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3.0 Introduction

The remainder of the course will be concerned with a new technique for solving the ∂–Neumann problem
developed by R. Melrose and myself. Before discussing it, let’s consider where this problem came from and
what its solution is good for. Recall that a fundamental problem in several complex variables was to prove
the Levi conjecture that a pseudoconvex domain is always a domain of holomorphy. Although we did not
prove it, we remarked that any pseudoconvex domain can be exhausted by smooth strictly pseudoconvex
domains. It is a classical result of Behnke and Stein that a domain in Cn which is exhausted by domains of
holomorphy is itself a domain of holomorphy. Thus putting together these observations we see that to prove
the Levi conjecture for domains in Cn it suffices to prove it for smooth, strictly pseudoconvex domains.

It is possible to prove the Levi conjecture if you can solve the ∂–equation

∂u = α

with control on the regularity of u at the boundary. This means that if α is smooth up to the boundary of
the domain then so is u. Suppose that Ω is a strictly pseudoconvex domain and p ∈ ∂Ω. There is an open
neighborhood Up and a function fp such that

fp ∈ H(Up)

fp(p) = 0,Re fp < 0 in Ω ∩ Up.

Choose a function ψ ∈ C∞c (Up) that equals 1 near to p and set gp = ψ/fp. The 0, 1–form αp = ∂gp,

extended to 0 in U cp , is clearly smooth and ∂–closed. Thus if we can find a solution up to ∂up = αp which
is smooth up to ∂Ω then the function vp = fp − up ∈ H(Ω) blows up exactly as z → p. It follows from
Proposition (2.7.13) that Ω is a domain of holomorphy. Of course all that is really required is that up is

bounded in Ω.
If Ω is strictly pseudoconvex with a smooth boundary then it turns out to be possible to carry this

program through. This was first accomplished by J.J. Kohn using the so called ∂–Neumann problem. He
considered a second order operator cooked up out of ∂ by choosing a metric on Ω smooth up to the boundary.
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Let ∂
∗

denote the formal adjoint of ∂ relative to this metric. We can define a quadratic form on smooth
p, q–forms by

(3.0.1) Q(f, f) =

∫
Ω

[< ∂f, ∂f > + < ∂
∗
f, ∂
∗
f >] dVol .

Using the Friedrichs’ extension this in turn defines a self adjoint, second order operator on L2(Ω; Λp,q).
Formally it is given by

�f = (∂∂
∗

+ ∂
∗
∂)f.

The domain of the operator is defined as those forms f ∈ L2 with a certain amount of additional regularity
which satisfy

(3.0.2) < f,�φ >= Q(f, φ), for all smooth p, q–forms φ.

For smooth functions this condition can be reinterpreted as local boundary conditions:

(3.0.3) ı∗[Ny∂f ] = 0, ı∗[∂
∗
f ] = 0,

where ı : ∂Ω −→ Ω and N is the unit normal to ∂Ω. This is called the ∂–Neumann boundary condition. To

solve the Levi problem one argues as follows: Let α be a closed 0, 1–form, and set v = ∂
∗�−1α. One can

show that ∂�−1 = �−1∂ and therefore

(3.0.4) ∂v = ∂∂
∗�−1α = ��−1α = α.

The regularity of v follows from a regularity theory developed for equations of this type by Kohn, et. al.
Note that on 0, 0–forms the boundary condition reduces to ı∗[Ny∂f ] = 0 which is satisfied by any

holomorphic function. Thus a smooth function in H(Ω) is in the domain of �. From this it is clear that this
operator is not elliptic, as it has an infinite dimensional kernel. If one uses the standard euclidean metric
to define the adjoints then � = ∆ as formal differential operators, so the difficulty lies in the boundary
conditions. This also implies that the solution to ∂u = α is not unique, even within the domain of �.
However the solution defined above has a special property. Suppose that h ∈ ker ∂ then

< v, h >=< ∂
∗�−1α, h >=< �−1α, ∂h >= 0.

In other words v is orthogonal to all L2–holomorphic functions in Ω.
The difficulty in this method lies in the fact that the differential operator ∆ is unrelated to the complex

geometry of the Ω whereas the boundary condition is intimately tied to it. As we shall see, this can
be rephrased by saying that there are two incompatible homogeneities at the boundary. To replace the
boundary condition, (3.0.3), Melrose and I consider a complete metric on Ω and use it to define adjoints
and thereby a � operator. This has the advantage that there is only one homogeneity, that defined by the
complex geometry of the boundary.

To solve the ∂–Neumann problem we need to replace consideration of 0, 0 and 0, 1–forms by n, 0 and
n, 1 forms. For a domain in Cn this poses no problems for if f is a function then setting

ω = dz1 ∧ · · · ∧ dzn

we obtain that

(3.0.5) ∂(fω) = (∂f) ∧ ω

and if α is a 0, 1–form then

(3.0.6) ∂(α ∧ ω) = (∂α) ∧ ω.
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Thus we can solve
∂u = α

for ∂–closed 0, 1–forms if and only if we can solve it for ∂–closed n, 1–forms.
There is something a bit special about n, 0–forms, they have a canonical L2 norm:

(3.0.7) ‖f‖2 =

∫
Ω

f ∧ f.

This canonical norm agrees with the L2–norm defined by any choice of hermitian metric in Ω. Thus we see
that if u is a smooth function in Ω then uω is an square integrable n, 0–form relative to any hermitian metric
on Ω. This observation will allow us to use a complete metric to solve the ∂–Neumann problem

Before we consider these matters in detail, I would like to quickly review how the calculus of pseudodif-
ferential operators is used invert a elliptic operator on a compact manifold. In the process we will extract the
essence of the method which we will subsequently adapt to analyze operators like � on strictly pseudoconvex
domains with metrics of the form

(3.0.8) g = −∂zi∂z̄j log ρdzidz̄j.

Here ρ is a smooth plurisubharmonic defining function for Ω.
Suppose that M is a compact riemannian manifold with metric g. We denote the smooth functions on

M by C∞(M) and its dual space by C−∞(M). This is the space of distributions defined on M . Suppose that
A is a linear operator

A : C∞(M) −→ C−∞(M).

An operator of this type has a kernel belonging to C−∞(M ×M). This is called the Schwarz kernel of A, we
will denote it by κA.

A is a differential operator if its Schwarz kernel is supported along the diagonal in M ×M. It is of order
m if for any smooth function ψ supported in a coordinate patch we have an expression of the form

(3.0.9) A(ψu)(x) =
∑

α,|α|≤m

aα(x)∂αxu(x).

An operator is a pseudodifferential operator if the wave front set of the Schwarz kernel is contained in the
conormal bundle of the diagonal in M×M. In simpler terms this means that if we introduce coordinates into
disjoint open sets U, V and choose functions φ ∈ C∞c (U), ψ ∈ C∞(V ), then the Schwarz kernel of the operator
u −→ φAψu, is a smooth function on M ×M . Whereas the Schwarz kernel of the operator u −→ ψAψu is
given by

κψAψ =

∫
eξ·(x−y)a(x, ξ)dξ,

where the integral is interpreted to mean

(3.0.10) ψAψu(x) =

∫
eξ·xa(x, ξ)û(ξ)dξ.

The function a(x, ξ) is called the symbol of A and it satisfies certain estimates: for non–negative
multiindices α, β, there are constants Cαβ such that

(3.0.11) |∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|β|.

This is actually too general a class of operators for our purposes; we place the further restriction that the
symbol have an expansion for large ξ

(3.0.12) a(x, ξ) ∼
∞∑
j=0

am−j(x, ξ),
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where am−j(x, ξ) is homogeneous of order m− j is ξ. An operator which satisfies (3.0.10)–(3.0.12) is called
a Kohn–Nirenberg pseudodifferential operator of order m. We will denote the set of such operators by
Ψm

KN(M).
The highest order term am(x, ξ) is called the principal symbol of the operator A. It is actually not

a function on M ×M but is well defined as a function on T ∗M . The variable ξ appearing in (3.0.10) is
the dual variable for the fiber of the cotangent bundle defined by the coordinate x. Simply put, it is the
trivialization of the cotangent bundle which arises by expressing one forms relative to the basis dx1, . . . , dxn.
For a differential operator as in (3.0.9) the principal symbol is given by

σm(A)(x, ξ) =
∑
|α|=m

aα(x)(iξ)α.

Thus a differential operator of order m with smooth coefficients belongs to Ψm
KN(M).

Conversely, given a smooth function on T ∗M, homogeneous of degree m outside a compact subset, we
can define a pseudodifferential operator. Let a be such a function and let Ui be a covering of M by coordinate
balls, with coordinates xi. Choose a partition of unity subordinate to this cover, {ψi}. If ξi denote the dual
variables then the operator defined by

(3.0.13) Au =
∑
i

∫
eiξi·xiψi(xi)a(xi, ξi)(ψiu)̂(ξi)dξi,

is an element of Ψm
KN(M) with principal symbol a.

The correspondence between symbols and operators is bijective in a filtered sense. If Sm(M) denotes
functions on T ∗(M) homogeneous of degree m satisfying (3.0.11) then there is a one to one mapping

(3.0.14) S{m}(M) = Sm(M)/Sm−1(M)←→ Ψm
KN(M)/Ψm−1

KN (M).

We denote the principal symbol by σm(A); it takes values is S{m}(M). A fundamental fact which makes
pseudodifferential operators useful is that if A ∈ Ψm

KN(M), B ∈ Ψn
KN(M) then A ◦ B ∈ Ψm+n

KN (M). Equally
important is that

(3.0.15) σm+n(A ◦B) = σm(A) · σn(B).

The pseudodifferential operators form an algebra and the symbol map is an algebra homomorphism.
The final fact of importance is that a pseudodifferential operator of order zero defines a bounded map

from L2(M) to itself. We can define L2–Sobolev spaces as follows: for each real number s

(3.0.16) Hs(M) = {u ∈ C−∞(M); Au ∈ L2 for all A ∈ Ψs
KN(M)}.

For positive integral values of s it is easy to put an inner product on Hs making it into a complete Hilbert
space. Using interpolation this can be extended to all positive real numbers and by duality to negative real
numbers. The following theorem follows easily from the definitions and the L2 result

Theorem 3.0.17. For every real s an operator A ∈ Ψm
KN(M) defines bounded mappings

(3.0.18) A : Hs(M) −→ Hs−m(M).

An opertor is negligible, as a pseudodifferential operator, if it has order −∞. This does not mean that it
is the zero operator but only that its principal symbol is zero and its Schwarz kernel belongs to C∞(M×M).
From this we conclude that if A ∈ Ψ−∞KN (M) then

(3.0.19) A : C−∞(M) −→ C∞(M).

Now that we have assembled all the pieces, we apply these ideas to invert the Laplace operator ∆ ∈
Ψ2

KN(M). This operator is not actually invertible as the constant functions lie in its kernel, so instead we
consider ∆+ 1. The principal symbol of ∆ is given by

(3.0.20) σ2(∆) = |ξ|2,
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where |.| is the norm on T ∗M defined by the metric. Note that it does not vanish outside the zero section,
any pseudodifferential operator with this property is called elliptic.

We wish to find an operator R(1) such that

(3.0.21) (∆+ 1)R(1) = Id .

We suppose that there is a pseudodifferential operator that satisfies this operator equation. Since σ0(Id) = 1,
(3.0.21) implies that

(3.0.22) σ2(∆+ 1)σ−2(R(1)) = 1.

