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1D heat equation with Dirichlet boundary conditions

We derived the one-dimensional heat equation

ut = kuxx

and found that it’s reasonable to expect to be able to solve for
u(x , t) (with x ∈ [a, b] and t > 0) provided we impose initial
conditions:

u(x , 0) = f (x)

for x ∈ [a, b] and boundary conditions such as

u(a, t) = p(t) , u(b, t) = q(t)

for t > 0.
We showed that this problem has at most one solution, now it’s
time to show that a solution exists.
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Linearity

We’ll begin with a few easy observations about the heat equation
ut = kuxx , ignoring the initial and boundary conditions for the
moment:

• Since the heat equation is linear (and homogeneous), a linear
combination of two (or more) solutions is again a solution. So
if u1, u2,. . . are solutions of ut = kuxx , then so is

c1u1 + c2u2 + · · ·

for any choice of constants c1, c2, . . .. (Likewise, if uλ(x , t) is
a solution of the heat equation that depends (in a reasonable
way) on a parameter λ, then for any (reasonable) function
f (λ) the function

U(x , t) =

ˆ λ2

λ1

f (λ)uλ(x , t) dλ

is also a solution.
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Linearity and initial/boundary conditions

• We can take advantage of linearity to address the
initial/boundary conditions one at a time.

• For instance, we will spend a lot of time on initial-value
problems with homogeneous boundary conditions:

ut = kuxx , u(x , 0) = f (x), u(a, t) = u(b, t) = 0.

• Then we’ll consider problems with zero initial conditions but
non-zero boundary values.

• We can add these two kinds of solutions together to get
solutions of general problems, where both the initial and
boundary values are non-zero.
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Symmetry

Some more observations:

• If u(x , t) is a solution, then so is u(a± x , b + t) for any
constants a and b.
Note the ± with the x but only + with t — you can’t
“reverse time” with the heat equation. This shows that the
heat equation respects (or reflects) the second law of
thermodynamics (you can’t unstir the cream from your
coffee).

• If u(x , t) is a solution then so is u(a2t, at) for any constant a.
We’ll use this observation later to solve the heat equation in a
surprising way, but for now we’ll just store it in our memory
bank.

D. DeTurck Math 241 002 2012C: Solving the heat equation 5 / 21



Symmetry

Some more observations:

• If u(x , t) is a solution, then so is u(a± x , b + t) for any
constants a and b.
Note the ± with the x but only + with t — you can’t
“reverse time” with the heat equation. This shows that the
heat equation respects (or reflects) the second law of
thermodynamics (you can’t unstir the cream from your
coffee).

• If u(x , t) is a solution then so is u(a2t, at) for any constant a.
We’ll use this observation later to solve the heat equation in a
surprising way, but for now we’ll just store it in our memory
bank.

D. DeTurck Math 241 002 2012C: Solving the heat equation 5 / 21



Polynomial solutions

Now it’s time to at least find some examples of solutions to
ut = kuxx .

• One thing we can try is polynomial solutions. Certainly any
linear function of x is a solution.

• Next, taking our cue from the initial-value problem, suppose
u(x , 0) = p0(x) for some polynomial p0(x), and try to
construct a solution of the form

u(x , t) = p0(x) + tp1(x) + t2p2(x) + · · ·

• We have

ut = p1(x) + 2tp2(x) + 3t2p3(x) + · · ·

and
uxx = p′′0 (x) + tp′′1 (x) + t2p′′2 (x) + · · ·
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Polynomial solutions

• So the heat equation tells us:

p1 = kp′′0 , p2 =
k

2
p′′1 =

k2

2
p′′′′0 ,

p3 =
k

3
p′′2 =

k3

3!
p
(6)
0 , . . . , pn =

kn

n!
p
(2n)
0

• This process will stop if p0 is a polynomial, and we’ll get a
polynomial solution of the heat equation whose x-degree is
twice its t-degree:

u(x , t) = p0(x) +
kt

1!
p′′0 +

k2t2

2!
p′′′′0 + · · ·+ kntn

n!
p
(2n)
0 + · · · .
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But. . .

The trouble with polynomial solutions, or even with extending the
idea of polynomials to power series in two variables (ick!), is that it
would be very difficult if not impossible to figure out how to
choose the coefficients of the polynomial p0 so that the boundary
values, even simple ones, would be matched at both ends.

There are also tricky convergence questions, etc for power series,
and we don’t want to get overwhelmed with these.
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Separation of variables

• A more fruitful strategy is to look for separated solutions of
the heat equation, in other words, solutions of the form
u(x , t) = X (x)T (t).

• If we substitute X (x)T (t) for u in the heat equation
ut = kuxx we get:

X
dT

dt
= k

d2X

dx2
T .

• Divide both sides by kXT and get

1

kT

dT

dt
=

1

X

d2X

dx2
.
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Separation of Variables

• So if u(x , t) = X (x)T (t) then
T ′

kT
=

X ′′

X
.

