## MATH 371 - Midterm I - October 3, 2013

1. (a) Use the Euclidean algorithm to find the greatest common divisor of 312 and 252 , and two integers $\lambda$ and $\mu$ satisfying $312 \lambda+252 \mu=\operatorname{gcd}(312,252)$.
(b) Find a polynomial $p(x) \in \mathbb{R}[x]$ such that $\langle p\rangle=\left\langle x^{4}-3 x^{3}-x+3, x^{3}-2 x^{2}-5 x+6\right\rangle \subset \mathbb{R}[x]$, and prove that the two ideals are equal.
(a)

| $i$ | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $r_{i}$ | 312 | 252 | 60 | 12 | 0 |
| $q_{i}$ | - | - | 1 | 4 | 5 |
| $\lambda_{i}$ | 1 | 0 | 1 | -4 | - |
| $\mu_{i}$ | 0 | 1 | -1 | 5 | - |

Therefore $\operatorname{gcd}(312,252)=12$ and $-4 \cdot 312+5 \cdot 252=12$.
(b)

| $i$ | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| $r_{i}$ | $x^{4}-3 x^{3}-x+3$ | $x^{3}-2 x^{2}-5 x+6$ | $3 x^{2}-12 x+9$ | 0 |
| $q_{i}$ | - | - | $x-1$ | $\frac{1}{3} x+\frac{2}{3}$ |
| $\lambda_{i}$ | 1 | 0 | 1 | - |
| $\mu_{i}$ | 0 | 1 | $-x+1$ | - |

Therefore $\operatorname{gcd}\left(x^{4}-3 x^{3}-x+3, x^{3}-2 x^{2}-5 x+6\right)=3 x^{2}-12 x+9$ and $3 x^{2}-12 x+9=1 \cdot\left(x^{4}-\right.$ $\left.3 x^{3}-x+3\right)+(-x+1) \cdot\left(x^{3}-2 x^{2}-5 x+6\right)$.

Let $I=\left\langle x^{4}-3 x^{3}-x+3, x^{3}-2 x^{2}-5 x+6\right\rangle$. Then $I=\langle p\rangle$, where $p=3 x^{2}-12 x+9$. We have $x^{4}-3 x^{3}-x+3=\frac{1}{3}\left(x^{2}+x+1\right)\left(3 x^{2}-12 x+9\right)$ and $x^{3}-2 x^{2}-5 x+6=\frac{1}{3}(x+2)\left(3 x^{2}-12 x+9\right.$. Thus both generators of $I$ are divisible by $p$, therefore $I \subset\langle p\rangle$. And from our gcd expression we have that $p \in I$, therefore $\langle p\rangle \subset I$. Putting these two inclusions together gives $I=\langle p\rangle$.
2. Let $I$ and $J$ be ideals in the commutative ring $R$, with the property that $I+J=R$.
(a) Prove that $I J=I \cap J$ (recall that $I J$ is the ideal generated by products of the form $x y$, with $x \in I$ and $y \in J$.
(b) Generalize the Chinese Remainder Theorem to this context: Prove that there is an isomorphism

$$
\varphi: R /(I \cap J) \rightarrow R / I \times R / J
$$

(c) Give an example of a ring $R$ and ideals $I$ and $J$ of $R$ satisfying $I J \neq I \cap J$.
(a) Suppose $x \in I J$, then $x=\sum_{i=1}^{n} p_{i} q_{i}$ where $p_{i} \in I$ and $q_{i} \in J$ for all $i$. But we have $p_{i} q_{i} \in I$ (because $I$ is an ideal and $p_{i} \in I$ ), and likewise we have $p_{i} q_{i} \in J$. Therefore $I J \subset I \cap J$.

Now suppose $x \in I \cap J$. Since $I+J=R$, we have $1 \in I+J$, therefore there is $a \in I$ and $b \in J$ such that $a+b=1$. Therefore $x=(a+b) x \in I J$ since $a x \in I J$ and $x b \in I J$ (since $x$ is in both $I$ and $J, a \in I$ and $b \in J)$. Therefore $I \cap J \subset I J$. Putting the two inclusions together gives $I \cap J=I J$.
(b) We'll find a surjective homomorphism $\bar{\varphi}$ from $R$ to $R / I \times R / J$ with kernel $I \cap J$, and then the first isomorphism theorem (that the image of $\bar{\varphi}$ is isomorphic to $R / \operatorname{ker} \varphi$ ) will imply that $\varphi$ is an isomorphism. The map $\bar{\varphi}$ will send $x \in R$ to the pair $\left([x]_{I},[x]_{J}\right)$, where $[x]_{I}$ is the coset of $I$ containing $x$ and $[x]_{J}$ is the coset of $J$ containing $x$. This is clearly a ring homomorphism (by the standard properties of cosets of ideals), and the kernel of $R$ consists of all elements $x$ with $[x]_{I}=I$ and $[x]_{J}=J$, so $x \in I \cap J$. This is just what we needed to complete the proof.
(c) Let $R=\mathbb{Z}$, and let $I=\langle 24\rangle$ and $J=\langle 20\rangle$. Any element in $I J$ must be a multiple of 480, so $I J=\langle 480\rangle$. But $I \cap J=\langle 120\rangle$.
3. The cissoid of Diocles is an affine plane curve in $\mathbb{R}^{2}$. Diocles (around 180 B.c.) described the cissoid in a way that amounts to the following: Begin with the unit circle centered at the origin. For each $a$ between -1 and 1 , consider the line $L$ that connects the point $(1,0)$ to the point $\left(-a, \pm \sqrt{1-a^{2}}\right.$ ) on the unit circle (note the $\left.-a\right)$. The point on $L$ with $x$-coordinate $a$ is a point on the cissoid, and the cissoid is the locus of all such points:

(a) Prove that the cissoid is an affine variety by finding its equation in $x$ and $y$.
(b) Prove that the cissoid is a rational affine variety by finding a rational parametrization of it.
(a) The line through $\left(-a, \sqrt{1-a^{2}}\right)$ and $(1,0)$ has slope $-\sqrt{1-a^{2}} /(1+a)$ and is $y=-\frac{\sqrt{1-a^{2}}}{(1+a)}(x-1)$.