We iteratively construct an operator R̃ so that

(3.0.22’) (∆+ 1)R̃− Id ∼ 0

in the sense that this is an operator of order −∞. The first step is to let P1 be an operator whose principal
symbol is (|ξ|2 + 1)−1. This operator is of order −2 using (3.0.15) we compute that

(3.0.23) E1 = (∆+ 1)P1 − Id

is in Ψ−1
KN(M), let e1 denote its symbol. Next we choose an operator P2 with symbol −e1(|ξ|2 + 1)−1, again

applying (3.0.15) we obtain
E2 = (∆+ 1)(P1 + P2)− Id ∈ Ψ−2

KN(M).

Clearly we can apply this recursively obtaining operators

Pj ∈ Ψ−j−1
KN (M)

such that
Ej = (∆+ 1)(P1 + · · ·+ Pj) ∈ Ψ−jKN(M).

We want to let

R̃ ∼
∞∑
j=1

Pj

so that

(3.0.24) E = (∆+ 1)R̃ ∈ Ψ−∞KN (M).

This in fact can be done, using the Borel summation lemma one can show that there is a pseudodifferential

operator R̃ with the property that

R̃− (P1 + · · ·+ Pj) ∈ Ψ−j−2
KN (M), ∀ j > 0.

We have therefore obtained an operator R̃ ∈ Ψ−2
KN(M) satisfying (3.0.22’). What remains is to modify R̃ so

as to obtain the true inverse.
We rewrite (3.0.24) as

(∆+ 1)R̃ = Id +E

where E has a smooth kernel. If Id +E is invertible then one can very easily show that (Id +E)−1 = Id +F
where F also has a smooth kernel. Thus setting

R(1) = R̃(Id +F )

we obtain an operator in Ψ−2
KN(M) which inverts ∆+ 1.
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It may happen that Id +E is not invertible, let u1, . . . , ul denote a basis for the kernel. Since E has a
smooth kernel it is immediate that

ui ∈ C
∞(M), i = 1 . . . , l.

If we take the adjoint of the equation satisfied by R̃ we obtain

(3.0.25) R̃∗(∆+ 1) = Id +E∗

We know, a priori, that (∆+ 1)−1 exists, at least on L2 thus we can find functions vi ∈ L2 such that

(∆+ 1)vi = ui.

Using (3.0.25) we can show that vi ∈ C∞(M) as well. If we replace R̃ with the kernel

R̃′ = R̃+
l∑
i=1

vi ⊗ ui

then
(∆+ 1)R̃′ = Id +E′

where (Id +E′) is invertible. Since the correction has a smooth kernel we obtain as before that R(1) ∈
Ψ−2

KN(M). A similar analysis applies to show that the inverse of any invertible elliptic pseudodifferential
operator of order m is an elliptic pseudodifferential operator of order −m.

We can also obtain a smoothing error term by using the composition properties of the calculus directly.
We return to (3.0.23) which we rewrite as

(3.0.23’) (∆+ 1)P1 = Id +E1.

Since E1 ∈ Ψ−1
KN it follows from (3.0.15) that

(3.0.26) Ek1 ∈ Ψ−kKN.

Using a summation argument similar to that used above to construct R̃ we can construct an operator

F̃ ∈ Ψ−1
KN such that

(3.0.27) Id +F̃ ∼
∞∑
j=0

(−E1)j.

That the series is summable follows from (3.0.26). As a consequence of (3.0.27) we obtain that

(3.0.28) (Id +E1)(Id +F̃ )− Id ∈ Ψ−∞KN .

Thus we can replace the iteration step above with this conceptually simpler construction. If we let R̂ =
P1(Id +F̃ ) then

(∆+ 1)R̂− Id ∈ Ψ−∞KN .

To finish let’s assemble the properties of pseudodifferential operators which allowed us to invert the
Laplacian.

(3.0.29) Pseudodifferential operators form an algebra which is closed under formal adjoints.
(3.0.30) There is a symbol map which is an algebra homomorphism and bijective, in a filtered sense.
(3.0.31) Pseudodifferential operators define bounded maps between a scale of Hilbert spaces Hs which

satisfy

C∞(M) =
⋂
s

Hs, C−∞(M) =
⋃
s

Hs.

(3.0.32) The residual operators (those of order −∞) form an ideal.

We will soon see how these principles guide the construction of an operator algebra which leads to the
inversion of the Laplace operator defined by a complete metric on a strictly pseudoconvex domain. What
we need to add to these general principles is a means for handling boundary conditions. To that end we
need to consider a special case in detail. The thrust of the method is to then reduce the general case to the
special case.
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3.1 The unit ball

The unit disk is a model for the complete, simply connected Riemannian manifold with constant negative
curvature. The metric can be written in the form

(3.1.1) ds2 =
|dz|2

(1− |z|2)2
.

We can identify the tangent space to the unit disk with the vectors of type 1, 0. When represented relative
to the basis ∂z, ∂z̄ a real vector takes the form

(3.1.2) X = α∂z + α∂z̄.

From (3.1.2) it is clear that the map
X −→ α∂z = ZX

defines an isomorphism of TCB1 with T 1,0CB1 as a real vector space.
The (1, 1)–form,

ω = −∂∂ log(1− |z|2)

defines a hermitian pairing on T 1,0 by
h(W,Z) = ω(W,Z).

A simple calculation shows that
ds2(X, Y ) = 4 Reh(ZX , ZY ).

Thus we have a relation between the strictly plurisubharmonic defining function and the hyperbolic geometry
of the unit disk.

Using this connection we can easily show that the metric is invariant under all biholomorphic self maps
of the unit disk. The Schwarz lemma implies that all such mappings are of the form:

w = γz =
az + b

bz + a
, |a|2 − |b|2 = 1.

An elementary computation establishes that

(3.1.3) γ∗(1− |z|2) =
(1− |z|2)

(bz + a)(bz̄ + a)
.

Because γ is a holomorphic map,

(3.1.4) γ∗∂∂ log(1 − |z|2) = ∂∂γ∗ log(1 − |z|2) = ∂∂ log(1− |z|2),

from which the claim follows. Thus the biholomorphic self maps are isometries relative to the constant
curvature metric and CB1 is a homogeneous space. It is isomorphic to

(3.1.5) CB1 = SU(1, 1)/U(1).

A simple count of dimensions shows that all orientation preserving isometries are of this form. Note that the
element − Id acts trivially on the disk, so the true automorphism group is PSU(1, 1) = SU(1, 1)/{Id,− Id}.

For the purposes of generalization there is a different model which is better suited to computation. To
define the projective model we consider C2 with the hermitian inner product

< X, Y >= X1Y 1 −X2Y 2.

A simple calculation verifies that if A ∈ SU(1, 1) then < AX,AY >=< X, Y > . Of course the metric
induced by Re < ·, · > has signature (2, 2) however if we restrict to the hypersurface given by

H = {X; < X,X >= −1}
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then we get a metric of signature (2, 1). The unit circle acts on H via X −→ eiθX. This action commutes
with the action of SU(1, 1) on H and therefore allows us to define a metric on the quotient H/U(1) by
identifying the tangent space of the quotient with the orthocomplement of the vector field which generates
the U(1) action. Since the U(1)–action commutes with the action of SU(1, 1) this group acts as isometries
of the quotient space. It is sometimes useful to have a second representation, we set

N = {X :< X,X >< 0} then H/U(1) = N/C∗.

If we use z1, z2 as local coordinates for C2 then the projection

π(z1, z2) =
z1

z2

carries N onto CB1. In this representation it is a simple matter to deduce (3.1.3) and therefore (3.1.4).
Suppose that A ∈ SU(1, 1) then the action of A on CB1 is defined as follows,

(3.1.6) A · z =

(A

(
z
1

)
)1

(A

(
z
1

)
)2

.

By definition A∗(|z1|2 − |z2|2) = |z1|2 − |z2|2 thus setting ρ = |z|2 − 1 we have

(3.1.7) A∗(ρ) =
ρ

|(A

(
z
1

)
)2|2

.

The important point being that A∗ρ/ρ is the squared modulus of a holomorphic function.
This construction easily generalizes to n–dimensions. Our goal is to find a metric on the unit ball in

CBn which is invariant under a very large group of holomorphic transformations. As before we consider
Cn+1 with the lorentz metric

< X, Y >= X1Y 1 + · · ·+XnY n −X0Y0.

The lie group SU(n, 1) is defined as those matrices of determinant 1 such that

< AX,AY >=< X, Y >, for all X, Y ∈ Cn+1.

As before we let

H = {X ∈ Cn+1; < X,X >= −1}, N = {X ∈ Cn+1; < X,X >< 0}.

Evidently H is invariant under the action of SU(n, 1) and also the action of U(1) defined by X −→ eiθX.
We define a projection of N into Cn by

π(X) = (
X1

X0
, . . . ,

Xn
X0

).

One easily sees that the image of H is exactly the interior of the unit ball. The map is not one to one as X
and eiθX have the same projection, but this is easily seen to be the only possibility. Therefore

CBn ' H/U(1).

To obtain a representation as a homogeneous space we observe that

(3.1.8) H/U(1) ' SU(n, 1)/U(n).
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Since SU(n, 1) acts transitively on H/U(1) to prove (3.1.8) we need only compute the stabilizer of a single
fiber in. This is simplest for the equivalence class [(0, . . . , 0, eiθ)] The stabilizer is easily seen to have the
form 

0

e−iθSU(n)
...
0

0 . . . 0 einθ

 .
This is simply U(n) ↪−→ SU(n, 1) as asserted.

The action of SU(n, 1) on CBn is defined as before by

A · z = π(Aπ−1z) =

(A

(
z
1

)
)1

(A

(
z
1

)
)0

, . . . ,

(A

(
z
1

)
)n

(A

(
z
1

)
)0

 .

Using this formula and the invariance of the lorentz inner product one easily derives that

(3.1.9) A∗(ρ) =
ρ

|(A

(
z
1

)
)0|2

.

As before the ratio A∗ρ/ρ is the squared modulus of a holomorphic function.
Therefore the invariant metric on CBn is given, as before, by

g = −∂∂ log ρ

To see that it is invariant we need to show that A∗g = g for all A in SU(n, 1). This follows immediately from
(3.1.9) because the denominator is the squared modulus of a holomorphic function. This metric is called the
Bergman metric. One can show that it agrees with the metric induced by π from the inner product < ·, · >
on H, restricted to the orthogonal trajectories of the action of U(1).

Using the group invariance one can show that if z, w are two points in CBn then

(3.1.10) cosh
1

2
d(z, w) =

|1− (z, w)|

[(1− |z|2)(1− |w|2)]
1
2

.

Here (·, ·) is the standard hermitian inner product on Cn.

Exercise 3.1.11.

(1) Prove that the function defined on the right hand side of (3.1.10) is invariant under the
action of SU(n, 1).

(2) Prove that the real lines through 0 are geodesics of the Bergman metric.
(3) Prove the formula (3.1.10), hint: show that it suffices to consider z = 0, w = (ζ, 0, . . . , 0)

and then compare (3.1.10) with the result of integrating the Bergman metric.

The group SU(n, 1) therefore acts as isometries of CBn with the Bergman metric, however the action
is not effective. The center of the group

Zn = {

[
eimω Idn 0

0 eimω

]
, m ∈ Z, ω =

2π

n+ 1
},

acts trivially. A dimension count shows that all biholomorphic isometries of the Bergman metric arise from
elements of SU(n, 1). One can also show that all orientation preserving isometries of the Bergman metric
are necessarily biholomorphic maps, thus

Isom(CBn) = SU(n, 1)/Zn.

One can even prove a sort of converse: that every biholomorphic self map of CBn is an isometry of the
Bergman metric. This uses a generalization of the Schwarz Lemma. From this we conclude that the group
of biholomorphic self maps of the unit ball is isomorphic to SU(n, 1)/Zn.
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Exercise 3.1.12.

(1) Prove that any biholomorphic self map of the unit ball defines an isometry of the Bergman
metric. hint: use (2.2.17) and composition with elements of SU(n, 1).