• In this last equation, everything on the left side is a function
of t, and everything on the right side is a function of x . This
means that both sides are constant, say equal to λ — which
gives ODEs for X and T :

X ′′ − λX = 0 T ′ − kλT = 0

• The power of this method comes in the application of
boundary conditions, which we turn to next.
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Boundary conditions

• ODEs for X and T :

X ′′ − λX = 0 T ′ − kλT = 0

• As an example, let’s suppose the x-interval goes from 0 to L,
and we have homogeneous Dirichlet conditions:
u(0, t) = u(L, t) = 0 for all t.

• This implies that λ can’t be positive or zero (since solutions
to X ′′ − λX = 0 with λ ≥ 0 can’t be zero twice without being
identically zero)

• So let λ = −α2. The general solution of X ′′ + α2X = 0 is

X = c1 cosαx + c2 sinαx

• The easiest way to satisfy the boundary conditions on u is to
insist that X (0) = X (L) = 0. What does this imply?
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Restrictions on α

• We have X = c1 cosαx + c2 sinαx , X (0) = 0, X (L) = 0.

• First, note that X (0) = c1. The condition X (0) = 0 then
forces c1 = 0.

• Now we need to reconcile three things: X = c2 sinαx ,
X (L) = 0 and we don’t want X to be identically zero (i.e., we
want c2 6= 0).

• This gives a condition on α: sinαL = 0, or αL = nπ for some
integer n.

• Since sin(−x) = − sin x , we need only consider positive
integers n. Thus

α =
nπ

L
, n = 1, 2, 3, . . .

and
X = c2 sin

nπx

L
, n = 1, 2, 3, . . .
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Implications for λ and T

• Now, recall that λ = −α2, and the T equation was
T ′ − kλT = 0.

• And we know that α = nπ/L for n = 1, 2, 3, . . ., so we have to
solve

T ′ +
n2kπ2

L2
T = 0, n = 1, 2, 3 . . . .

• The general solution of these are

T = ce−n
2kπ2t/L2 , n = 1, 2, 3, . . . .

• Putting this together with our X solutions, we get solutions
u(x , t) of the form:

u(x , t) = bne
−n2kπ2t/L2 sin

nπx

L
, n = 1, 2, 3, . . .
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Superposition, again

• We can put these solutions together to get solutions of the
form

u(x , t) = b1e
−kπ2t/L2 sin

πx

L
+ b2e

−4π2t/L2 sin
2πx

L
+ · · ·

+ bNe
−N2kπ2t/L2 sin

Nπx

L
.

• This function u(x , t) automatically satisfies the boundary
conditions u(0, t) = u(L, t) = 0, since all of the pieces do.

• And it would be great for satisfying initial conditions given in
trigonometric form — for example

u(x , 0) = 3 sin
πx

L
− 2 sin

3πx

L
+ sin

6πx

L
.
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Taking things to the limit

• But what if the initial condition isn’t trigonometric? Could we
consider adding together an infinite number of pieces? As in

u(x , t) =
∞∑
n=1

bne
−n2kπ2t/L2 sin

nπx

L

• Then the initial values would be

f (x) =
∞∑
n=1

bn sin
nπx

L
.

• So the question is, which functions f (x) (for x in the interval
[0, L]) can be expressed as an infinite series of sines?

• The (somewhat surprising) answer is, ALL OF THEM!

• Let’s see how this might work in practice (and we’ll take up
the question of proving this claim later).
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Taking things to the limit

• But what if the initial condition isn’t trigonometric? Could we
consider adding together an infinite number of pieces? As in

u(x , t) =
∞∑
n=1

bne
−n2kπ2t/L2 sin

nπx

L

• Then the initial values would be

f (x) =
∞∑
n=1

bn sin
nπx

L
.

• So the question is, which functions f (x) (for x in the interval
[0, L]) can be expressed as an infinite series of sines?

• The (somewhat surprising) answer is, ALL OF THEM!
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The Fourier ansatz

• Just for something concrete, let’s suppose we want to solve
the problem

ut =
1

5
uxx , u(0, t) = u(3, t) = 0, u(x , 0) = 3x − x2

for t > 0 and 0 ≤ x ≤ 3.

• We’ll assume that we can express u as

u(x , t) =
∞∑
n=1

bne
−n2π2t/45 sin

nπx

3

(this is the ansatz) and see if we can figure out what the
constants bn should be — we know that the boundary
conditions are automatically satisfied, and perhaps we can
choose the bn’s so that

3x − x2 =
∞∑
n=1

bn sin
nπx

3
.
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Integrals rather than derivatives

• We’re trying to find bn’s so that

3x − x2 =
∞∑
n=1

bn sin
nπx

3
.

• By contrast with Taylor series, where you find the coefficients
by integration rather than differentiation.

• We’ll use two basic facts:

• If n 6= m then

ˆ 3

0
sin

nπx

3
sin

mπx

3
dx = 0.

