Math 241: Solving the heat equation

D. DeTurck

University of Pennsylvania

September 20, 2012

1D heat equation with Dirichlet boundary conditions

We derived the one-dimensional heat equation

$$
u_{t}=k u_{x x}
$$

and found that it's reasonable to expect to be able to solve for $u(x, t)$ (with $x \in[a, b]$ and $t>0$) provided we impose initial conditions:

$$
u(x, 0)=f(x)
$$

for $x \in[a, b]$ and boundary conditions such as

$$
u(a, t)=p(t), \quad u(b, t)=q(t)
$$

for $t>0$.
We showed that this problem has at most one solution, now it's time to show that a solution exists.

Linearity

We'll begin with a few easy observations about the heat equation $u_{t}=k u_{x x}$, ignoring the initial and boundary conditions for the moment:

Linearity

We'll begin with a few easy observations about the heat equation $u_{t}=k u_{x x}$, ignoring the initial and boundary conditions for the moment:

- Since the heat equation is linear (and homogeneous), a linear combination of two (or more) solutions is again a solution. So if u_{1}, u_{2}, \ldots are solutions of $u_{t}=k u_{x x}$, then so is

$$
c_{1} u_{1}+c_{2} u_{2}+\cdots
$$

for any choice of constants c_{1}, c_{2}, \ldots (Likewise, if $u_{\lambda}(x, t)$ is a solution of the heat equation that depends (in a reasonable way) on a parameter λ, then for any (reasonable) function $f(\lambda)$ the function

$$
U(x, t)=\int_{\lambda_{1}}^{\lambda_{2}} f(\lambda) u_{\lambda}(x, t) d \lambda
$$

is also a solution.

Linearity and initial/boundary conditions

- We can take advantage of linearity to address the initial/boundary conditions one at a time.

Linearity and initial/boundary conditions

- We can take advantage of linearity to address the initial/boundary conditions one at a time.
- For instance, we will spend a lot of time on initial-value problems with homogeneous boundary conditions:

$$
u_{t}=k u_{x x}, \quad u(x, 0)=f(x), \quad u(a, t)=u(b, t)=0
$$

Linearity and initial/boundary conditions

- We can take advantage of linearity to address the initial/boundary conditions one at a time.
- For instance, we will spend a lot of time on initial-value problems with homogeneous boundary conditions:

$$
u_{t}=k u_{x x}, \quad u(x, 0)=f(x), \quad u(a, t)=u(b, t)=0
$$

- Then we'll consider problems with zero initial conditions but non-zero boundary values.

Linearity and initial/boundary conditions

- We can take advantage of linearity to address the initial/boundary conditions one at a time.
- For instance, we will spend a lot of time on initial-value problems with homogeneous boundary conditions:

$$
u_{t}=k u_{x x}, \quad u(x, 0)=f(x), \quad u(a, t)=u(b, t)=0
$$

- Then we'll consider problems with zero initial conditions but non-zero boundary values.
- We can add these two kinds of solutions together to get solutions of general problems, where both the initial and boundary values are non-zero.

Symmetry

Some more observations:

- If $u(x, t)$ is a solution, then so is $u(a \pm x, b+t)$ for any constants a and b.
Note the \pm with the x but only + with t - you can't "reverse time" with the heat equation. This shows that the heat equation respects (or reflects) the second law of thermodynamics (you can't unstir the cream from your coffee).

Symmetry

Some more observations:

- If $u(x, t)$ is a solution, then so is $u(a \pm x, b+t)$ for any constants a and b.
Note the \pm with the x but only + with t - you can't "reverse time" with the heat equation. This shows that the heat equation respects (or reflects) the second law of thermodynamics (you can't unstir the cream from your coffee).
- If $u(x, t)$ is a solution then so is $u\left(a^{2} t, a t\right)$ for any constant a. We'll use this observation later to solve the heat equation in a surprising way, but for now we'll just store it in our memory bank.

Polynomial solutions

Now it's time to at least find some examples of solutions to $u_{t}=k u_{x x}$.

- One thing we can try is polynomial solutions. Certainly any linear function of x is a solution.

Polynomial solutions

Now it's time to at least find some examples of solutions to $u_{t}=k u_{x x}$.