(2) Prove that any isometry of the Bergman metric is a biholomorphic mapping. hint: By
composing with elements of SU(n, 1)/Zn one can reduce consideration to an isometry fixing
the origin and consider the tangent map only at 0.

(3) Prove that the volume form of the Bergman metric is given by

(3.1.13) dVol =
cn dVeuclid

(1− |z|2)n+1
,

where cn is a dimensional constant.

3.2 Analysis on the unit ball

In this section we consider two analytic problems on the unit ball in Cn: the first is constructing the
resolvent kernel for the Laplace operator, the second is the construction of the Bergman projector. To
keep technical difficulties to a minimum we only construct the resolvent for the Laplace operator acting on
functions. Similar considerations lead to an analogous construction for the Laplace operator on p, q–forms.

As remarked in the introduction the space of n, 0–forms has a canonical bilinear pairing which induces
an L2–structure. Bounded holomorphic n, 0–forms belong to L2(CBn; Λn,0), we denote the space of all L2

holomorphic n, 0 forms by H2(CBn). The orthogonal projection from L2(CBn; Λn,0) onto H2(CBn) is called
the Bergman projector. It can be represented by a kernel of the form

B(z, w)dz ∧ dw̄;

the action is then given by

Bω(z) =

∫
CBn

ω ∧B(z, w)dz ∧ dw̄.

Much of the analysis of holomorphic functions in several variables can be reduced to an analysis of the
Bergman kernel function. Once one has solved the ∂–Neumann problem one can easily construct the Bergman
kernel. On the unit ball it is easy to construct the Bergman kernel directly. We conclude this section with
that computation as motivation for what comes in the later sections.

To study the resolvent kernel for the Laplacian we employ the group invariance of the Laplace operator.
Recall that the Bergman metric on the unit ball is given by

gi̄ =
δi̄

1− |z|2
+

zı̄zj
(1− |z|2)2

.

We can easily show that if γ ∈ Isom(()CBn) and f ∈ C∞c (CBn) then

(3.2.1) γ∗(∆Bf) = ∆Bγ
∗f.

The resolvent kernel is defined by the distributional equation

(3.2.2) (∆B − λ)R(λ) = δ∆

and decay properties for λ /∈ spec∆B.
Suppose that we could find a fundamental solution with pole located at 0 ∈ CBn, i.e. a solution to

(3.2.3) (∆B − λ)F0 = δ0,

which is square integrable near to |z| = 1 if λ /∈ spec∆B. Let γ carry p to 0 then (3.2.1) implies that

Fp(z) = F0(γ · z)

10



satisfies (3.2.3) with the singularity moved to p. Since the resolvent kernel is unique we do not expect the
solution we obtain to (3.2.3) to depend on the ‘angle’, for otherwise we could obtain different functions Fp
by choosing different different group elements γ with γ · p = 0.

In fact if γ ∈ Isom(()CBn) fixes 0 then γ∗F0 is another solution to (3.2.3). By averaging over the
stabilizer of 0 ' U(n) we obtain a solution to (3.2.3) which also satisfies

(3.2.4) γ∗F0 = F0, for all γ ∈ U(n).

It is easy to see that any function which satisfies (3.2.4) is of the form

(3.2.5) F0(z) = f(r2), with r2 = |z|2.

An elementary calculation shows that with τ = r2,

(3.2.6) ∆BF0 = τ(1− τ)2(fττ +

[
n

τ
+
n − 1

1− τ

]
fτ ).

Exercise 3.2.7. Prove (3.2.6), hint: for functions in C∞c the Bergman laplacian is defined by

(3.2.7)

∫
CBn

(∆Bf)g dVol =

∫
CBn

< ∂f, ∂g > dVol .

If we reparametrize the eigenvalue by
λ = s(n − s)

then the equation for the radial fundamental solution is a classical P-Riemann equation:

(3.2.8) P

 0 ∞ 1
0 0 s ; τ
−n 0 n− s

 .

If you are unfamiliar with this notation I suggest that you consult Modern Analysis by Whittaker and
Watson. Briefly it states that the equation has regular singular points at 0, 1,∞ with indicial roots (0,−n)
at 0, (0, 0) at ∞ and (s, n− s) at 1.

The reason that we introduce the parameter s is so that the indicial roots are both analytic functions of
the parameter, this in turn produces a solution which depends analytically on the parameter. The parameter
s defines a two fold cover of the energy parameter λ. The half plane Re s > 1

2n is the ‘physical’ half plane,

the spectrum corresponds to Re s = 1
2
n. The half plane Re s < 1

2
n is the non–physical half plane and it has

interpretations in term of scattering theory.
In any case the solution of (3.2.8) which we need can be expressed in term of classical functions by

(3.2.9) r(τ ; s) = cn
Γ(s)2

Γ(2s− n+ 1)
(τ − 1)s2F1(s, s; 2s− n + 1; 1− τ).

Using well known facts about these functions we can show that for Re s > 1
2n, r(|z|2; s) is square integrable,

near to |z| = 1, with respect to the Bergman metric. It has a singularity at 0 such that

(3.2.10)

∫
CBn

r(|z|2; s)(∆B − s(n− s))f(z) dVol = f(0),

for f ∈ C∞c (CBn).
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The parameter τ has a more invariant interpretation, it is given by

(3.2.10) τ = 1− [cosh
1

2
d(z, 0)]−2.

From this it follows easily that

(3.2.11) R(z, w; s) = r(1− [cosh
1

2
d(z, w)]−2; s).

In (3.1.13) we showed that

cosh
1

2
d(z, w) =

|1− (z, w)|

[(1− |z|2)(1− |w|2)]
1
2

.

We set

ι(z, w) =
|1− (z, w)|

[(1− |z|2)(1− |w|2)]
1
2

,

then

(3.2.12) R(z, w; s) = ι(z, w)−2sGn(ι(z, w)−2; s),

where Gn(t, s) is analytic for t ∈ [0, 1) and has a pole at t = 1. The main conclusion we draw from (3.2.12)
is that if we understand the singularities of the function ι(z, w) on CBn × CBn then it is relatively simple
matter to understand the singularities of the resolvent kernel. As a function of s, Gn(·; s) is analytic in
Re s > 0 with simple poles at −N0.

To conclude this section we construct the Bergman kernel function. As before we make use of the group
invariance. By definition, the Bergman projector acts like the identity on holomorphic n, 0–forms. More
explicitly, if fdz is holomorphic then

(3.2.13) f(z)dz =

∫
CBn

f(w)dw ∧B(z, w)dw̄ ∧ dz.

Since the components of a holomorphic n, 0 form are also harmonic with respect to the euclidean
Laplacian it follows from the mean value theorem that

(3.2.14) f(0)dz = cn

∫
CBn

f(w)dw ∧ dw̄ ∧ dz.

Suppose that γ ∈ Isom(()CBn) carries 0 to z then

(3.2.15) γ−1 ∗(γ∗(fdz)(0)) = f(z)dz.

By combining (3.2.14) and (3.2.15) we obtain

f(z)dz = cn

∫
CBn

γ∗(f(w)dw) ∧ dw̄ ∧ γ−1 ∗dz

= cn

∫
CBn

f(w)dw ∧ γ−1 ∗(dw̄ ∧ dz).

(3.2.16)

To complete the construction all we need is to compute the Jacobian of γ−1. This we leave as an exercise,
the answer is

(3.2.17) γ−1 ∗(dw̄ ∧ dz) =
dw̄ ∧ dz

(1− (z, w))n+1
,

12



where

(z, w) =
n∑
i=1

ziw̄i.

The formula we finally obtain is that

(3.2.18) B(fdz) = cn

∫
CBn

f(w)dw ∧ dw̄ ∧ dz

(1− (z, w))n+1
.

How do we know this is the correct kernel? It is uniquely determined by three properties: the range of B isH2,
it is hermitian symmetric and B2 = B. This is equivalent to the statement that it is an orthogonal projection
onto H2. The hermitian symmetry is apparent from the formula. Since B(z, w) depends holomorphically on
z it follows that Bf(z) is a holomorphic function of z. Furthermore one can adapt the for going argument
to show that:

B(z, w) =

∫
CBn

B(z, x) ∧B(x, w).

Thus we have proved the following theorem:

Theorem 3.2.19. The Bergman projector for the the unit ball in Cn is given by the following kernel

B(z, w) =
dw̄ ∧ dz

(1 − (z, w))n+1
.

Once again we see that understanding the singularities of the Bergman kernel is reduced to studying
the singularities of a very simple function (1 − (z, w))−1. Clearly this function is smooth away from the
intersection of the diagonal in CBn × CBn with the boundary. On the other hand it seems to have a very
similar sort of a singularity as that which arose in the kernel of the resolvent for the Bergman laplacian. In
the next lecture we discuss a method for analyzing such singularities. It amounts essentially to introducing
polar coordinates.

3.3 Polyhomogeneous conormal distributions

A large part of the study of pseudodifferential operators on strictly pseudoconvex domains is related to
the analysis of singularities. In order to proceed, we must define a class of ‘good’ singularities. Recall that
a function a(x, ξ) is called a symbol of order m if it satisfies the estimates

(3.3.1) sup |(1 + |ξ|)|β|−m∂αx ∂
β
ξ a(x, ξ)| <∞,

for all non–negative multiindices α, β.
The kernel defined by a(x, ξ) is given by the oscillatory integral

Ka(x, x− y) =

∫
Rn

a(x, ξ)eiξ·(x−y)dξ.

So as to avoid unimportant technicalities we assume that the order of a is less that −n and therefore the
integral exists as an absolutely convergent integral. We would like to investigate the regularity properties
of the kernel itself which follow from (3.3.1). For this purpose it is convenient to replace x − y by a new
variable z. The x, z coordinates have a nice geometric interpretation, the diagonal in Rn ×Rn is defined by
z = 0. Thus we can think of x as a parameter along the diagonal and z as a transverse parameter.

We’ve assumed that Ka(x, z) belongs to L∞ it is clear from (3.3.1) that ∂αxKa is also bounded for any
multiindex α. On the other hand it is clear that if we take enough derivatives in the z–variables the integral
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will no longer be absolutely convergent, in fact it will no longer be bounded along the diagonal. However
observe that

zi∂zjKa(x, z) =

∫
Rn

a(x, ξ)iziξje
iξ·zdξ

=

∫
Rn

a(x, ξ)ξj∂ξie
iξ·zdξ

=−

∫
Rn

∂ξi(ξja(x, ξ))eiξ·zdξ

(3.3.2)

The last equality is obtained by integrating by parts. In virtue of (3.3.1) the symbol ∂ξi(ξja(x, ξ)) satisfies
exactly the same estimates as a(x, ξ) thus we see that the differential operators zi∂zj also preserve the
boundedness properties of the kernel.

This seems a bit mysterious, however the span of the differential operators

V(R2n; ∆) = Span{∂xi , zi∂zj ; i, j = 1, . . .n}

also has a simple geometric interpretation: these are precisely the smooth vector fields tangent to the
diagonal. So we see that the property of the kernel which corresponds to the estimates (3.3.1) is that if
V1, . . . , Vl ∈ V(R2n; ∆) then

V1 . . . VlKa(x, z)

has the same regularity as Ka itself. Such a distribution is called a conormal distribution relative to z = 0.
More generally if X is a manifold and Y ⊂ X is an embedded submanifold then we can define distri-

butions conormal relative to Y . To do this we use the grading of the distributions on X defined by the
L2–Sobolev spaces. Let V(X; Y ) denote all smooth vector fields on X which are tangent to Y . Let p ∈ Y ,
we can find coordinates (y1, . . . , yn−k, z1, . . . , zk) for X such that Y is given by z1 = · · · = zk = 0. In this
coordinate patch

(3.3.3) V(X; Y ) = Span{∂yi , zj∂zl}.

