MATH 371 — Midterm I — October 3, 2013
1. (a) Use the Euclidean algorithm to find the greatest common divisor of 312 and 252, and two
integers A and p satisfying 312\ + 252 = ged(312, 252).

(b) Find a polynomial p(x) € R[x] such that {p) = (z* — 32> —x +3, 2% — 22? — 5z + 6) R[],
and prove that the two ideals are equal.

(a)
i ‘ -1 0 1 2 3
r; | 312 252 60 12 O
q; — — 1 4 5
Ai| 1 0 1 —4
i 0 1 -1 5 —
Therefore ged(312,252) = 12 and —4 - 312 4+ 5- 252 = 12.
(b)
i | -1 0 1 2
ri |z¥ =32 —2z+3 25—222—5x+6 3x2—12x+9 0
q; - - z—1 %x + %
Ai 1 0 1 -
i 0 1 —x+1 —

Therefore ged(z* — 32% — 2 + 3, 2% — 202 =524+ 6) =322 — 120+ 9 and 322 — 120+ 9 =1 (2* —
323 —x+3) + (—x +1) - (2® — 222 — 5z + 6).

Let [ = {z* —32% —2+3, 2 — 222 — 52 + 6). Then I = (p), where p = 322 — 12z +9. We have
at =328 —x +3 =1 +2+1)(32% — 122+ 9) and 2 — 222 — 5z 4+ 6 = 1 (v + 2)(32? — 122 + 9.
Thus both generators of I are divisible by p, therefore I < {p). And from our gcd expression we
have that p € I, therefore (p) c I. Putting these two inclusions together gives I = {(p).

2. Let I and J be ideals in the the commutative ring R, with the property that I + J = R.

(a) Prove that I.J = I nJ (recall that I.J is the ideal generated by products of the form zy, with
xelandyeJ.

(b) Generalize the Chinese Remainder Theorem to this context: Prove that there is an isomor-
phism
o:R/(InJ)— R/I xR/J.

(c) Give an example of a ring R and ideals I and J of R satisfying IJ # I n J.

(a) Suppose = € I.J, then z = >, | p;q; where p; € I and ¢; € J for all i. But we have p;q; € T
(because I is an ideal and p; € I), and likewise we have p;q; € J. Therefore IJ c I n J.

Now suppose z € I n J. Since I + J = R, we have 1 € I 4+ J, therefore there is a € I and b e J
such that a4+ b = 1. Therefore x = (a+b)x € IJ since ax € I.J and zb € IJ (since z is in both I and
J,a€el and be J). Therefore I n J c IJ. Putting the two inclusions together gives I nJ = IJ.



(b) We'll find a surjective homomorphism @ from R to R/I x R/J with kernel I n J, and then
the first isomorphism theorem (that the image of ¥ is isomorphic to R/ ker ¢) will imply that ¢ is
an isomorphism. The map @ will send = € R to the pair ([x], [#]s), where [z]; is the coset of I
containing x and [z]; is the coset of J containing x. This is clearly a ring homomorphism (by the
standard properties of cosets of ideals), and the kernel of R consists of all elements = with [z]; = I
and [z]; = J, so x € I n J. This is just what we needed to complete the proof.

(c) Let R =7, and let I = {24) and J = (20). Any element in IJ must be a multiple of 480, so
IJ = {480). But I A J = (120).

3. The cissoid of Diocles is an affine plane curve in R?. Diocles (around 180 B.C.) described
the cissoid in a way that amounts to the following: Begin with the unit circle centered at the
origin. For each a between —1 and 1, consider the line L that connects the point (1,0) to the point
(—a, £+/1 — a?) on the unit circle (note the —a). The point on L with z-coordinate a is a point on
the cissoid, and the cissoid is the locus of all such points:

(a) Prove that the cissoid is an affine variety by finding its equation in = and y.

(b) Prove that the cissoid is a rational affine variety by finding a rational parametrization of it.