- One thing we can try is polynomial solutions. Certainly any linear function of x is a solution.
- Next, taking our cue from the initial-value problem, suppose $u(x, 0)=p_{0}(x)$ for some polynomial $p_{0}(x)$, and try to construct a solution of the form

$$
u(x, t)=p_{0}(x)+t p_{1}(x)+t^{2} p_{2}(x)+\cdots
$$

Polynomial solutions

Now it's time to at least find some examples of solutions to $u_{t}=k u_{x x}$.

- One thing we can try is polynomial solutions. Certainly any linear function of x is a solution.
- Next, taking our cue from the initial-value problem, suppose $u(x, 0)=p_{0}(x)$ for some polynomial $p_{0}(x)$, and try to construct a solution of the form

$$
u(x, t)=p_{0}(x)+t p_{1}(x)+t^{2} p_{2}(x)+\cdots
$$

- We have

$$
u_{t}=p_{1}(x)+2 t p_{2}(x)+3 t^{2} p_{3}(x)+\cdots
$$

and

$$
u_{x x}=p_{0}^{\prime \prime}(x)+t p_{1}^{\prime \prime}(x)+t^{2} p_{2}^{\prime \prime}(x)+\cdots
$$

Polynomial solutions

- So the heat equation tells us:

$$
\begin{gathered}
p_{1}=k p_{0}^{\prime \prime}, \quad p_{2}=\frac{k}{2} p_{1}^{\prime \prime}=\frac{k^{2}}{2} p_{0}^{\prime \prime \prime \prime}, \\
p_{3}=\frac{k}{3} p_{2}^{\prime \prime}=\frac{k^{3}}{3!} p_{0}^{(6)}, \ldots, p_{n}=\frac{k^{n}}{n!} p_{0}^{(2 n)}
\end{gathered}
$$

- This process will stop if p_{0} is a polynomial, and we'll get a polynomial solution of the heat equation whose x-degree is twice its t-degree:

$$
u(x, t)=p_{0}(x)+\frac{k t}{1!} p_{0}^{\prime \prime}+\frac{k^{2} t^{2}}{2!} p_{0}^{\prime \prime \prime \prime}+\cdots+\frac{k^{n} t^{n}}{n!} p_{0}^{(2 n)}+\cdots .
$$

But. . .

The trouble with polynomial solutions, or even with extending the idea of polynomials to power series in two variables (ick!), is that it would be very difficult if not impossible to figure out how to choose the coefficients of the polynomial p_{0} so that the boundary values, even simple ones, would be matched at both ends.

There are also tricky convergence questions, etc for power series, and we don't want to get overwhelmed with these.

Separation of variables

- A more fruitful strategy is to look for separated solutions of the heat equation, in other words, solutions of the form $u(x, t)=X(x) T(t)$.

Separation of variables

- A more fruitful strategy is to look for separated solutions of the heat equation, in other words, solutions of the form $u(x, t)=X(x) T(t)$.
- If we substitute $X(x) T(t)$ for u in the heat equation $u_{t}=k u_{x x}$ we get:

$$
X \frac{d T}{d t}=k \frac{d^{2} X}{d x^{2}} T
$$

Separation of variables

- A more fruitful strategy is to look for separated solutions of the heat equation, in other words, solutions of the form $u(x, t)=X(x) T(t)$.
- If we substitute $X(x) T(t)$ for u in the heat equation $u_{t}=k u_{x x}$ we get:

$$
X \frac{d T}{d t}=k \frac{d^{2} X}{d x^{2}} T
$$

- Divide both sides by $k X T$ and get

$$
\frac{1}{k T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}
$$

Separation of Variables

- So if $u(x, t)=X(x) T(t)$ then $\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X}$.

Separation of Variables

- So if $u(x, t)=X(x) T(t)$ then $\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X}$.
- In this last equation, everything on the left side is a function of t, and everything on the right side is a function of x. This means that both sides are constant, say equal to λ - which gives ODEs for X and T :

$$
X^{\prime \prime}-\lambda X=0 \quad T^{\prime}-k \lambda T=0
$$

Separation of Variables

- So if $u(x, t)=X(x) T(t)$ then $\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X}$.
- In this last equation, everything on the left side is a function of t, and everything on the right side is a function of x. This means that both sides are constant, say equal to λ - which gives ODEs for X and T :

$$
X^{\prime \prime}-\lambda X=0 \quad T^{\prime}-k \lambda T=0
$$

- The power of this method comes in the application of boundary conditions, which we turn to next.