We define the conormal distributions along Y with L2–order s by

IHs(X; Y ) = {u ∈ Hs(X); for any l, V1 . . . Vlu ∈ H
s(X), Vi ∈ V(X; Y ), i = 1, . . . , l}.

Loosely speaking these are distributions whose regularity is not affected by taking derivatives tangent to Y .
One can show that every such distribution has a representation in a local coordinate patch as an

oscillatory integral:

(3.3.4) u(y, z) =

∫
Rk

a(y, η)eiη·zdη.

The function a(y, η) is a symbol in Rn−k × Rk. This means that for all non–negative multiindices α, β

(3.3.5) sup |(1 + |η|)|β|−m∂αy ∂
β
η a(y, η)| <∞.

This is simply a generalization of (3.3.1). We denote the space of such functions by Sm(Rn−ky × Rkη). This
representation leads to a symbol mapping for a conormal distribution. Invariantly the symbol takes values
in N∗(Y ), the conormal bundle of Y ↪−→ X.

There is an inequality which pertains between s and m. Instead of exploring this direction it is simpler
to redefine the grading on the family of conormal distributions. We define Im(X; Y ) as those distributions
on X whose singular support is contained in Y and such that in every local coordinate system as above u
has a representation as in (3.3.4) where a ∈ Sm−

1
2n+ 1

4 4(Rn−ky ×Rkη). This peculiar normalization of the order
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is useful in other applications and is relatively standardized. The space conormal distributions relative to Y
is

I(X; Y ) =
⋃
m∈R

Im(X; Y ) =
⋃
s∈R

IHs(X; Y ).

It is useful to have the two different grading because they are related and it is sometimes easier to prove
things about the one than the other.

Recall that we actually required more about of the symbols that defined our pseudodifferential operators
than the estimates (3.3.1). We also insisted that they should have an asymptotic expansion into homogeneous
terms. If a conormal distribution has a symbol with such an expansion then it will also have an expansion.
We consider a simple special case. Suppose that a(ξ) ∈ Sm(Rk).

We suppose further that a(ξ) is homogeneous of degree m for |ξ| > 1. We call such a function asymp-
totically homogeneous. The fourier transform of a defines a distribution

(3.3.6) u(z) =

∫
Rk

a(ξ)eiξ·zdξ.

If m < −k then this integral converges absolutely, otherwise we define the distribution as an oscillatory
integral. If ψ ∈ C∞c (Rk) then

< u, ψ >=

∫
Rk

∫
Rk

ez·ξψ(z)dz

 a(ξ)dξ.

Integrating in this order is easily seen to define a tempered distribution.
Since a(ξ) is asymptotically homogeneous of degree m it follows from the oscillatory definition of u that

we can integrate by parts to obtain that:

(3.3.7) (z · ∂z + k +m)u =

∫
Rk

(m− ξ · ∂ξ)e
iξ·za(ξ)dξ.

The derivatives on the left are in the sense of distributions. The integrand in (3.3.7) is smooth and compactly
supported. We state this result as a lemma.

Lemma 3.3.8. If a(ξ) ∈ C∞(Rk) and homogeneous of degree m for |ξ| > 1 then u(z) defined as an oscillatory
integral by (3.3.6) satisfies:

(3.3.9) v = (z · ∂z + k +m)u ∈ C∞(Rk).

From this we can deduce that u is homogeneous of degree −(k +m) up to a smooth error. To that end
we observe that u(z) is represented by a smooth function in the complement of z = 0. Furthermore

u(z)− tm+ku(tz) =

1∫
t

sm+k−1v(sz)ds.

This implies that

u(tz) = t−(m+k)u(z)− t−(m+k)

1∫
t

sm+k−1v(sz)ds.

We apply Taylors theorem with remainder to obtain that

u(tz) = t−(m+k)u(z)−

t−(m+k)
∑

α; |α|≤N

1∫
t

vαs
|α|+m+k−1zαds+

∑
β; |β|=N+1

1∫
t

sm+k+Nzβhβ(sz)ds)

= I + II + III .

(3.3.10)

15



Here N is some integer chosen so that m+ k+N > 0. The functions hβ(z) are smooth. The first two terms
are easily analyzed, we let z = ω a unit vector. Performing the integral and grouping terms we see that

(3.3.11) I + II = t−(m+k)(u(ω)−
∑
|α|≤N

v′αω
α + gN(tω) log t) + fN (tω),

where fN (z), gN(z) are polynomials and gN(z) = O(|z|−(m+k)).
To complete the analysis we need to control the error term. In virtue of our choice of N this integral

converges absolutely as t→ 0. We rewrite this term as

III =t−(m+k)
∑

|β|=N+1

s∫
0

sm+k+Nωβhβ(sω)ds−

∫ ∑
|β|=N+1

σ∫
0

τm+k+N (tω)βhβ(σtω)dσ.

(3.3.12)

In the second integral we have set s = tτ. Thus we obtain that

III = t−(m+k)hN (tω) + kN(tω),

where hN(z), kN(z) are smooth functions.
Putting these calculations together we obtain:

Lemma 3.3.13. If a(ξ) ∈ Sm(Rk), for an m < −k, is homogeneous for |ξ| > 1 then the distribution u(y)
defined by (3.3.6) has an expansion at zero of the form

(3.3.14) u(rω) = r−(m+k)(f(ω) + log rg(rω)) + h(rω).

Here f is a smooth function on the unit sphere, g, h are smooth in a neighborhood of 0 ∈ Rk and g(z) =
O(|z|−(m+k)).

This result has a generalization to distributions of any order. One uses Lemma (3.3.8). For values of
m > 0 one must allow for the ‘homogeneous’ distributions of the form

u(y) = ∂βy δ0(y).

In general (3.3.14) is replaced by a sum of such terms and homogeneous functions of the more familiar kind.
Note that this is needed in order for the distribution to be defined as a principal value. On the other hand
no log–term arises in this case. We leave the details as a highly recommended exercise. Note that we could
rephrase (3.3.13) for any order m by considering u as defining a distribution on Rk \ 0. Then it is simply a
question of showing that there is a uniquely defined extension to all of Rk.

Exercise 3.3.15.

(1) Show that if a(ξ) is asymptotically homogeneous of degree m < 0 then the associated
distribution u(z) satisfies

lim
ε→0

< u, ψ(ε−1z)φ(z) >= 0,

for any function ψ ∈ C∞c (Rk). hint: use the fact that

(1 + |ξ − η|)(1 + |ξ|) > (1 +
1

2
|η|).

(2) Using part 1 show that Lemma (3.3.13) extends to this case with no modification.
(3) Can you figure out what to do in the general case?
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More generally we can consider the distributions defined by symbols a(x, ξ) ∈ Sm(Rn × Rk) which are
homogeneous in ξ for |ξ| > 1. The symbol depends smoothly upon the x–variables and differentiating in x
does affect the homogeneity properties. Thus the foregoing calculations apply without essential modification
to show that the distribution defined by the oscillatory integral

u(x, y) =

∫
eiξ·ya(x, ξ)dξ

has an asymptotic expansion. For simplicity we again assume that m < −k so the integral converges
absolutely. Setting y = rω, |ω| = 1 we have

(3.3.16) u(x, rω) = r−(m+k)(f(x, ω) + log rg(x, rω)) + h(x, rω),

where f(x, ω) is a smooth function on Rn × Sk−1, g(x, y), h(x, y) are smooth in Rn × Rk with g(x, y) =
O(|y|−(m+k)).

The expansion in (3.3.16) is in many ways the main point of this section. What it shows is that
if we introduce polar coordinates about the submanifold y = 0, then a conormal distribution with an
asymptotically homogeneous symbol has a very simple sort of a singularity. Essentially we get functions
smooth away from r = 0 with a simple algebraic behavior as r → 0 and smooth in all other directions. We
see that if we apply differential operators which are polynomials in the vector fields

{r∂r, X1, . . . , Xk−1, ∂x1 , . . . , ∂xn},

where Xi, i = 1, . . . , k − 1 are tangent to the sphere, to u(x, r, ω) then we get a function with precisely the
same regularity as u. We make this more precise in the next section.

If A ∈ Ψm
KN then we can use (3.3.16) to obtain an asymptotic expansion for the Schwarz kernel. As

before, we assume for simplicity that m < −n though one can easily generalize this to all orders. The
expansion is

KA(x, x− y) ∼
∞∑
j=0

kj(x, ω)|x− y|j−m−n + |x− y|−(m+n) log |x− y|k′0(x, x− y) + l(x, x− y).

As before kj(x, ω) are smooth on Rn × Sn−1 and k′0(x, z), l(x, z) are smooth in Rn × Rn with k′0(x, z) =

O(|z|−(m+k)).
We need conormal distributions in one other slightly different situation. In the analysis of the Bergman

laplacian we need to consider distributions on manifolds with boundaries or more generally, manifolds with
corners. The model space is denoted by Rnk . It is defined by

Rnk = {x ∈ Rn; 0 ≤ xi, i = 1, . . . , k}.

This is the model for the intersection of k–boundary components. First we consider the simple case of a
manifold with boundary, this is modeled on Rn1 .

On Rn1 there are two naturally defined spaces of smooth functions, the functions smooth up to the

boundary C∞(Rnk) and the ideal of functions which vanish to infinite order at the boundary, Ċ∞(Rn1 ). We
consider distributions in the dual of the latter space. These are called extendible distributions as we can
include Ċ∞(Rn1 ) into C∞(Rn) as a closed subspace. Therefore by the Hahn–Banach theorem any continuous

linear functional on Ċ∞(Rn1 ) has an extension to C∞(Rn). We denote this space by C−∞(Rn1 ).
As usual we are not interested in the general element of C−∞(Rn1 ) but only a very special subspace.

The polyhomogeneous conormal distributions of ‘order’ α, where α ∈ C, m ∈ N, I(α,m)(Rn1 ; ∂Rn1 ) are those
elements of C−∞(Rn1 ) which have an expansion along x1 = 0 of the form

(3.3.17) u(x1, x
′) ∼

m∑
l=0

∞∑
j=0

ujm(x′)xα+j
1 (log x1)l.
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Here the functions ujm(x′) are assumed to belong to C∞(∂Rn1 ). More generally we assume that u can be
expressed as a sum of such expansions with different exponents {αk, mk} so long as Reαj tends to ∞ as
k→∞. The collection of numbers

A = {αk + j,mk, k = 1, . . . ,∞, j ∈ N0}

is called an index set. The conormal distributions with this index set are denoted by IA(Rn1 ; ∂Rn1 ).

For the case of Rnk we define polyhomogeneous conormal distributions relative to ∂Rnk , in the simplest,
case as those with an expansion

(3.3.18) u(x′, x′′) ∼
∑
j∈Nk0

rα+juj(x
′′).

Here α = (α1, . . . , αk) ∈ Ck and uj(x
′′) are smooth functions on Rn−k. As with a single boundary component

we can augment this expansion with log terms and then combine them with different k–tuples αm. The
asymptotic summation makes sense so long as

min
i

Reαim

tends to ∞ as m→∞.

These distributions are conormal in the previous sense as well. It is clear that the expansion is essentially
unchanged if we apply a differential operator in the span of

(3.3.19) {x1∂x1 , . . . , xk∂xk , ∂xk+1 , . . . , ∂xn}.

Here we have taken the intersection of all the vector fields tangent to each of the hypersurface boundary
faces which meet at x = 0.

There are several important things to observe about these distributions, firstly they form a ring. In
suggestive notation we have

(3.3.20) IA(Rnk ; ∂Rnk) · IB(Rnk ; ∂Rnk) ⊂ IA+B(Rnk ; ∂Rnk)

and

(3.3.21) IA(Rnk ; ∂Rnk) + IB(Rnk ; ∂Rnk ) ⊂ IA∪B(Rnk ; ∂Rnk).

