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1 Introduction

We describe the notion of selective excitation and explain how the Bloch equation
is used to design selective RF-pulses. In our discussion we concentrate on the
Fourier method. This is an approximate method which uses a further simplifica-
tion of the Bloch equation.

2 The Bloch Equation

The Bloch equation is a good empirical model for the behavior of either a single
proton spin in a magnetic field, or for the bulk magnetization of an isochromat.
It is the latter interpretation which is more useful in the present discussion. We
ignore relaxation effects, so our analysis is only meaningful for times which are
short compared to 7 and 75. If M is the magnetization and B is the magnetic
field then Bloch’s equation states that

dB
— =7(1+0)B x M. (D
dt

Here ~ is the gyromagnetic ratio (=~ 4.26MHz/Tesla) and o is the chemical shift.
Throughout this discussion we let o = 0. A solution to (1) is specified by fixing the

value of M at one time. In most of the subsequent discussion we label the t-axis
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so that the initial data is given at ¢t = 0, e.g., M (0) = M. In MR applications B
is of the form
B — BO + Bl

where B is the background field and B is the RF-field. The background field is
of the form
BQ = BOO —+ G('l")%,

where B is a very large, uniform, time independent background field in the
direction z, and G(7)z is a spatially varying gradient field. There are of course
gradient components in the x- and y-directions as well. Since they have such a
small effect on the evolution of M, they can safely be ignored. The gradient is
assumed to be a function of the form ¢(7 - v); indeed it is usually assumed to
be simply cr - v. In the latter case we say that there is a linear gradient in the
v-direction. The B;-field is a time dependent field of the form

B, = eiWOt(bx(t>7 by<t>7 0)7

here wy is the reference Larmor frequency (usually the Larmor frequency of the
By part of the background field).

Before studying selective excitation, we recall some basic facts about solutions
to the Bloch equation.

Proposition 1. Suppose that v,(t) and vs(t) are solutions to (1). Then av, + bv,y
is also a solution, for any constants a,b and the inner product (v,(t),vs(t)) is
independent of t.

Proof. The linearity is immediate from the form of the equation. To prove the

second statement we differentiate

9ty (1), 0a(t)) = (Loos (1), wa(t)) + (01(8), Loa(t))

dt dt dt 2)
= (B x v1(t),v2(t)) + (v1(t), B X v5(t)).
The proof is completed using the standard fact about cross products
(v3 X v1(t),v2(t)) = —(v1(t), v3 X V().
O

Exercise 1. Prove the identity for the cross product.



The first claim is the proposition is usually phrased as the statement that “the
Bloch equation is a linear ODE.” Because (1) is linear, there is a 3 x 3- matrix
valued function Uy(t) such that Uy(0) = Id3 and

The proposition implies that Uy () is a rotation matrix, that is
U3 (£)Us(t) = Uo(t)Ug (t) = 1ds.

In MR we usually discuss the Bloch equation in the rotating frame. If B, and Gz
are both zero then the solution operator for (1) takes a very simple form

cos(wot) —sin(wet) 0
Uy (t) = | sin(wot)  cos(wot) 0
0 0 1

This is a rotation, about the 2z-axis, through the angle wyt. Because B, and G are
small perturbations, it makes sense to write

Up(t) = UZS()V(1).

To that end we write M (t) = Uj®(t)pu(t). Larmor’s theorem states that if M
solves (1) then p solves

dp
— =78, ’ 3
g~ 1 Ber X 1 3)

where B is the effective magnetic field. It is given by
1
Bu = [0*(0] "B+ 9,

where the laboratory frame is related to the rotating frame by a rotation with axis
Q2. Usually €2 is just a constant multiple of z, though this is by no means necessary
for the truth of Larmor’s theorem.

The reason for using the rotating frame is to simplify the form of B and
thereby the form of the solution. Usually it is assumed that

Beﬁ - 771(05(75)7 ﬂ(t>7 f)v

where f is independent of ¢. In applications to MR, f assumes a range of values
[—fo, fo]. For a gradient of the form (gr - v)z, each value of f corresponds to
a plane passing through the field-of-view, i.e., the set of r such that gr - v = f.
Generally f is called the resonance offset or offset frequency. The complex valued
function a(t) + if(t) is called the RF-envelope

3



3 The Problem of Selective Pulse Design

Writing out the Bloch equation in the rotating frame gives

d H1 0 f - ﬁ 251
gl =1 f 0 «a po | - 4)
H3 B —a 0 3

We now think of the solution operator V' as a function of the pair ( f;¢). The basic
problem of selective pulse design is the following: we specify a unit vector valued
function pu(f) and look for a pair of functions («/(t), 3(t)) so that

V(f7T)'% = ll’ss(f) for f S [_f07 fO] (5)

In other words we look for an RF-envelope so that, as a function of the offset
frequency, the solution of (4), with initial data 2, is given, at time 7', by p.(f).
The function p(f) is called the magnetization profile. A typical example is

) (siny,0,cosv) for f € [f1, f2]
Hal )= {(o,o, ) for f ¢ [fi, o]

In this case ® is called the flip angle. In most applications [fi, f>] is a small
subinterval of [— fy, fol.