(a) The line through (—a, /1 — a?) and (1,0) has slope —+/1 — a2/(14a) andisy = —

The point at * = a on this line has

y=-Y=C 0

1+a

_ V1—a?

14+a

(1-a).



Therefore the point on the cissoid satisfies

o_(1-2)(1-2%)  (1-a)®
YT T M xae?2 T 1+a

So the equation of the cissoid as an affine variety is (1 + x)y? = (1 — z)3.

(b) Since the “interesting” point on the cissoid is (1,0), we’ll parametrize the cissoid by the
slopes of lines through (1,0). So assume y = m(z — 1). Then (1 + x)m?(z — 1)? = (1 — )3, i.e.,

(1 +z)m? =1 — z. Solving for z gives first (m? + 1)z = 1 —m?, so

1—m?
rT=—m-.
m2 + 1

And since y = m(x — 1), we get

B (1—m?) +(m?>+1)\ —2m?
y=m m2 +1 S om2 41

4. Let R be a commutative ring, and suppose P is a prime ideal of R. Prove that if P contains no
zero-divisors then R is an integral domain.

Suppose zy = 0 in R with x # 0. Since 0 € P we must have either x € P or y € P. But P
contains no zero divisors, so if z € P then we must have y = 0, and if x ¢ P then we must have
y € P and again y = 0. Since z and y were arbitrary, R must be an integral domain.

5. Suppose n > 2 is a composite number. We are going to find a criterion for n to be a Carmichael
number as follows:

(a) Show that the condition a™ = a (mod n) for all @ € Z implies the Carmichael condition
a" ! =1 (mod n) for all a € Z satisfying ged(a,n) = 1.

We already know from class that a Carmichael number n must have a prime factorization of the
form n = pypy - pr where k = 3, p; is odd for all 4, and p; # p; for i # j (i.e., n is square-free).
Now, suppose we have that n is odd, composite, square-free and p — 1 | n — 1 for all primes p that
divide n, and let a € Z.

(b) Explain why, if ged(a, p;) = 1, then a™ = a (mod p;) (you’ll need Fermat’s little theorem and
good old corollary 2).

n

(¢) Now explain why, if ged(a,p1) # 1 (so that we’d necessarily have p; | a), then a
0 (mod p;).

= a4 =

(d) Explain why (b) and (c) together imply a™ = a (mod n).

Putting this all together, we have that a number n that is a product of at least three distinct
primes n = p; - - - pg such that p; —1 | n — 1 for all ¢ must be a Carmichael number. It is true (but
requires a fact we don’t yet have a proof for, namely that the multiplicative group (Z/{p))* is a
cyclic group) that all Carmichael numbers satisfy this condition. This gives a more efficient way to



search for Carmichael numbers than trying all the numbers less than n satisfying ged(a,n) = 1 to

make sure they satisfy a” ! =1 (mod n). As an extra-credit assignment over the weekend, write a
computer program that takes as input a list of all the prime numbers between 1000 and 3000, say,

and uses this criterion to search for Carmichael numbers greater than a million.

(a) Since ged(a,n) = 1, there are A and p such that Aa + pun = 1. But then 1 — Aa = pn, so
Aa =1 (mod n). Multiply both sides of a” = a (mod n) by A and get Aaa"~! = A\a (mod n), and
so a” ! =1 (mod n).

(b) If ged(a, p;) = 1 then a1 =1 (mod p;) by Fermat’s little theorem. Since p; —1 | n—1, we
have n — 1 = k;(p; — 1). Therefore

a" "t = gFPim) = (gPimHE = 18 =1 (mod py).

(c) If ged(a,p;) # 1, then p; | a since p; is prime, and so a = 0 (mod p;). And so a™ =0
a (mod p;).

(d) Since p; | a™ —a for all i, we have (p1 - - - p) (mod a)" —a by repeated application of Corollary
2. In other words, n | a™ — a.