As we do not have the time we must simply leave these in their suggestive form.

As a final observation we note that such a distribution has a local Mellin transform for Re ξi sufficiently
large.

(3.3.22) û(ξ; x′′) =

∫
· · ·

∫
xi>0,i=1,...,k

u(x′, x′′)φ(x′)xξ
dx1 . . . dxk
x1 . . . xk

.

Here φ(x′) is a smooth function supported in a neighborhood of 0. In fact any extendible distribution has a
Mellin transform for sufficiently large Re ξi. However if the distribution is polyhomogeneous then the Mellin
transform has a meromorphic extension to Ck. The principle parts at the singularities have expansions with
coefficients in C∞(Rn−k). Though we do not have time to prove it, this property provides a very useful
characterization of polyhomogeneous conormal distributions.
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3.4 A simple model problem for blow–ups

In this section we introduce a geometric construction which is crucial in the analysis of the singularities
occurring in the resolvent of the Bergman Lapalcian. First we consider a very simple model problem: the
operator (x∂x)2 on the R+. We would like to construct the Schwarz kernel for the resolvent of the operator
that is ((x∂x)2 − s2)−1. It is elementary to show that the kernel is given by

(3.4.1) R(x, y; s) =

{ (
x
y

)s
if x < y(

y
x

)s
if y < x.

The kernel is defined on the manifold with corners R2
2. As a distribution it is polyhomogeneous conormal

along three submanifolds, the diagonal, ∆, the left boundary x = 0 which we denote by lb and the right
boundary y = 0, which we denote by rb. Note however that it fails to be conormal where all three intersect
in the corner of the diagonal ∂∆. It would be very hard to analyze the singularity of this operator ∂∆ and
even harder to try to construct such an operator without having a formula. For example it would be quite
difficult to construct a parametrix for the resolvent kernel for a simple perturbation of our operator such as
(x∂x)2 + q(x).

Using a simple geometric construction we can make these difficulties vanish. We construct a new mani-
fold with corners by blowing up the boundary of the diagonal. Simply put this amounts to the introduction
of polar coordinates about this submanifold. Proceeding a little more formally we define the normal bundle
to ∂∆ by

(3.4.2) N∂∆ = TR2
2 �∂∆ /T∂∆.

The functions x, y are defining functions for ∂∆. Note that dx, dy are well defined on N∂∆ as they annihilate
T∂∆. We define the inward pointing normal bundle to ∂∆, N+∂∆, as the subset of N∂∆ where both dx
and dy are non-negative. Loosely speaking, the flow for a short time along these ‘directions’ carries you into
the manifold.

On the inward pointing bundle there is a natural action by R+ induced form the vector space structure
of TR2

2. We define the blowup of R2
2 along the submanifold ∂∆ as a topological space by

(3.4.3) R2
2,0 = R2

2 \ ∂∆qN+∂∆/R+.

There is a naturally defined projection map

β0 : R2
2,0 −→ R2

2

called the blowdown. It is one to one on R2
2 \ ∂∆. The inverse image of 0 is a new boundary component

which we call the front face, ff .
We would like to give this the structure of a manifold with corners. We need to define the ringe of

smooth functions. There is an identification between a neighborhood of the zero section in N+∂∆ and a
neighborhood of ∂∆ in R2

2. In this simple case this identification can be done globally but this is not required.
Let Ψ denote such an identification. Let Mδ denote the action of R+ on N+∂∆. Then

M̃δ = Ψ ◦Mδ ◦Ψ−1

defines an action of a neighborhood of 0 in R+ on a neighborhood of ∂∆ in R2
2. We define let CI0 denote the

ring of functions defined on R2
2 \ ∂∆ generated by smooth functions on R2

2 and smooth functions on R2
2 \ ∂∆

homogeneous of degrees 0 and 1 with respect to M̃δ . Such functions obviously have well defined lifts to R2
2,0

which extend continuously to ff . We define

C∞(R2
2,0) = β∗0 (C∞0 ).
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One can show fairly easily that this is well defined independent of the choice of Ψ. This completes the
construction of R2

2,0. We define the lift of the diagonal as

∆0 = β−1
0 (∆ \ ∂∆).

In this simple case we can express everything in terms of simple concepts. When we use

θ = tan−1
(y
x

)
, r =

√
x2 + y2

the blown–up space is simply

R2
2,0 = [0,

1

2
π]× [0,∞).

A function on R2
2 lifts to be smooth if it is a smooth function of these variables. For example

(3.4.4) R0(s) = β∗0 (R(s)) =

{
tan θs if 0 ≤ 1

4π

tan θ−s if 1
4π ≤

1
2π.

In the blown the analysis of R0(s) is a lot simpler.
The main reason for this is that the left and right boundaries of R2

2,0 defined by

lb = β−1
0 (lb \ lb∩∂∆), rb = β−1

0 (rb \ rb∩∂∆),

no longer intersect the lifted diagonal ∆0. Note that R0 has a smooth extension to the interior of the ff away
from ∆0 ∩ ff. In the blown–up space the lifted resolvent kernel is a polyhomogeneous conormal distribution
with respect to the submanifolds lb, rb,∆0.

Before turning to a more general context we consider the front face in greater detail. This boundary
component is a fibration over ∂∆. This is essentially immediate from the construction as the front face is
defined as

ff = N+∂∆/R+.

Of course in this trivial case there is only one fiber but we won’t take further notice or advantage of this
fact. Note that the lifted diagonal intersects each fiber in exactly one point. The vector field x∂x lifts to R2

2

in an obvious way. What is a little less obvious is that it also lifts to R2
2,0. This is intuitively reasonable as

the new ‘directions’ in the blown–up space are directions in which x∂x vanished in R2
2. To see this clearly

we use projective coordinates for R2
2,0 defined by

t =
x

y
and y.

These define a coordinate system away from rb, the projection is given by

β0(t, y) = (ty, y).

A simple calculation shows that

(3.4.5) β0 ∗t∂t = x∂x.

In other words x∂x lifts to a smooth vector field on R2
2,0 which is tangent to the fibers of the front face and

is transverse to the lifted diagonal, t = 1.
Of course the lifted resolvent kernel also has a restriction to the front face. It is as a distribution with

polyhomogeneous conormal singularities along the intersection of the front face with ∆0 and the front face
with the left and right boundaries. We call this restriction the ‘normal operator’ of the lifted resolvent. It
is a new type of symbol. We denote it by N(R). A moments thought shows that

(3.4.6) N((x∂x)2R) = (t∂t)
2N(R).
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From (3.4.6) we deduce that the resolvent equation

((x∂x)2 − s2)R(s) = δ∆

lifts and restricts to the front face to give

(3.4.7) ((t∂t)
2 − s2)N(R0(s)) = δ∆0∩ff .

In other words the normal operator of R0(s) is itself defined by an equation along the fibers of the front face.
It is difficult to explain the significance of this fact in so simple an example.

In the analysis of the Bergman Laplacian something a little more general than a linear blowup, as
described above is needed. More background is required before we can really explain the why this is the
case. For now we consider the problem of trying to resolve the singularity of a function defined on R2

2. Let

f(x, y) =
x2

y
,

and observe that introducing polar coordinates does not resolve the singularity of this function at x = y = 0:

(3.4.8) β∗f(r, θ) =
r cos θ

sin2 θ
.

From (3.4.8) it is apparent that
lim

r→0,θ→0
β∗f(r, θ)

depends upon the direction of approach. This is precisely what is meant by the statement that the blowup
did not resolve the singularity.

A slightly different way to describe the blowup process is to say that we have an action by R+ and
we remove the fixed points of this action replacing them with one fixed point for each trajectory of the R+

action. Clearly the distributions whose singularities are resolved by the blow–up are those with homogeneity
properties relative to the R+–action. This view explains why the singularity of f is not resolved by a blowup
whose underlying R+–action is

Mδ(x, y) = (δx, δy).

It also suggests that we replace this action with a different action, better adapted to the behavior of f near
to (0, 0).

Define a new R+–action on R2
2 by

Nδ(x, y) = (δx, δ2y).

Observe that
N∗δ f = f ;

in other words f is homogeneous of degree 0 relative to this new action. Using this new action we define a
parabolic blowup of R2

2. This space is defined by

(3.4.9) R2
2,(0,dy) = R2

2 \ ∂∆ qN+∂∆/R+,

where the R+ is defined by Nδ instead of Mδ. Topologically the two blown–up spaces are identical. They
differ in their C∞–structure. As before we have a blow–down map

β0,dy : R2
2,(0,dy) −→ R2

2.

We define the C∞–structure on R2
2,(0,dy) as the ring of functions generated by β∗0,dyC

∞(R2
2) and the lifts of

smooth functions on R2
2 \ (0, 0) which are homogeneous of degrees 0 and 1 with respect to the R+–action

defined by Nδ.
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To define local coordinates we set

r4 = x4 + y2; α =
x

r
, β =

y

r2
.

These functions are clearly smooth on the blown–up space being homogeneous of degrees 1 and 0 respectively.
Note that

α4 + β2 = 1.

In terms of these coordinates we can lift f :

β∗0,dyf =
α2

β
=

√
1− β2

β
.

This function is of course infinite where β = 0 however it is ‘single valued’ and in fact a polyhomogeneous
conormal distribution on the blown–up space.

3.5 Parabolic blow–ups for the model problem

In the previous section we discussed how blowups could be used to resolve certain kinds of singularities
that arise in the study of extendible distributions. In some ways we were putting the cart before the horse
as the question which we would like to answer is what sort of singularities arise in the construction of the
resolvent kernel for the Bergman Laplacian. The data we are given is the operator not the kernel of its
inverse. As is customary in the analysis of operators it is better to work with an algebra of operators rather
than a single operator. What we shall see is that the algebra of operators dictates how to define the blowup
and then the relevant kernels will be desingularized, as if by magic.

On a compact manifold the usual algebra is the algebra generated over the smooth functions by the
vector fields. What we need is a reasonable substitute for vector fields, which are of course, the sections
of the tangent bundle. Since we want the Laplace operator to belong to this algebra and to be an elliptic
element, a good possibility would be the algebra generated by sections of TΩ which are of uniformly bounded
length relative to the Bergman metric and smooth up to the boundary. To examine these vector fields it is
easier to replace the unit ball by a biholomorphically equivalent model, the upper half space defined by the
hyperquadric.

The hyperquadric is defined by

(3.5.1) Q = {(w, z) ∈ Cn; Imw =
1

2
|z|2}.

The upper half space is given by

Q+ = {(w, z) ∈ Cn; Imw >
1

2
|z|2}.

I leave it as an exercise to find the bi holomorphic mapping from CBn onto Q+. If we use this mapping to
pullback the defining function we see that we get

(3.5.2) |h(w, z)|2(Imw −
1

2
|z|2),

here h(w, z) is a holomorphic function. So pulling back the Bergman metric we get a metric defined on Q+

by

gB = −∂∂ log(Imw −
1

2
|z|2).

If we let ρ = Imw − 1
2
|z|2 then the metric has the simple form in these coordinates

(3.5.3) gB =
1

2

dzidz̄i

2ρ
+
θ

ρ
∧
θ̄

ρ
.
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where

(3.5.4) θ = ∂ρ = idw + z̄idzi.

A unit basis of vector fields in this coordinate system is given by

(3.5.5) W = 2ρ∂w, Zi =
√

2ρ(∂zi + iz̄i∂w), i = 1, . . . , n− 1.