This looks like a pretty odd question to ask about an ODE: We are looking
for coefficients «(t), 5(t) so that, for a given initial condition, the solution at a
specified time 7", will have a certain dependence on the auxiliary parameter f. The
mapping between («(t), 5(t)) and V(f;7T)z is highly nonlinear (this is what is
meant in the MR literature when it is stated that the “Bloch equation is nonlinear™).
Nonetheless, this problem has been analyzed extensively by both mathematicians
and physicists and admits of several different exact solutions. We briefly return to
this at the end of the lecture. We now classical the classical, approximate approach
to selective pulse design, often called the Fourier method.

Using this method, we can design reasonably good pulses with small flip an-
gles. If the flip angle is small then p3 deviates very little from its initial value of
1. Because, for |¢| close to zero, sin ¢ tends to be much larger than (1 — cos)).
(Can you explain why?), even though p3 stays very close to 1, |uq + iuo| can get
to be reasonably large. For example

(6)

1— cos% = .13 whereas sing = 5.

The size of (p1, p2) is very important in MRI, because the strength of the measur-
able signal is proportional to || (11, 12)]].
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4 The Fourier Method

To explain the Fourier method we need to rewrite the Bloch equation once again,
this time using complex notation:

d i ft(pr+ipg)
ezft% =ius(t)(a(t) +i06(t))
dus "

at =B — aply.

The complex valued function 11 + 79 1s usually called the transverse component
of the magnetization. If we suppose, for the moment, that we somehow know
us(t), for all ¢, then it is a simple matter to find p; + iuo. Integrating the first
equation in (7) gives:

t

pa(fit) +ipa(fit) = e / e pz(s)(a(s) +iB(s))ds. (3)

0

In the small flip angle approximation, we just assume that y3 = 1. If a + i3 is
supported in [0, 7| then this implies that

T
p(f;T) +ipa(f;T) ~ e ”"T/ T (a(s) +1iB(s))ds )
0

But for the multiplicative factor, ie /T the transverse magnetization at time 7',

pi(f;T)+ipo(f;T), is the 27 times the inverse Fourier transform of a+i/3. Thus,
in the small flip angle approximation, the shape of the RF-envelope is determined
by taking the Fourier transform of pt . Let’s consider an example.

Definition 1. For an interval [a, b] the characteristic function of |a, b], denoted by
X[a,5)(2) is defined by

_J1 ifa<z < b,
Yot (@) = 0 otherwise.
If p is given by (6), with f; = —w, fo = w then, ignoring the phase factor
in (9), we would expect
sin(wt)
t Y

a+if = c(y)



(a) The inverse Fourier transform of (b) The result of using cos? to truncate.
several truncations of the sinc function.

Figure 1. The inverse Fourier transforms of various windowed sinc functions.

where ¢(1)) is a constant proportional to sin ¢. This function is not supported in
a finite interval. In practice we use a finite part of this function, for example a
function of the form

nm sin(wt — nm)

_nx o) (t — — ) ————. 10
R (10
We have also shifted the time origin so the function is nonzero in the interval
[0, T, with T' = 22%_ Observe that T, the duration of the pulse, is related to w, the
bandwidth of the excitation. Plugging this form into (9) gives

ifT

p(f;T) +ipa(f;T) = ie” 2 ru(f), (11)

where 7,(f) is an approximation to sin ¢ x[...(f). To avoid Gibbs oscillations,
we often multiply the function in (10) by a function like 0052(;"—7’; — %). Figure 1(a)
show the inverse Fourier transforms of several different truncations of the sinc
function. As we use more and more lobes the approximation to the sharp window
improves. In Figure 1(b) we show the result of using the cos? to get a smoother
cutoff. The ripple and overshoot are now absent but the transition region is about

twice as large.



Figure 2. Solutions to the Bloch equation using a truncated sinc pulse and a range
of offset frequencies.

S Rephasing

For small flip angles, this gives a good approximation to |1 (f)|, however we still

have to deal with the overall phase e~*%" . The second part of pulse design involves
removing such phase errors in order to obtain spins which are aligned across the
selected slice. Because of its simple linear dependence on f, this phase can be
removed by simply reversing the direction of By-gradient and allowing the spins
to freely precess for an additional % units of time. This is called rephasing; it is an
essential part of the design of selective RF-pulse. After the rephasing period we
will have achieved what we set out to do. Figure 2 shows trajectories obtained by
solving the Bloch equation with a truncated sinc pulse. The different trajectories
correspond to different offset frequencies. Observe how, as predicted, the endpoint
rotates about the origin as the offset frequency increases. This demonstrates why
it is necessary to rephase the magnetization after the RF-pulse is applied.

