spaces. Since we will have several occasions to use this result directly I include it here, along
with a proof.

Definition 1.A.15. Let S be a topological space, a set E ⊂ S is said to be nowhere dense if E has empty
interior. A subset of S is of the first category if it is a countable union of nowhere dense sets. A subset of S
not of the first category is of the second category.

This terminology is not very descriptive but it is ubiquitous. The following is usually referred to as the
Baire Category Theorem

Theorem 1.A.16. If S is a complete metric space then the intersection of every countable collection of dense
open subsets of S is dense.

Proof. Let V1, V2, . . . , be a collection of dense open subsets. Let p ∈ S and r > 0 be chosen arbitrarily. Then
since V1 is dense and open we can find a p1, 0 < r1 < 1 such that

B(p1, r1) ⊂ V1 ∩B(p, r).

Suppose that a pi, ri, i = 1, . . . , n− 1 have been chosen so that

(1.A.17) B(pi, ri) ⊂ Vi ∩B(pi−1, ri−1) and 0 < ri <
1

i
.

Since Vn is a dense open set we can choose an pn, rn so that (1.A.17) holds for i = n as well. Set

K = ∩B(pi, ri).

The centers {pi} form a Cauchy sequence, since S is assumed to be complete it must converge to a limit.
Clearly this limit belongs to K. Thus K is non–empty, moreover K ⊂ Vn for every n. Since K ⊂ B(p, r) it
follows that B(p, r) intersects ∩Vn. Since p, r are arbitrary this proves the theorem.

As an application of this theorem consider the following:
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Example 1.A.18. Let A(x) be a map from a closed interval I into finite rank operators on a Hilbert space.
We suppose that A(x) is continuous from the usual topology on I into the strong operator topology. As an
exercise prove that the sets

In = {x : rkA(x) ≤ n}

are closed. Since A(x) is finite rank operator for every x it follows that

I = ∪∞n=0In.

From the Baire category theorem it follows that at least one of the sets has non–empty interior for otherwise
the whole interval, would be of the first category. Thus we see that there exists a nonempty subinterval
J ⊂ I and an integer N such that

rkA(x) ≤ N, x ∈ J.

From the Baire category one deduces the three basic tools for the analysis of operators on Frechet space.
In fact some of these results are true in slightly more general settings. Let Λ denote a linear mappings

Λ : X −→ Y,

where X, Y are topological vector spaces. A linear mapping, Λ, is continuous if for every neighborhood W
of 0 ∈ Y there is a neighborhood V of 0 ∈ X such that

(1.A.20) Λ(V ) ⊂W.

A family of linear mapping, Γ is called equicontinuous if for each W a fixed V works in (1.A.20) for all Λ ∈ Γ.

Uniform Boundedness Theorem 1.A.21. If Γ is a collection of continuous linear mappings from a Frechet
space X to a topological vector space Y such that for each x ∈ X.the set

Γ(x) = {Λx : Λ ∈ Γ}

is bounded in Y, then Γ is an equicontinuous family.

As an application of this theorem we have:

Example 1.A.22. Let C∞K be C∞ functions with support in the compact set K. Set

pN(φ) = sup
K

max
|α|≤N

|Dαφ|.

These seminorms define a complete Frechet structure on C∞K . Suppose that Λi is a sequence of continuous
functionals such that Λi(φ) converges for every φ ∈ C∞K . This implies that the sequence is bounded for each
φ. Therefore (1.A.21) implies that there exists some N and a constant, M, so that Λi(φ) ≤MpN (φ) ∀ i.

A mapping f : X −→ Y is open if for every open set U ⊂ X, f(U) is an open subset of Y. Our second
fundamental theorem is

Open Mapping Theorem 1.A.23. If Λ is a continuous linear mapping of a Frechet space onto a Frechet
space then it is an open mapping.

As a simple application of this theorem we have.

Corollary 1.A.24. If Λ is a one to one linear mapping from a Frechet space X onto a Frechet space Y then
Λ−1 is continuous.

Proof. If U ⊂ X is an open set then V = Λ(U) is an open subset of Y by the open mapping theorem. Since

Λ(U) = (Λ−1)−1(U),

this implies that Λ is continuous.
Note we could also have deduced this from the uniform boundedness theorem, as Λ−1 is a globally

defined linear transformation from a Frechet space to a Frechet space.

The last main consequence is a very useful criterion for establishing the continuity of a linear transfor-
mation. If f : X −→ Y is a map between topological spaces then the graph of f is the subset of X×Y given
by

Gf = {(x, y) ∈ X × Y : y = f(x)}.

If X is a topological space and Y satisfies the Hausdorff separation axiom then Gf is closed in the product
topology on X × Y if f is continuous. The converse is true for linear maps between Frechet spaces.
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Closed Graph Theorem 1.A.25. If Λ is a linear map between Frechet spaces X and Y such that GΛ is a
closed subset of X × Y then Λ is continuous.