These display a slightly alarming property, the last n − 1 are not actually smooth up to the boundary but
have a square root singularity. This leaves us little choice but to change the C∞–structure of the domain
itself at the boundary. We extend the ring of C∞–functions by adjoinding the square root of a smooth
defining functions. We denote by f the domain Ω with the C∞–structure defined as C∞(Ω)[

√
ρ]. This family

of functions is of course defined independently of the choice of defining function.
We introduce new coordinates r =

√
ρ, u = Rew, and the old zi, i = 1, . . . , n− 1. A function is smooth

at ∂f if it has a Taylor expansion

f ∼
∞∑
j=0

fj(u, z, z̄)r
j

∼
∞∑
j=0

fj(u, z, z̄)ρ
1
2 j

(3.5.6)

where fj(u, z, z̄), j = 0, . . . are smooth functions of their arguments. Notice that ∂Ω and ∂f are canonically
isomorphic as smooth manifolds it is only the way in which they are attached to the interior which has
changed.

We compute the real and imaginary parts of the basis in (3.5.5) relative to the r, u, zi, z̄i–coordinates:

T = ReW = r2∂u,−N = ImW = −
1

2
r∂r,

Xi = ReZi =
r
√

2
(∂xi + yi∂u),−Yi = ImZi = −

r
√

2
(∂yi − xi∂u).

(3.5.7)

Notice that the vector fields are smooth in the square root differential structure. These vector fields define
a finite dimensional Lie algebra, the non–zero brackets are:

[N, T ] = 2T, [N,Xi] = Xi, [N, Yi] = Yi;

[Xi, Yi] = δijT.
(3.5.8)

The vector fields T,Xi, Yi define the Heisenberg algebra, and N defines a homogeneous extension of this
algebra. Let Nδ(p) denote the flow on Q+ defined by

(3.5.9) Nδ(r, u, x, y) = (δr, δ2u, δx, δy).

The basis of vector fields defined in (3.5.7) is invariant under this flow. In other words, the vector fields are
homogeneous of degree zero with respect to the this action.

Exercise 3.5.10. Find the formula for the Laplace operator of the Bergman metric relative to the basis in
(3.5.7).

We can use this homogeneity structure to blow–up the point 0 on the boundary of Q+. Observe that if
we set

(3.5.11) Θ = du+
1

2

∑
xidyi − yidxi,

Then the directions in which we scale linearly are precisely the kernel of Θ. The dilation structure is obtained
by integrating the vector field

R = r∂r + 2u∂u + x · ∂x + y · ∂y.
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Denote the blowdown by β0,Θ. Coordinates are given by

(3.5.12) R4 = u2 + (r2 + |z|2)2, α =
u

r2
, β =

r

R
, ζi =

zi

R
.

A simple computation shows that the Bergman kernel pulled back to the Q+ is given by

(3.5.13) B(w, z; τ, ξ) =
2

(i(w − τ)− z · ξ)n+1
.

A moments thought shows that if we fix τ, ξ ∈ ∂Q+ then the kernel B(w, z; τ, ξ) has a very complicated
singularity as we approach τ, ξ. If we pull back B(w, z; 0, 0) via the blowdown map the picture is greatly
simplified:

(3.5.14) β∗0,Θ(B(·; 0, 0)) =
α− i(β2 + |ζ|2)

R2(n+1)
.

The pulled back kernel is a smooth function in the blown–up coordinates times a power of the defining
function of the front face. Evidently the blow–up resolved the singularity of the kernel at the point 0, 0.
The choice of the point is arbitrary as there is a transitive group of isometries, so we could do an analogous
construction at any point of ∂CBn. In general we can decide which direction scales linearly by consideration
of the one form Θ defined in (3.5.11). At each point (0, u, x, y) ∈ ∂Q+ the kernel of Θ consists of the complex
tangent directions to ∂Q+ along with the vector field N . The complementary direction is given by T which
is simply the almost complex structure applied to N . Recall that before we introduced the square root
differential structure the vector field W = T + iN behaved like O(ρ) at the boundary whereas the other
directions behaved like O(

√
ρ). Thus we see that the parabolic homogeneity structure, defined at each point

of ∂Q+ by scaling linearly in direction belonging to ker Θ and parabolically in the complementary direction,
is the same structure as that defined by the Bergman kernel at the boundary. In fact we shall later see that
it is the structure defined by the one form which is primary and the metric is really secondary.

Of course we really want to do this at all points of the ∂CBn simultaneously. This means we should work
in CBn ×CBn instead. We want to blow up the locus where the Bergman kernel is singular and apparently
we need to blow it up parabolically. The locus we need to blow up is the ∂∆. The question is how should we
decide which directions to scale linearly and which directions to scale quadratically. In the examples we’ve
already considered, we had a one form which helped to make this determination. In this case we also have
a one form.

It arises as follows, the space CBn × CBn has two projections down to CBn we denote them by πl and
πr. In the models considered in the previous section we needed to consider a homogeneity defined on the
the inward pointing normal bundle to the submanifold we wanted to blow–up. In the case at hand this is
N+∂∆. We need to define a one form on this bundle. Let

Θ̃ = π∗l (Θ) − π∗r (Θ).

This one form vanishes identically when restricted to the ∆ and therefore it defines a one form on N+∂∆.
We use it to define the parabolic blowup.

In the local coordinates introduced above the one form is given by

(3.5.15) Θ̃ = d(u− u′) +
1

2

∑
i

(xi − x
′
i)dyi + x′id(yi − y

′
i)− (yi − y

′
i)dxi − y

′
id(xi − x

′
i).

Here and in the sequel we use ′ to indicate the coordinates on the ‘other’ copy of CBn. In order to have a
coordinate to scale parabolically we need to write Θ̃ = dt for some function t. This only needs to hold along
∂∆, set

(3.5.16) t = u− u′ +
1

2

n−1∑
j=1

xj(yj − y
′
j) − yj(xj − x

′
j).
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We define the parabolic blowup by introducing the “polar” coordinates:

R4 =(r2 + r
′2 +

1

2

n−1∑
j=1

|zi − z
′
i|

2)2 + t2

ρlb =
r

R
, ρrb =

r′

R
, T =

t

R2
, Zi =

zi − z
′
i√

2R
.

(3.5.17)

If one expresses the Bergman kernel in these coordinates one obtains

β∗∂∆,Θ(B) =

[
ρ2

lb + ρ2
rb + |Z|2 − iT

ρlbρrb

]2(n+1)

Let us examine more closely the space obtained by blowing up ∂∆. We denote the blown–up space by
[CB2

1
2

]∂∆,Θ. The 1
2

indicates that we use the square root differential structure. As in the one dimensional

case [CB2
1
2

]∂∆,Θ has three boundary components, a left and right boundary, coming from the unblownup

space and a front face introduced by the blowup. The front face is abstractly defined as

N+(∂∆)/R+,

where R+ acts ‘parabolically’. Since N+(∂∆) is a bundle over ∂∆ with fibers isomorphic to Rn+1
2 and the

R+–action preserves the fibers we conclude that the front face is canonically a bundle over ∂∆ with fibers
isomorphic to Sn ∩ Rn+1

2 . Such a bundle is called a quarter sphere bundle.
The inward pointing tangent bundle to the diagonal is a subbundle of the inward pointing tangent

bundle to the whole space. The image of this subbundle in N+(∂∆) is a half line bundle over ∂∆. The
half line is located in the interior of the fiber. In the front face the quotient of this subbundle defines a
distinguished point in each fiber. This is the locus where the lifted diagonal intersects the front face. Note
that this locus is in the interior of the fiber of the front face and therefore, in the blown–up space, the lifted
diagonal does not meet the left and right boundaries. This was one of the primary goals of introducing a
blown–up space.

A very important feature of the parabolic blowup is the way in which the unit basis lifts to the blown–up
space. We compute the lift of the basis given in (3.5.7) from the left, in term of projective coordinates. A
good coordinate system is given by

(3.5.18)

r′, u′, z′j;

ρ =
r

r′
, τ =

t

r′2
, ξj + iηj =

zj − z′j
r′

.

In terms of this coordinates we have

(3.5.19) N − ρ∂ρ, T − ρ2∂τ , Xj − ρ(∂ξj + ηj∂τ ), Yj − ρ(∂ηj − ξj∂τ).

Denote the lifted vector fields with a tilde, e.g. T̃ . The lifted vector fields are clearly tangent to the fibers
of the front face. Moreover they span the tangent space to the fiber and are transverse to the diagonal.

What is immediately apparent from (3.5.19) is that the lifted vector fields have exactly the same structure
as the unlifted vector fields. In the case at hand this should not be a surprise as the basis of vector fields is
invariant under a transitive group action. One interprets (3.5.19) as saying that the lie algebra is actually
homogeneous in an infinitesimal sense at the boundary. In fact we shall see that this structure would be
present at the front face even if we started with a basis which was given by C∞–combinations of the vector
fields in (3.5.7). This is also easy to explain, the lift of a vector field to the fiber over a point p ∈ ∂∆ depends
only on the germ of that vector field at the point p itself. Thus if

V = a(q)T + b(q)N + cj(q)Xj + dj(q)Yj ,
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then the lifted vector field in the fiber over p is simply

Ṽ = a(p)T̃ + b(p)Ñ + cj(p)X̃j + dj(p)Ỹj .

The coefficients are constant along the fiber.
This indicates that the fibers of the front face have the structure of a lie group defined by lifting a basis

of smooth vector fields. The lifted vector fields, restricted to a fiber, define the left invariant vector fields
and the intersection of the diagonal with the fiber defines the identity element in the group. So far all our
lifts have been from the left, an analogous construction can be done lifting form the right. One simply gets
the group acting on the right instead of the left. The transposition

T : [CBn]2 −→ [CBn]2

defined by T (p, q) = (q, p) lifts to a smooth map of the blownup space to itself. This maps conjugates the
left action to the right.

The left lift of vector fields can be extended in a unique way to differential operators which can be ex-
pressed as polynomials in this basis with C∞–coefficients. The remarks above indicate that if P (q, T, N,X, Y )

is such a differential operator, then its lift to the fiber of the front face over p is of the form P (p, T̃ , Ñ, X̃, Ỹ ).
In other words, the restriction to a fiber of the front face gives a left invariant differential operator relative
to the natural lie group structure.

In addition to lifting differential operators we can also lift a unit frame and thereby define a Riemannian
metric on each fiber, which varies smoothly from fiber to fiber. The lift of a basis of T 1,0–vector fields defines
an integrable almost complex structure on the fibers which also varies smoothly from point to point.

The fiber is a quarter sphere; it is important to remember that the fibers are compact manifolds with
corners. The two boundary components of the fiber arise from the intersections of the fiber with the left
and right boundaries of [CB2

1
2
]∂∆,Θ. The fiber over the point p ∈ ∂CBn can be identified with the the unit

ball blown up at the point p precisely as described at the beginning of this section. There is a small degree
of arbitrariness in the way this is done because there is no distinguished point in the unit ball whereas each
fiber has a distinguished point. Once one chooses a point in the blown–up ball then you need to choose
an isomorphism of the lie algebra of left invariant vector fields at that point with those at the identity
element in the fiber of the front face. This can be done smoothly in the base point and any two choices
are canonically isomorphic. One extends the map by integrating the vector fields. An interesting feature of
the ball blown–up at a boundary point, is that the group action defined by the left invariant vector fields
extends continuously to the compactification defined by the blow–up.

3.6 The Θ–tangent bundle and parabolic blow–ups.

At this point we are ready to generalize the construction carried out on the unit ball to a smooth strictly
pseudoconvex domain, Ω. When analyzing the Laplace operator defined by a metric on a compact manifold
we really begin with the lie algebra of smooth vector fields and then construct the universal enveloping
algebra. The Laplace operator of any metric belongs to this algebra. The algebra of pseudodifferential
operators is a ‘quantization’ of the lie algebra of vector fields. The main point is that we do not consider
a single operator defined by a single metric but rather a C∞–lie algebra whose universal enveloping algebra
contains the operators we are interested. The first issue we need to settle is how to define a C∞–lie algebra
which captures the important behavior at the boundary.