Before going on to another topic it pays to note that we are not free to specify
T, the duration of the pulse. In fact it is connected to the bandwidth of the exci-
tation. If a(t) + /3(t) produces the excitation g ( f) then, for any positive A, the
RF-envelope A(a(At) 4 i3(At)) produces the excitation uss(§). This shows that
the bandwidth (BW) is inversely proportional to the duration of the excitation.
The energy and amplitude of the RF-envelope are proportional to BW.



6 Time Dependent Gradients

Using the linear approximation, (i.e. the assumption that ;3 = 1) we can also
analyze the case where the gradients depend on time. This is very useful in real
applications, because it allows us to apply RF-fields while the gradient is ramping
up and thereby shorten the overall time needed for slice selection. Here we allow
f, the offset frequency to be a function of time. In this case, formula (8) is replaced
by

T

n(f:T) + ipa(f; T) = e o 761 / e o FOds (o (1) +iB())dt.  (12)

0

Assume now that f(s) can expressed in terms of the gradient by f(s) = kg(s),

where £ = vz. Therefore
t t
/f(s)ds = k/g(s)ds.
0 0

So long as g(s) > 0 we can use

[e=]

as an integration variable. This gives an expression of the form

(T)

pa(k; T) + o (ks T) = e~ (1) / e*la(t(T)) + iﬁ(t(ﬂ)}j—f_dr (13)

We have again obtained what is essentially a Fourier transform relationship be-
tween the magnetization profile and the RF-envelope.

7 Examples

In this example we show that result of using a truncated sinc-pulse to obtain a
flip angle of 7/32 over a band of width 3000 Hz. The pulse we use in shown in
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(a) A truncated 35 sinc-pulse (b) The z-magnetization

Figure 3. A plot of a truncated 5-sinc pulse and the 2-component of the magne-
tization profile it produces.

Figure 3(a) and the z-component of the magnetization is shown in Figure 3(b).
The excitation is essentially in the correct band, however there is a lot of ripple
and overshoot. In Figure 4 we show a truncated 7 sinc pulse and the magnetization
it produces. The profile is similar to that in Figure 3(b). Most commercial MR
imaging equipment actually use small modifications of these sinc pulses.

8 Higher Flip Angles

In practice the most common examples are pulses with flip angles of either 90°
of 180°. Because of the large flip angles, these are usually designed using a more
accurate method than that outlined in the previous sections. There are two ap-
proaches to this problem. As both require mathematical techniques well be-
yond the Fourier transform, we will not attempt to explain them here but sim-
ply give references. The more widely used in the Shinnar-Le Roux or SLR
method. This is very well explained in [1]. The other approach is via the
Inverse Scattering Transform or IST. A preprint on this subject entitled Mini-
mum energy pulse synthesis via the inverse scattering transform can be found
at http://www.math.upenn.edu/"cle/papers/. These two papers contain references
to many of the important papers on RF-pulse design.
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(a) A truncated 35 sinc-pulse (b) The z-magnetization

Figure 4. A plot of a truncated 7-sinc pulse and the 2-component of the magneti-
zation profile it produces.

9 RF-energy

We close this lecture with a relation between the total energy in RF-pulse and the
magnetization profile it produces. If the RF-pulse is given by e (a(t), 5(t),0),
then the total energy of the pulse is given by a constant times the square norm of
a4

Total energy = C / la(t) +iB(t)[*dt.

If it produces the magnetization profile (u1(f), pa(f), u3(f)), then we have the
relation
2

/Ia(t) +iB())dt > 02/1Og [1+ lpa + 1o

T D as

Here C) is a universal constant. The reason we have an inequality is because
there are actually many RF-envelopes which will produce a given magnetization
profile. This a reflection of the nonlinearity of the problem. On the other hand,
there is a unique, minimum energy pulse, for which we get equality. We close the
lecture by showing two examples of minimum energy pulses designed using the
IST approach. Figure 5(a) shows the minimum energy 90° pulse and Figure 5(b)
shows the magnetization it produces. Figure 6(a) shows the minimum energy
pulse which produces the double band 90° excitation shown in Figure 6(b). In
these magnetization profiles the x-component is the solid line, the y-component is

10



Q=2iq in radiu
° ° ° ° =
0 2 > % - ®
: - T T :

o

)
N
T

(a) The minimum energy 90° pulse. (b) The rephased z, y, = components of
the magnetization.

Figure 5. A plot of the minimum energy 90° pulse and the magnetization profile
it produces.

the dashed line and the z-component is the dot-dashed line. The 90° pulse resem-
bles a sinc function, though it should be noted that this function is not symmetric
about t = 0.
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Figure 6. A plot of the minimum energy two band 90° pulse and the magnetiza-
tion profile it produces.
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