Boundary conditions

- ODEs for X and T :

$$
X^{\prime \prime}-\lambda X=0 \quad T^{\prime}-k \lambda T=0
$$

- As an example, let's suppose the x-interval goes from 0 to L, and we have homogeneous Dirichlet conditions: $u(0, t)=u(L, t)=0$ for all t.

Boundary conditions

- ODEs for X and T :

$$
X^{\prime \prime}-\lambda X=0 \quad T^{\prime}-k \lambda T=0
$$

- As an example, let's suppose the x-interval goes from 0 to L, and we have homogeneous Dirichlet conditions: $u(0, t)=u(L, t)=0$ for all t.
- This implies that λ can't be positive or zero (since solutions to $X^{\prime \prime}-\lambda X=0$ with $\lambda \geq 0$ can't be zero twice without being identically zero)

Boundary conditions

- ODEs for X and T :

$$
X^{\prime \prime}-\lambda X=0 \quad T^{\prime}-k \lambda T=0
$$

- As an example, let's suppose the x-interval goes from 0 to L, and we have homogeneous Dirichlet conditions:
$u(0, t)=u(L, t)=0$ for all t.
- This implies that λ can't be positive or zero (since solutions to $X^{\prime \prime}-\lambda X=0$ with $\lambda \geq 0$ can't be zero twice without being identically zero)
- So let $\lambda=-\alpha^{2}$. The general solution of $X^{\prime \prime}+\alpha^{2} X=0$ is

$$
X=c_{1} \cos \alpha x+c_{2} \sin \alpha x
$$

Boundary conditions

- ODEs for X and T :

$$
X^{\prime \prime}-\lambda X=0 \quad T^{\prime}-k \lambda T=0
$$

- As an example, let's suppose the x-interval goes from 0 to L, and we have homogeneous Dirichlet conditions:
$u(0, t)=u(L, t)=0$ for all t.
- This implies that λ can't be positive or zero (since solutions to $X^{\prime \prime}-\lambda X=0$ with $\lambda \geq 0$ can't be zero twice without being identically zero)
- So let $\lambda=-\alpha^{2}$. The general solution of $X^{\prime \prime}+\alpha^{2} X=0$ is

$$
X=c_{1} \cos \alpha x+c_{2} \sin \alpha x
$$

- The easiest way to satisfy the boundary conditions on u is to insist that $X(0)=X(L)=0$. What does this imply?

Restrictions on α

- We have $X=c_{1} \cos \alpha x+c_{2} \sin \alpha x, X(0)=0, X(L)=0$.

Restrictions on α

- We have $X=c_{1} \cos \alpha x+c_{2} \sin \alpha x, X(0)=0, X(L)=0$.
- First, note that $X(0)=c_{1}$. The condition $X(0)=0$ then forces $c_{1}=0$.

Restrictions on α

- We have $X=c_{1} \cos \alpha x+c_{2} \sin \alpha x, X(0)=0, X(L)=0$.
- First, note that $X(0)=c_{1}$. The condition $X(0)=0$ then forces $c_{1}=0$.
- Now we need to reconcile three things: $X=c_{2} \sin \alpha x$, $X(L)=0$ and we don't want X to be identically zero (i.e., we want $c_{2} \neq 0$).

Restrictions on α

- We have $X=c_{1} \cos \alpha x+c_{2} \sin \alpha x, X(0)=0, X(L)=0$.
- First, note that $X(0)=c_{1}$. The condition $X(0)=0$ then forces $c_{1}=0$.
- Now we need to reconcile three things: $X=c_{2} \sin \alpha x$, $X(L)=0$ and we don't want X to be identically zero (i.e., we want $c_{2} \neq 0$).
- This gives a condition on $\alpha: \sin \alpha L=0$, or $\alpha L=n \pi$ for some integer n.