This information is entirely encoded by fixing a one form θ at the boundary. Assume that θ �∂D 6= 0 at
any point. We define a vector space of smooth vector fields

Vθ(D = {X; X �∂D= 0, θ(X) = O(r2)},

here r is a defining function for the boundary of D. Note that θ must be defined on all of TD �∂D .

Proposition 3.6.1. The vector space, Vθ(D), with the usual lie bracket of vector fields is a C∞–lie algebra.

Proof. If X, Y vanish along ∂D then so does [X, Y ]. Since the elements of Vθ are tangent to ∂D it is easily
shown that for k ≥ 0,

(3.6.2) Xrk = O(rk) for all X ∈ Vθ.
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The formula of Cartan states that

(3.6.3) θ([X, Y ]) = Xθ(Y )− Y θ(X) − dθ(X, Y ).

As dθ is smooth the last term in (3.6.3) is clearly O(r2) and θ(X), θ(Y ) are both O(r2). The assertion of
the proposition therefore follows from (3.6.2).

We would like to use Vθ(D) as the replacement for the algebra of vector fields on a compact manifolds.
This latter algebra has a crucial property: it is the collection of smooth sections of a vector bundle. In other
words it is locally free. The same turns out to be true of Vθ(D). To establish this, the easiest thing to do is
to write down smooth local trivializations. Since θ restricted to ∂D is non–vanishing we can introduce local
coordinates r, y1, . . . , y2n−1 so that

(3.6.4) θ =
2n−1∑
j=1

ajdyj .

We can choose a vector field T, tangent to the hypersurfaces r =constant such that θ(T ) = 1 and vector
fields X1, . . . , X2(n−1) are also tangent to r =constant with θ(Xi) = 0, i = 1, . . . , 2(n − 1). Evidently the
vectors

(3.6.5) r∂r; r
2T ; rXi, i = 1, . . . , 2(n− 1),

belong to Vθ(D). If V is any smooth vector field which vanishes on ∂D then V can be expressed as

V = a(r)r∂r + b(r)rT +

2(n−1)∑
j=1

cj(r)rXj ,

where a, b, c1, . . . , c2(n−1) are smooth functions on D. If V ∈ Vθ then evidently b(r) = O(r), thus V is
expressible in terms of the basis (3.6.5) with C∞–coefficients. This establishes that Vθ(D) consists of sections
of a smooth vector bundle, ΘTD.

There is a more ‘sheaf theoretic’ description of this vector bundle. Let Jp denote the ideal of functions
vanishing at p ∈ D. Mimicing the usual construction we define the fiber of our vector bundle by

(3.6.6) ΘTpD = Vθ/JpVθ.

Clearly ΘTpD is canonically isomorphic to TpD if p ∈
◦
D. However for p ∈ ∂D things are quite different.

Theorem 3.6.7. For p ∈ ∂D the fiber ΘTpD of the Θ–tangent bundle is canonically a nilpotent lie algebra.
Its structure is determined by the rank of dθ �Tp∂D .

Proof. We compute in terms of the local basis given in (3.6.5):

(3.6.8)
[r∂r, rXi] = rXi + αir

T + O(JpVθ), [r∂r, r
2T ] = 2r2T +O(JpVθ);

[rXi, r
2T ] = O(JpVθ), [rXi, rXj] = βijr

2T + O(JpVθ).

The constants αi can be removed by replacing rXi by rXi −
1
2αir

2T. Thus the structure of the lie algebra
is determined by the coefficients βij . An application of Cartan’s lemma shows that

(3.6.9) βij = −dθp(Xi, Xj).

Since the only invariant of a skew symmetric form on an even dimensional space is its rank, the conclusion
of the theorem follows.
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Let Xp denote the inward pointing part of the tangent space at p ∈ ∂D. This half space should be
thought of as giving a local model for D near to p. The one form θ defines a hyperplane in Xp:

Hp = ker(θp).

Let Sp denote a complementary subspace, as noted above this can be taken tangent to the boundary. We
use the splitting Xp = Hp ⊕ Sp to define a homogeneity on Xp, if v = h+ s, h ∈ Hp, s ∈ Sp then

(3.6.10) Mδ(v) = δ1h+ δ2s.

We can choose coordinates at p, r, y1, . . . , y2(n−1), u so that p = (0, 0, 0) and

Hp = Span{∂r, ∂yii = 1, . . . , 2(n− 1)}

and Sp is spanned by ∂u. Then the dilation structure in (3.6.10) is the infinitesimal version of

(3.6.11) Mδ(r, y, u) = (δr, δy, δ2u).

We can, without too much confusion, think of r, y, u as giving coordinates in a neighborhood of p ∈ ∂D
and also coordinates for Xp. With this dual interpretation in mind, it follows that for V ∈ Vθ

Vδ = Mδ−1∗V

is a vector field defined in a larger and larger neighborhood of 0 ∈ Xp as δ tends to zero. In fact by expressing
Vδ in local coordinates, it is easy to see that

hp(V
′) = lim

δ↓0
Vδ

is well defined as a smooth vector field on all of Xp. If a(x) is a smooth function in a neighborhood of p and
V ∈ Vθ, then

(3.6.12) hp(aV ) = a(p)V ′.

From this it is apparent that the image of JpVθ under hp is zero. Thus we have shown

Proposition 3.6.13. The map hp defines a lie algebra isomorphism from ΘTpD onto a lie algebra of smooth
vector fields defined on Xp.

Proof. It follows immediately from (3.6.12) and the definition that it defines a lie algebra homomorphism.
A simple calculation in local coordinates establishes that the map is an isomorphism

Before proceeding we should relate these constructions to the case of a strictly pseudoconvex domain,
Ω. In that case we have a naturally defined one form on the boundary ∂r, where r is a defining function. We
can extend this one form to all of TΩ �∂Ω by observing that the restriction of

θ =
1

2i
(∂r − ∂r)

to ∂Ω is agrees with ∂r. However recall from the discussion in the previous section that we needed to introduce
the square root differential structure in order for the unit length sections of the tangent bundle to be smooth
at the boundary. This is also necessary in the general case. Let β 1

2
denote the blow–down map from the

square root differential structure to the standard structure. Locally it is given by

β 1
2
(ρ, y) = (ρ2, y).
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Lemma 3.6.14. If θ1 and θ2 denote two smooth extension of ∂r to TΩ �∂Ω then

β∗1
2
θ1 �∂Ω/ha= β∗1

2
θ2 �∂Ω1

2

.

Proof. Since the difference θ1 − θ2 vanishes on the tangent space to the boundary, we conclude that

θ1 − θ2 = adr + rα,

for a smooth function a and one form α. Under the pullback

β∗1
2
(dr) = 2ρdρ,

from which the conclusion is immediate.

In the sequel we denote Ω with the square root differential structure by f and Θ = β∗1
2
(θ). The preceding

lemma shows that Θ is determined on all of Tf �∂f by θ on ∂Ω. On a strictly pseudoconvex domain we
define the algebra VΘ relative to this choice of one form. It defines a contact structure on ∂f, that is

Θ ∧ (dΘ)n−1

does not vanish at any point of ∂f. This means that the lie algebras ΘTpf, p ∈ ∂f, are all isomorphic.
From now on we will consider a defining function r for Ω to be fixed. This in turn defines a metric

g = −∂∂ log r.

We say that such a metric is of Bergman type. We also define ρ so that ρ2 = r. We can express the metric
on Ω as follows

(3.6.15) g =
1

r

∂2r

∂zi∂z̄j
+
∂r

r

∂r

r
.

From this it follows immediately that a unit basis for this metric which is smooth in the square root differential
structure must satisfy

θ(Zi) = O(r),

and therefore, when lifted to f, these vector fields satisfy

Θ(Z̃i) = O(ρ2).

Thus we have established that

Lemma 3.6.16. A smooth unit basis for T 1,0f relative to the metric, (3.6.15) consists of local sections of
ΘTf.

In the proof of the Levi extension theorem we showed that if p ∈ ∂Ω then there is a local holomorphic
coordinate system, w, z1, . . . , zn−1 such that

(3.6.16) ρ(w, z) = Imw −
1

2
|z|2 + O((|z|+ |w|)3),

see (2.9.23). Computing in this coordinate system we see that the metric defined by ρ agrees with the
Bergman metric on the unit ball to first order at (w, z) = (0, 0).More precisely, a unit frame in a neighborhood
of this point is given by

(3.6.17) W ′ = W + O(JpVΘ), Z′i = Zi + O(JpVΘ),
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Here W,Zi is the frame given in (3.5.5). From (3.6.17) it is apparent that if we use Θ to define the local
homogeneity structure at p ∈ ∂f then the images hp(W

′), hp(Z
′
i) agree with those obtained by blowing up

a point on the boundary of the hyperquadric. We can use the lifted vector fields to define a metric and a
complex structure on Xp. It is apparent that with these induced structures, Xp is biholmorphically isometric
to the hyperquadric.

We denote by DiffmΘ the polynomials in VΘ of degree m with C∞–coefficients. Since DiffΘ is simply the
enveloping algebra of the C∞–lie algebra, VΘ, the homomorphism

VΘ −→
ΘTpD

extends as a homomorphism of enveloping algebras

Np : DiffmΘ −→ D
m(ΘTpD).

This homomorphism is called the normal operator. Since it is a homomorphism of enveloping algebras it
follows that

(3.6.18) Np(P ◦Q) = Np(P ) ◦Np(Q).

We can compose this homomorphism with h, suitably extended, to obtain a homomorphism from DiffmΘ
to left invariant operators of order m acting on Xp.

Lemma 3.6.19. The Laplace operator defined by the metric (3.6.15) belongs to Diff2
Θ .

Proof. Let X ∈ VΘ be a smooth vector section and let φt denote the flow defined by X. Since X is tangent
along the boundary the flow is well defined up to ∂f.

Exercise 3.6.20. Show that if dVol is the volume form of the metric (3.6.15) then

(3.6.21) φ∗t (dVol) = wt dVol

where wt ∈ C∞(f), is differentiable in t.

Using the change of variables theorem we deduce that if f, g ∈ C∞c (f) then

(3.6.22)

∫
f

fg dVol =

∫
f

φ∗t fφ
∗
t gwt dVol .

Differentiating (3.6.22) at t = 0 and setting ∂tw(0) = a we obtain that

(3.6.23)

∫
f

Xfg dVol = −

∫
f

f(Xg + ag) dVol .

The formal symbol of the Laplace operator defined by the metric is determined by the identity:

(3.6.24) < ∆f, g >=

∫
< ∂f, ∂g > dVol for f, g ∈ C∞c (f).

Since a unit basis for the metric consists of vector fields in VΘ we can express the right hand side of (3.6.24)
as

(3.6.25)
2n∑
j=1

∫
f

YjfYjg dVol, Yj ∈ VΘ.

The assertion of the lemma follows from (3.6.25) and (3.6.23).

Since ∆ ∈ Diff2
Θ it has a normal operator.

30



Proposition 3.6.26. For a metric of the form (3.6.15) the normal operator of the Laplace is the Bergman
Laplacian from the unit ball.

Proof. To prove this statement it is easiest to use the definition of the Laplacian provided by (3.6.24). Let
< ·, · >δ denote the inner product induced on the appropriate neighborhood of 0 ∈ Xp by M∗δ (g) then as
δ → 0 this neighborhood encompasses all of Xp and the basis hp(W

′), hp(Zi) is orthonormal relative to
the limiting metric. Of course dVolδ = M∗δ dVol tends to the volume form of this metric as well. It is a
consequence of (3.6.17) that the metric induced on Xp by this blow–up procedure is the isometric to the
Bergman metric on the unit ball.