• If n = m then
ˆ 3

0
sin

nπx

3
sin

mπx

3
dx =

ˆ 3

0
sin2 nπx

3
dx =

3

2
.
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Finding the coefficients

• We’re still trying to find bn’s so that

3x − x2 =
∞∑
n=1

bn sin
nπx

3
.

• Motivated by the facts on the previous slide, we multiply both
sides by sin mπx

3 and integrate both sides from 0 to 3:

ˆ 3

0
(3x − x2) sin

mπx

3
dx =

ˆ 3

0

( ∞∑
n=1

bn sin
nπx

3

)
sin

mπx

3
dx

=
∞∑
n=1

bn

ˆ 3

0
sin

nπx

3
sin

mπx

3
dx

=
3bm

2
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Integration by parts

• It’s an exercise in integration by parts to show that

ˆ 3

0
(3x − x2) sin

mπx

3
dx =

54

m3π3
(1− (−1)m)

• Therefore,

bm =
36

m3π3
(1− (−1)m) =


0 m even

72

m3π3
m odd

• So we arrive at a candidate for the solution:

u(x , t) =
∞∑
n=0

72

(2n + 1)3π3
e−(2n+1)2π2t/45 sin

(2n + 1)πx

3
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Validating the solution

• The series

u(x , t) =
∞∑
n=0

72

(2n + 1)3π3
e−(2n+1)2π2t/45 sin

(2n + 1)πx

3

converges for t ≥ 0, and certainly satisfies the boundary
conditions. What about the initial condition
u(x , 0) = 3x − x2?

• Well,

u(x , 0) =
∞∑
n=0

72

(2n + 1)2π3
sin

(2n + 1)πx

3

.
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Graphical evidence

Red graph: 3x − x3, Blue graph: sum
One term:

Three terms:
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Plotting the solution

Here is a plot of the sum of of the first three terms of the solution:

D. DeTurck Math 241 002 2012C: Solving the heat equation 22 / 21



Another example

• Now, let’s look at a problem with insulated ends:

ut =
1

5
uxx , ux(0, t) = ux(3, t) = 0, u(x , 0) = 3x − x2

for t > 0 and 0 ≤ x ≤ 3.

• This time, with the boundary conditions in mind, we’ll assume
that we can express u as

u(x , t) =
∞∑
n=0

ane
−n2π2t/45 cos

nπx

3

(and see if we can figure out what the constants an should be
— the boundary conditions are automatically satisfied, and we
will choose the an’s so that

3x − x2 =
∞∑
n=0

an cos
nπx

3
.
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Useful integrals

• We’re trying to find an’s so that

3x − x2 =
∞∑
n=0

an cos
nπx

3
.

• Again, we’ll use two basic facts:

• If n 6= m then

ˆ 3

0
cos

nπx

3
cos

mπx

3
dx = 0.

• If n = m > 0 then
ˆ 3

0
cos

nπx

3
cos

mπx

3
dx =

ˆ 3

0
cos2

nπx

3
dx =

3

2

whereas if n = m = 0 we get
´ 3
0 12 dx = 3.
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Finding the coefficients

• We’re still trying to find an’s so that

3x − x2 =
∞∑
n=0

bn cos
nπx

3
.

• Motivated by the facts on the previous slide, we multiply both
sides by cos mπx

3 and integrate both sides from 0 to 3. For
m > 0 we get:

ˆ 3

0
(3x − x2) cos

mπx

3
dx =

ˆ 3

0

( ∞∑
n=0

an cos
nπx

3

)
sin

mπx

3
dx

=
∞∑
n=0

an

ˆ 3

0
cos

nπx

3
cos

mπx

3
dx

=
3am

2

and we get 3a0 for m = 0.
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Integration by parts

• It’s an exercise in integration by parts to show that

ˆ 3

0
(3x − x2) cos

mπx

3
dx =


0 m odd
9
2 m = 0
− 27

m2π2 m > 0. even

• So we arrive at a candidate for the solution:

u(x , t) =
3

2
−
∞∑
n=1

36

(2n)2π2
e−(2n)

2π2t/45 cos
2nπx

3
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Validating the solution

• The series

u(x , t) =
3

2
−
∞∑
n=1

36

(2n)2π2
e−(2n)

2π2t/45 cos
2nπx

3

converges for t ≥ 0, and certainly satisfies the boundary
conditions. What about the initial condition
u(x , 0) = 3x − x2?

• Well,

u(x , 0) =
3

2
−
∞∑
n=1

36

(2n)2π2
cos

2nπx

3
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Graphical evidence

Red graph: 3x − x3, Blue graph: sum
One term, two terms:

Four terms, thirteen terms:
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Plotting the solution

Here is a plot of the sum of of the first three terms of the solution:
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Other boundary conditions

Questions for discussion:

• How would you handle boundary conditions ux(0, t) = 0,
u(3, t) = 0?

• What about u(0, t) = 0, ux(3, t) = 0?

• What about something like u(0, t) = 0, ux(3, t) + u(3, t) = 0?
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