Restrictions on α

- We have $X=c_{1} \cos \alpha x+c_{2} \sin \alpha x, X(0)=0, X(L)=0$.
- First, note that $X(0)=c_{1}$. The condition $X(0)=0$ then forces $c_{1}=0$.
- Now we need to reconcile three things: $X=c_{2} \sin \alpha x$, $X(L)=0$ and we don't want X to be identically zero (i.e., we want $c_{2} \neq 0$).
- This gives a condition on α : $\sin \alpha L=0$, or $\alpha L=n \pi$ for some integer n.
- Since $\sin (-x)=-\sin x$, we need only consider positive integers n. Thus

$$
\alpha=\frac{n \pi}{L}, \quad n=1,2,3, \ldots
$$

and

$$
X=c_{2} \sin \frac{n \pi x}{L}, \quad n=1,2,3, \ldots
$$

Implications for λ and T

- Now, recall that $\lambda=-\alpha^{2}$, and the T equation was $T^{\prime}-k \lambda T=0$.

Implications for λ and T

- Now, recall that $\lambda=-\alpha^{2}$, and the T equation was $T^{\prime}-k \lambda T=0$.
- And we know that $\alpha=n \pi / L$ for $n=1,2,3, \ldots$, so we have to solve

$$
T^{\prime}+\frac{n^{2} k \pi^{2}}{L^{2}} T=0, \quad n=1,2,3 \ldots
$$

Implications for λ and T

- Now, recall that $\lambda=-\alpha^{2}$, and the T equation was $T^{\prime}-k \lambda T=0$.
- And we know that $\alpha=n \pi / L$ for $n=1,2,3, \ldots$, so we have to solve

$$
T^{\prime}+\frac{n^{2} k \pi^{2}}{L^{2}} T=0, \quad n=1,2,3 \ldots
$$

- The general solution of these are

$$
T=c e^{-n^{2} k \pi^{2} t / L^{2}}, \quad n=1,2,3, \ldots
$$

Implications for λ and T

- Now, recall that $\lambda=-\alpha^{2}$, and the T equation was $T^{\prime}-k \lambda T=0$.
- And we know that $\alpha=n \pi / L$ for $n=1,2,3, \ldots$, so we have to solve

$$
T^{\prime}+\frac{n^{2} k \pi^{2}}{L^{2}} T=0, \quad n=1,2,3 \ldots
$$

- The general solution of these are

$$
T=c e^{-n^{2} k \pi^{2} t / L^{2}}, \quad n=1,2,3, \ldots
$$

- Putting this together with our X solutions, we get solutions $u(x, t)$ of the form:

$$
u(x, t)=b_{n} e^{-n^{2} k \pi^{2} t / L^{2}} \sin \frac{n \pi x}{L}, \quad n=1,2,3, \ldots
$$

Superposition, again

- We can put these solutions together to get solutions of the form

$$
\begin{aligned}
u(x, t)= & b_{1} e^{-k \pi^{2} t / L^{2}} \sin \frac{\pi x}{L}+b_{2} e^{-4 \pi^{2} t / L^{2}} \sin \frac{2 \pi x}{L}+\cdots \\
& +b_{N} e^{-N^{2} k \pi^{2} t / L^{2}} \sin \frac{N \pi x}{L}
\end{aligned}
$$

Superposition, again

- We can put these solutions together to get solutions of the form

$$
\begin{aligned}
u(x, t)= & b_{1} e^{-k \pi^{2} t / L^{2}} \sin \frac{\pi x}{L}+b_{2} e^{-4 \pi^{2} t / L^{2}} \sin \frac{2 \pi x}{L}+\cdots \\
& +b_{N} e^{-N^{2} k \pi^{2} t / L^{2}} \sin \frac{N \pi x}{L}
\end{aligned}
$$

- This function $u(x, t)$ automatically satisfies the boundary conditions $u(0, t)=u(L, t)=0$, since all of the pieces do.
- And it would be great for satisfying initial conditions given in trigonometric form - for example

$$
u(x, 0)=3 \sin \frac{\pi x}{L}-2 \sin \frac{3 \pi x}{L}+\sin \frac{6 \pi x}{L}
$$

Taking things to the limit

- But what if the initial condition isn't trigonometric? Could we consider adding together an infinite number of pieces? As in

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} k \pi^{2} t / L^{2}} \sin \frac{n \pi x}{L}
$$