We define the family of quadratic forms

(3.6.27) Qδ(f, g) =

∫
Xp

< ∂f, ∂g >δ dVolδ .

From the observations in the previous paragraph we conclude that as δ → 0 the quadratic form Qδ tends to
the quadratic form on the unit ball defining the Bergman Laplacian. If we let Lδ denote the second order
operator defined by Qδ then the functorial properties of the normal operator construction imply that

lim
δ→0

Lδ = Np(∆).

This completes the proof of the Proposition.

In addition to the replacement for the tangent bundle, ΘTf we also have a replacement for the cotangent
bundle. To define it we simply take the dual bundle to ΘTf which we denote by ΘT ∗f. Since ΘTf is
represented by vector fields that vanish at the boundary, the dual bundle is represented by one forms that
blow–up at the boundary. There is locally a basis of the form

(3.6.28)
dρ

ρ
,
Θ

ρ
,
αi
ρ
, i = 1, . . . , 2(n− 1).

Here the one forms αi along with Θ restrict to define a coframe for ∂f. Let Y1, . . . , Y2n denote a frame for
ΘTf and η1, . . . , η2n denote the dual coframe. If P ∈ Diff∗m then locally P can be expressed in the form

(3.6.29) P =
∑
|α|≤m

aα(q)Y α.

The Θ–symbol of this operator is the mulitilinear function on the dual bundle given by

(3.6.30) Θσ
m

(P )(ξ · η) =
∑
|α|=m

aαξ
α.

Exercise 3.6.31.

(1) Show that the symbol is well defined modulo multilinear functions of degree m− 1.
(2) Show that the symbol of the Laplace operator of the metric in (3.6.15) is the inner product

defined on ΘT ∗f.

Expressing the Laplace operator of the metric, (3.6.15), in terms of a local coordinate system,

(ρ, u, y), ∂f = {ρ = 0},

at the ∂f we can split the operator up into terms which are homogeneous under the linear action

(3.6.32) Nδ(ρ, u, y) = (δρ, u, y).

In terms of this homogeneity structure, the operator has the following structure

(3.6.33) ∆ = P (u, y, ρ∂ρ) +O(ρ).

The first term P (u, y, x) depends in a polynomial fashion on the variable x. The O(ρ) term is a differential
operator with the property that it maps smooth functions of the variables (ρ, u, y) which are O(ρk) to
functions which are O(ρk+1). The leading order term in (3.6.33) can be thought of as a mapping from ∂f
to operators on R+, invariant under ρ −→ δρ. This is called the indicial operator; it represents the leading
order ‘ODE’ part of the operator at the boundary. It can be computed by simply ‘freezing coefficients’. We
denote it by Ip(∆), p ∈ ∂f.
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Exercise 3.6.34.

(1) Prove that the indicial is well defined, that is does not depend on the choice of coordinates.
To do this problem you will need to formulate an appropriate notion of equivalence.

(2) For the Laplace operator of the metric, (3.6.15) show that

(3.6.35) Ip(∆) =
1

4
[(ρ∂ρ)2 − 2nρ∂ρ].

The indicial operator comes to the fore when we consider the formal solution of boundary value problems

(3.6.36) (∆+ s(n − s))u = 0; u �∂f= ραg,

The meaning of the boundary condition is that u has an asymptotic expansion at ∂f in powers of ρ beginning
with ραg. If we assume that u is polyhomogeneous conormal at ∂f and has a Taylor expansion of the form

(3.6.37) u ∼
∞∑
j=0

ρα+juj, u0 = g,

then the indicial operator defines a recursion for the successive terms in the series.
Since u is assumed to satisfy (3.6.38), the leading order equation reads

(3.6.39) g(p)[Ip(ρ∂ρ) + s(n − s)]ρα = 0.

Thus we see that the leading order equation determines the exponents α for which the problem (3.6.36) has
even a formal solution. In the case at hand

(3.6.40) α = 2s or 2(n− s).

Note the similarity between the technique for formally solving (3.6.36) and the theory of ordinary differential
with regular singular points. This is what is meant by saying that the indicial operator is the ‘ODE’ part
of the operator. A main result of the theory we have developed is that problems like (3.6.36) actually
have unique, globally defined solutions which are polyhomogeneous conormal distributions. The formal
computation above then yields the asymptotic expansion of the true solution at the boundary.

Following the analogy with the model problem considered in the previous section we should now consider
a parabolic blowup of the product space: f × f in order to resolve the singularities of the resolvent kernel
for the Laplace operator. As we saw in the model case this amounts to applying the blow–up procedure to
the boundary of the diagonal in the product space that we applied a point at a time above. Since this is a
somewhat more abstract situation the procedure we give to define the blow–up will be a bit more formalized.

In outline, we define the blow–up of the zero section in the normal bundle itself. Then, by identifying a
neighborhood of the zero section in the normal bundle with a neighborhood of ∂∆, we transfer the blown–up
structure to f2. Of course one needs to verify that the definition of the resultant manifold with corners is
independent of the identification chosen between the neighborhood of the zero section and the neighborhood
of ∂∆. We will take this for granted in the present lectures.

To define a blow–up of the zero section we need to define a homogeneity structure on the fibers of the
normal bundle. The submanifold we want to blow up is ∂∆ and therefore we need to define a parabolic ho-
mogeneity structure on N+∂∆. This is accomplished exactly as in the model case. There are two projections
from f2 to f denoted by πl and πr. To that end we set

(3.6.41) Θ̃ = π∗l Θ− πrΘ.

Since Θ̃ �∆= 0, this form is well defined on N+∂∆.

The form Θ̃ defines a subbundle of N+∂∆:

(3.6.41) H = {(p, v) ∈ N+∂∆; Θ̃(v) = 0}.
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As in the model case we need to simply choose a complementing subbundle, which we denote by S. If ρlb

and ρrb are defining functions for the left and right boundaries of f2 then dρlb and dρrb annihilate T∂∆.
Thus they define one linear forms on N∂∆. We require S to lie in the kernel of these forms. A simple
calculation in local coordinates shows that this imposes no impediment to constructing S. To be completely
rigorous one needs to show that the blown–up space does not depend on the choice of S. In other words if
we make a different choice then the resultant spaces are canonically isomorphic.

We have defined a splitting of N+∂∆:

N+∂∆ = H ⊕ S.

Using this splitting we can define a homogeneity structure on the inward pointing normal bundle. Since it
is fiber preserving we can define it a fiber at a time. Let v ∈ N+p∂∆ be written as v = h+ s, h ∈ Hp, s ∈ Sp
then

(3.6.42) Mδ(v) = δh+ δ2s.

Using this dilation structure we can define the blowup of the zero section in N+∂∆.

The dilation structure is defined in terms of the one form Θ̃. This one form is in turn defined in terms of
Θ on f. Since Θ defines a contact structure on ∂f it is a classical theorem of Darboux that we can introduce
local coordinates,

(3.6.43) ρ, x1, . . . , xn−1, y1, . . . , yn−1, u

in a neighborhood of a boundary point, p, such that in these coordinates

Θ = du+
1

2

n−1∑
j=1

(xidyi − yidxi).

Notice that this is identical to the model case, see (3.5.11).
We can use two copies of these coordinates on a neighborhood of (p, p) in f2. Denote them by

(ρ, x, y, u; ρ′, x′, y′, u′).

By letting

x̃i = xi − x
′
i, ỹi = yi − y

′
i and t = u− u′ +

1

2

∑
[xj(yj − y

′
j) − y

′
j(xj − x

′
j)],

we can obtain an identification between the neighborhood of (p, p) ∈ N+∂∆ and (p, p) ∈ f2. We simply
identify the normal bundle with the span of the coordinate vector fields

∂x̃i , ∂ỹi , ∂t, ∂ρ, ∂ρ′ ,

in the tangent bundle to f2. Then

(3.6.44) (ρ, ρ′, x̃, ỹ, t; x′, y′, u′) −→ (ρ∂ρ + ρ′∂ρ′ + x̃ · ∂x̃ + ỹ · ∂ỹ + t∂t)x′,y′,u′,

defines such an identification.
From these remarks it is clear that, at least locally, the construction of the blow–up proceeds exactly

as in the model case. Since the blow–up is itself a local process, it follows from the independence of choices,
assumed above, that the whole construction proceeds exactly as in that case. We introduce local coordinates
for the blow–up, lying above the coordinate patch introduced in (3.6.43) by setting

R4 =(r2 + r
′2 +

1

2

n−1∑
j=1

|zi − z
′
i|

2)2 + t2

ρlb =
r

R
, ρrb =

r′

R
, T =

t

R2
, Xi =

x̃i√
2R

, Yi =
ỹi√
2R

.

(3.6.45)
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A comparision shows that this is exactly the coordinate system introduced in the model case in (3.5.17).
We denote the blown–up space by [f2]∂∆,Θ̃ with

β∂∆,Θ̃ : [f2]∂∆,Θ̃ −→ f2,

the blow down map. As a point set it is defined as

(3.6.46) [f2]∂∆,Θ̃ = f2 \ ∂∆ qN+∂∆/R+,

where the R+–action is defined in (3.6.42). The C∞–structure is defined by using an identification of a
neighborhood the zero section in N+∂∆ with a neighborhood of ∂∆ in f2 like (3.6.44) to transfer the
dilation structure to a neighborhood of ∂∆. The ring of smooth functions is defined as the ring generated by
pulling back C∞(f2) and the smooth functions in f2 \ ∂∆ homogeneous of degrees 0 and 1 relative to the
dilation structure induced on the neighborhood of ∂∆. In local coordinates these are simply the functions
which are smooth as functions of the variables defined in (3.6.45).

As in the model case the blown–up space has three boundary components, a left boundary, a right
boundary and a front face, we denote these by lb, rb, ff respectively. We can also define a lift of the diagonal

∆Θ = β−1

∂∆,Θ̃
(∆ \ ∂∆).

One easily sees in local coordinates that ∆Θ intersects the front face but is disjoint from lb and rb . This
was a primary goal of the construction.

As before the front face is a quarter sphere fibration over the ∂∆. The fibers again have a canonical
structure as lie groups. This arises by lifting sections of VΘ from the left to f2. As in the model case a
coordinate computation shows that these vector fields lift to [f2]∂∆,Θ̃. The lifted vector fields are tangent
to the fibers of the front and generate a finite dimensional lie algebra. Working in coordinates it is evident
that this precisely the same structure as we obtained by blowing up a point at the boundary. In fact we can
define a fiber homomorphism from ΘTf �∂f to the lift of VΘ restricted to the front face in [f2]∂∆,Θ̃. This

means that for each p ∈ ∂f we can define a homomorphism

(3.6.47) hp : ΘTpf −→ β∗
∂∆,Θ̃

π∗l (VΘ) �β−1

∂∆,Θ̃
(p)

which depends smoothly on the point p.
As in the previous case we can extend this to elements of DiffmΘ . Thus to an operator, P in this ring

we associate a family of left invariant operators Np(P ), p ∈ f acting tangent to the fibers of the front face.
This is also called the normal operator. It follows from (3.6.47) that this definition agrees with the one given
before. We can also consider the behavior of a lifted operator along the left boundary. Clearly it vanishes
however the operator ρlb∂ρlb is homogeneous of degree zero in an obvious sense, so that the lifted operator
has a well defined leading order term. This we call the left indicial operator. At a point (p, q) ∈ lb we set
this operator equal to Ip(P ). A bit of thought is required to see that this makes sense along lb∩ff . It is left
to the interested reader.
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