As an application we have

Example 1.A.26. This result has many applications in the study of unbounded operators acting between
Banach spaces. We give one such application. An operator T defined on a dense subspace S of a Banach
space X with range in a Banach space Y is called closeable if for every sequence {xn} ⊂ S converging to
zero for which {Txn} is convergent

lim
n→∞

Txn = 0.

We can then define the closure of T as T extended to the subspace, S̃ of X defined by the conditions

{xn} ⊂ S, lim
n→∞

xn = x∗, limTxn = y∗ exists.

The extended operator is then defined by T̃ x∗ = y∗.
Suppose that for some M > 0, T : S −→ Y satisfies

(1.A.27) M‖x‖X < ‖Tx‖Y .

From (1.A.27) it follows easily that T is closeable and furthermore range(T̃ ) is a closed subspace of Y . It

is also immediate from (1.A.27) that T̃ is one to one. Thus we can define T̃−1 : range(T̃ ) −→ X. It follows

from the closed graph theorem that this operator is continuous. We need to verify that if yn ∈ range(T̃ ) is

convergent and so is T̃−1yn then

(1.A.28) lim
n→∞

T̃−1yn = T̃−1 lim
n→∞

yn.

This is an easy deduction from (1.A.27). Thus we’ve show that a densely defined operator satisfying (1.A.27)
with a dense range has a continuous inverse. For example, if we consider the operator

Tf(x) = −f ′′(x), for f ∈ C∞c ([0, 1]),

then applying the Cauchy-Schwarz inequality and integrating by parts we obtain

‖Tf‖L2‖f‖L2 ≥ | < Tf, f > | =

1∫
0

|f ′(x)|2dx.

Since f is compactly supported and smooth it follows from the fundamental theorem of calculus and the
Cauchy–Schwarz inequality that

‖f‖2L2 ≤
1

2
‖f ′‖2L2.

Combining these two inequalities we obtain

‖Tf‖L2 ≥ 2‖f‖L2 .

Thus the closure of T is boundedly invertible on its range. I leave it as an exercise to show that range T is
dense in L2([0, 1]).

The Baire category theorem and its consequences rely crucially on the completeness of the spaces
involved; the other fundamental property of Frechet spaces is local convexity. This means that there is a
local base for the topology consisting of convex sets. This does not imply that the metric balls are convex. If
the topology is defined by a collection of seminorms then this property follows from (1.A.3) and (1.A.4). The
consequences of convexity are usually called the Hahn–Banach theorems. These fall into two groups: the first
says that linear functionals defined on subspaces that are bounded by a seminorm can be extended to the
whole space satisfying the same bound. The other group of theorems say, in essence, that non–intersecting
closed convex subsets can be separated by a linear functional.
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Extension Hahn–Banach Theorem 1.A.29. Suppose that M is a subspace of a vector space X, p is a
seminorm on X, and f is a linear functional defined on M such that

|f(x)| ≤ p(x) ∀x ∈ M.

Then f extends to a linear functional F on X which satisfies

|F (x)| ≤ p(x) ∀x ∈ X.

Notice that no hypothesis is made concerning the topology ofX. If follows form the uniform boundedness
principle that F is automatically continuous if X is a Frechet space, whether or not p(x) is a continuous
seminorm. A useful special case of the separation theorem is

Separation Hahn–Banach Theorem 1.A.30. If M is a subspace of a locally convex space X and x0 ∈ X
is not in the closure of M then there is a continuous linear functional Λ such that

Λ(x0) = 1 and Λ �M= 0.

We complete this section with an application of (1.A.29).

Example 1.A.31. Let Ω be an open connected subset of C and let C(Ω) be as defined in (1.A.10). If we
let H(Ω) denote functions holomorphic on Ω, with a topology induced by the same seminorms as used to
define the topology on C(Ω), then H(Ω) is easily seen to be a closed subspace of C(Ω). This is because
a locally uniformly convergent sequence of holomorphic functions has a holomorphic limit. Suppose that l
is a continuous linear functional defined on H(Ω). From (1.A.12) it follows that there exists a continuous
seminorm p(ψ) as in (1.A.13) such that

(1.A.32) |l(ψ)| ≤Mp(ψ), ∀ψ ∈ H(Ω).

Since we’ve used the same seminorms to define the topology on H(Ω), p is also a continuous seminorm on
C(Ω). Thus we can apply (1.A.29) to find an extension of l to a continuous functional Λ defined on all of
C(Ω). From (1.A.14) it therefore follows that there is a finite, complex measure dµ supported on a compact
subset K ⊂⊂ Ω such that

(1.A.33) Λ(f) =

∫
K

fdµ.

Evidently l on H(Ω) must also be given by such a formula.

Most of the material in this appendix was taken from [Ru] by Walter Rudin, 1973. Proofs and more
general results can be found there.
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