Taking things to the limit

- But what if the initial condition isn't trigonometric? Could we consider adding together an infinite number of pieces? As in

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} k \pi^{2} t / L^{2}} \sin \frac{n \pi x}{L}
$$

- Then the initial values would be

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} .
$$

Taking things to the limit

- But what if the initial condition isn't trigonometric? Could we consider adding together an infinite number of pieces? As in

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} k \pi^{2} t / L^{2}} \sin \frac{n \pi x}{L}
$$

- Then the initial values would be

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} .
$$

- So the question is, which functions $f(x)$ (for x in the interval $[0, L])$ can be expressed as an infinite series of sines?

Taking things to the limit

- But what if the initial condition isn't trigonometric? Could we consider adding together an infinite number of pieces? As in

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} k \pi^{2} t / L^{2}} \sin \frac{n \pi x}{L}
$$

- Then the initial values would be

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} .
$$

- So the question is, which functions $f(x)$ (for x in the interval $[0, L])$ can be expressed as an infinite series of sines?
- The (somewhat surprising) answer is, ALL OF THEM!
- Let's see how this might work in practice (and we'll take up the question of proving this claim later).

The Fourier ansatz

- Just for something concrete, let's suppose we want to solve the problem

$$
\begin{aligned}
& \quad u_{t}=\frac{1}{5} u_{x x}, \quad u(0, t)=u(3, t)=0, \quad u(x, 0)=3 x-x^{2} \\
& \text { for } t>0 \text { and } 0 \leq x \leq 3 .
\end{aligned}
$$

The Fourier ansatz

- Just for something concrete, let's suppose we want to solve the problem

$$
u_{t}=\frac{1}{5} u_{x x}, \quad u(0, t)=u(3, t)=0, \quad u(x, 0)=3 x-x^{2}
$$

for $t>0$ and $0 \leq x \leq 3$.

- We'll assume that we can express u as

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t / 45} \sin \frac{n \pi x}{3}
$$

(this is the ansatz) and see if we can figure out what the constants b_{n} should be - we know that the boundary conditions are automatically satisfied, and perhaps we can choose the b_{n} 's so that

$$
3 x-x^{2}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{3}
$$

Integrals rather than derivatives

- We're trying to find b_{n} 's so that

$$
3 x-x^{2}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{3}
$$

- By contrast with Taylor series, where you find the coefficients by integration rather than differentiation.

Integrals rather than derivatives

- We're trying to find b_{n} 's so that

$$
3 x-x^{2}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{3}
$$

- By contrast with Taylor series, where you find the coefficients by integration rather than differentiation.
- We'll use two basic facts:
- If $n \neq m$ then

$$
\int_{0}^{3} \sin \frac{n \pi x}{3} \sin \frac{m \pi x}{3} d x=0
$$

- If $n=m$ then

$$
\int_{0}^{3} \sin \frac{n \pi x}{3} \sin \frac{m \pi x}{3} d x=\int_{0}^{3} \sin ^{2} \frac{n \pi x}{3} d x=\frac{3}{2}
$$

Finding the coefficients

- We're still trying to find b_{n} 's so that

$$
3 x-x^{2}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{3}
$$

- Motivated by the facts on the previous slide, we multiply both sides by $\sin \frac{m \pi x}{3}$ and integrate both sides from 0 to 3 :

$$
\begin{aligned}
\int_{0}^{3}\left(3 x-x^{2}\right) \sin \frac{m \pi x}{3} d x & =\int_{0}^{3}\left(\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{3}\right) \sin \frac{m \pi x}{3} d x \\
& =\sum_{n=1}^{\infty} b_{n} \int_{0}^{3} \sin \frac{n \pi x}{3} \sin \frac{m \pi x}{3} d x \\
& =\frac{3 b_{m}}{2}
\end{aligned}
$$

Integration by parts

- It's an exercise in integration by parts to show that

$$
\int_{0}^{3}\left(3 x-x^{2}\right) \sin \frac{m \pi x}{3} d x=\frac{54}{m^{3} \pi^{3}}\left(1-(-1)^{m}\right)
$$

Integration by parts

- It's an exercise in integration by parts to show that

$$
\int_{0}^{3}\left(3 x-x^{2}\right) \sin \frac{m \pi x}{3} d x=\frac{54}{m^{3} \pi^{3}}\left(1-(-1)^{m}\right)
$$

- Therefore,

$$
b_{m}=\frac{36}{m^{3} \pi^{3}}\left(1-(-1)^{m}\right)= \begin{cases}0 & m \text { even } \\ \frac{72}{m^{3} \pi^{3}} & m \text { odd }\end{cases}
$$

Integration by parts

- It's an exercise in integration by parts to show that

$$
\int_{0}^{3}\left(3 x-x^{2}\right) \sin \frac{m \pi x}{3} d x=\frac{54}{m^{3} \pi^{3}}\left(1-(-1)^{m}\right)
$$

- Therefore,

$$
b_{m}=\frac{36}{m^{3} \pi^{3}}\left(1-(-1)^{m}\right)= \begin{cases}0 & m \text { even } \\ \frac{72}{m^{3} \pi^{3}} & m \text { odd }\end{cases}
$$

- So we arrive at a candidate for the solution:

$$
u(x, t)=\sum_{n=0}^{\infty} \frac{72}{(2 n+1)^{3} \pi^{3}} e^{-(2 n+1)^{2} \pi^{2} t / 45} \sin \frac{(2 n+1) \pi x}{3}
$$

Validating the solution

- The series

$$
u(x, t)=\sum_{n=0}^{\infty} \frac{72}{(2 n+1)^{3} \pi^{3}} e^{-(2 n+1)^{2} \pi^{2} t / 45} \sin \frac{(2 n+1) \pi x}{3}
$$

converges for $t \geq 0$, and certainly satisfies the boundary conditions. What about the initial condition $u(x, 0)=3 x-x^{2}$?

Validating the solution

- The series

$$
u(x, t)=\sum_{n=0}^{\infty} \frac{72}{(2 n+1)^{3} \pi^{3}} e^{-(2 n+1)^{2} \pi^{2} t / 45} \sin \frac{(2 n+1) \pi x}{3}
$$

converges for $t \geq 0$, and certainly satisfies the boundary conditions. What about the initial condition

$$
u(x, 0)=3 x-x^{2} ?
$$

- Well,

$$
u(x, 0)=\sum_{n=0}^{\infty} \frac{72}{(2 n+1)^{2} \pi^{3}} \sin \frac{(2 n+1) \pi x}{3}
$$

Graphical evidence

Red graph: $3 x-x^{3}$, Blue graph: sum
One term:

Three terms:

Plotting the solution

Here is a plot of the sum of of the first three terms of the solution:

Another example

- Now, let's look at a problem with insulated ends:

$$
\begin{aligned}
u_{t} & =\frac{1}{5} u_{x x}, \quad u_{x}(0, t)=u_{x}(3, t)=0, \quad u(x, 0)=3 x-x^{2} \\
\text { for } t & >0 \text { and } 0 \leq x \leq 3 .
\end{aligned}
$$

Another example

- Now, let's look at a problem with insulated ends:

$$
u_{t}=\frac{1}{5} u_{x x}, \quad u_{x}(0, t)=u_{x}(3, t)=0, \quad u(x, 0)=3 x-x^{2}
$$

for $t>0$ and $0 \leq x \leq 3$.

- This time, with the boundary conditions in mind, we'll assume that we can express u as

$$
u(x, t)=\sum_{n=0}^{\infty} a_{n} e^{-n^{2} \pi^{2} t / 45} \cos \frac{n \pi x}{3}
$$

(and see if we can figure out what the constants a_{n} should be - the boundary conditions are automatically satisfied, and we will choose the a_{n} 's so that

$$
3 x-x^{2}=\sum_{n=0}^{\infty} a_{n} \cos \frac{n \pi x}{3}
$$

Useful integrals

- We're trying to find a_{n} 's so that

$$
3 x-x^{2}=\sum_{n=0}^{\infty} a_{n} \cos \frac{n \pi x}{3} .
$$

Useful integrals

- We're trying to find a_{n} 's so that

$$
3 x-x^{2}=\sum_{n=0}^{\infty} a_{n} \cos \frac{n \pi x}{3} .
$$

- Again, we'll use two basic facts:
- If $n \neq m$ then

$$
\int_{0}^{3} \cos \frac{n \pi x}{3} \cos \frac{m \pi x}{3} d x=0
$$

- If $n=m>0$ then

$$
\int_{0}^{3} \cos \frac{n \pi x}{3} \cos \frac{m \pi x}{3} d x=\int_{0}^{3} \cos ^{2} \frac{n \pi x}{3} d x=\frac{3}{2}
$$

whereas if $n=m=0$ we get $\int_{0}^{3} 1^{2} d x=3$.

Finding the coefficients

- We're still trying to find a_{n} 's so that

$$
3 x-x^{2}=\sum_{n=0}^{\infty} b_{n} \cos \frac{n \pi x}{3}
$$

- Motivated by the facts on the previous slide, we multiply both sides by $\cos \frac{m \pi x}{3}$ and integrate both sides from 0 to 3 . For $m>0$ we get:

$$
\begin{aligned}
\int_{0}^{3}\left(3 x-x^{2}\right) \cos \frac{m \pi x}{3} d x & =\int_{0}^{3}\left(\sum_{n=0}^{\infty} a_{n} \cos \frac{n \pi x}{3}\right) \sin \frac{m \pi x}{3} d x \\
& =\sum_{n=0}^{\infty} a_{n} \int_{0}^{3} \cos \frac{n \pi x}{3} \cos \frac{m \pi x}{3} d x \\
& =\frac{3 a_{m}}{2}
\end{aligned}
$$

and we get $3 a_{0}$ for $m=0$.

Integration by parts

- It's an exercise in integration by parts to show that

$$
\int_{0}^{3}\left(3 x-x^{2}\right) \cos \frac{m \pi x}{3} d x= \begin{cases}0 & m \text { odd } \\ \frac{9}{2} & m=0 \\ -\frac{27}{m^{2} \pi^{2}} & m>0 . \text { even }\end{cases}
$$

Integration by parts

- It's an exercise in integration by parts to show that

$$
\int_{0}^{3}\left(3 x-x^{2}\right) \cos \frac{m \pi x}{3} d x= \begin{cases}0 & m \text { odd } \\ \frac{9}{2} & m=0 \\ -\frac{27}{m^{2} \pi^{2}} & m>0 . \text { even }\end{cases}
$$

- So we arrive at a candidate for the solution:

$$
u(x, t)=\frac{3}{2}-\sum_{n=1}^{\infty} \frac{36}{(2 n)^{2} \pi^{2}} e^{-(2 n)^{2} \pi^{2} t / 45} \cos \frac{2 n \pi x}{3}
$$

Validating the solution

- The series

$$
u(x, t)=\frac{3}{2}-\sum_{n=1}^{\infty} \frac{36}{(2 n)^{2} \pi^{2}} e^{-(2 n)^{2} \pi^{2} t / 45} \cos \frac{2 n \pi x}{3}
$$

converges for $t \geq 0$, and certainly satisfies the boundary conditions. What about the initial condition

$$
u(x, 0)=3 x-x^{2} ?
$$

Validating the solution

- The series

$$
u(x, t)=\frac{3}{2}-\sum_{n=1}^{\infty} \frac{36}{(2 n)^{2} \pi^{2}} e^{-(2 n)^{2} \pi^{2} t / 45} \cos \frac{2 n \pi x}{3}
$$

converges for $t \geq 0$, and certainly satisfies the boundary conditions. What about the initial condition

$$
u(x, 0)=3 x-x^{2} ?
$$

- Well,

$$
u(x, 0)=\frac{3}{2}-\sum_{n=1}^{\infty} \frac{36}{(2 n)^{2} \pi^{2}} \cos \frac{2 n \pi x}{3}
$$

Graphical evidence

Red graph: $3 x-x^{3}$, Blue graph: sum
One term, two terms:

Four terms, thirteen terms:

Plotting the solution

Here is a plot of the sum of of the first three terms of the solution:

Other boundary conditions

Questions for discussion:

- How would you handle boundary conditions $u_{x}(0, t)=0$, $u(3, t)=0$?
- What about $u(0, t)=0, u_{x}(3, t)=0$?
- What about something like $u(0, t)=0, u_{x}(3, t)+u(3, t)=0$?