The point at $x=a$ on this line has

$$
y=-\frac{\sqrt{1-a^{2}}}{1+a}(a-1)=\frac{\sqrt{1-a^{2}}}{1+a}(1-a)
$$

Therefore the point on the cissoid satisfies

$$
y^{2}=\frac{\left(1-x^{2}\right)\left(1-x^{2}\right)}{(1+a)^{2}}=\frac{(1-a)^{3}}{1+a}
$$

So the equation of the cissoid as an affine variety is $(1+x) y^{2}=(1-x)^{3}$.
(b) Since the "interesting" point on the cissoid is $(1,0)$, we'll parametrize the cissoid by the slopes of lines through $(1,0)$. So assume $y=m(x-1)$. Then $(1+x) m^{2}(x-1)^{2}=(1-x)^{3}$, i.e., $(1+x) m^{2}=1-x$. Solving for $x$ gives first $\left(m^{2}+1\right) x=1-m^{2}$, so

$$
x=\frac{1-m^{2}}{m^{2}+1} .
$$

And since $y=m(x-1)$, we get

$$
y=m\left(\frac{\left(1-m^{2}\right)+\left(m^{2}+1\right)}{m^{2}+1}\right)=\frac{-2 m^{3}}{m^{2}+1}
$$

4. Let $R$ be a commutative ring, and suppose $P$ is a prime ideal of $R$. Prove that if $P$ contains no zero-divisors then $R$ is an integral domain.

Suppose $x y=0$ in $R$ with $x \neq 0$. Since $0 \in P$ we must have either $x \in P$ or $y \in P$. But $P$ contains no zero divisors, so if $x \in P$ then we must have $y=0$, and if $x \notin P$ then we must have $y \in P$ and again $y=0$. Since $x$ and $y$ were arbitrary, $R$ must be an integral domain.
5. Suppose $n>2$ is a composite number. We are going to find a criterion for $n$ to be a Carmichael number as follows:
(a) Show that the condition $a^{n} \equiv a(\bmod n)$ for all $a \in \mathbb{Z}$ implies the Carmichael condition $a^{n-1} \equiv 1(\bmod n)$ for all $a \in \mathbb{Z}$ satisfying $\operatorname{gcd}(a, n)=1$.

We already know from class that a Carmichael number $n$ must have a prime factorization of the form $n=p_{1} p_{2} \cdots p_{k}$ where $k \geqslant 3, p_{i}$ is odd for all $i$, and $p_{i} \neq p_{j}$ for $i \neq j$ (i.e., $n$ is square-free). Now, suppose we have that $n$ is odd, composite, square-free and $p-1 \mid n-1$ for all primes $p$ that divide $n$, and let $a \in \mathbb{Z}$.
(b) Explain why, if $\operatorname{gcd}\left(a, p_{i}\right)=1$, then $a^{n} \equiv a\left(\bmod p_{i}\right)$ (you'll need Fermat's little theorem and good old corollary 2).
(c) Now explain why, if $\operatorname{gcd}\left(a, p_{1}\right) \neq 1$ (so that we'd necessarily have $p_{i} \mid a$ ), then $a^{n} \equiv a \equiv$ $0\left(\bmod p_{i}\right)$.
(d) Explain why (b) and (c) together imply $a^{n} \equiv a(\bmod n)$.

Putting this all together, we have that a number $n$ that is a product of at least three distinct primes $n=p_{1} \cdots p_{k}$ such that $p_{i}-1 \mid n-1$ for all $i$ must be a Carmichael number. It is true (but requires a fact we don't yet have a proof for, namely that the multiplicative group $(\mathbb{Z} /\langle p\rangle)^{*}$ is a cyclic group) that all Carmichael numbers satisfy this condition. This gives a more efficient way to
search for Carmichael numbers than trying all the numbers less than $n$ satisfying $\operatorname{gcd}(a, n)=1$ to make sure they satisfy $\boldsymbol{a}^{n-1} \equiv 1(\bmod n)$. As an extra-credit assignment over the weekend, write a computer program that takes as input a list of all the prime numbers between 1000 and 3000, say, and uses this criterion to search for Carmichael numbers greater than a million.
(a) Since $\operatorname{gcd}(a, n)=1$, there are $\lambda$ and $\mu$ such that $\lambda a+\mu n=1$. But then $1-\lambda a=\mu n$, so $\lambda a \equiv 1(\bmod n)$. Multiply both sides of $a^{n} \equiv a(\bmod n)$ by $\lambda$ and get $\lambda a a^{n-1} \equiv \lambda a(\bmod n)$, and so $a^{n-1} \equiv 1(\bmod n)$.
(b) If $\operatorname{gcd}\left(a, p_{i}\right)=1$ then $a^{p_{i}-1} \equiv 1\left(\bmod p_{i}\right)$ by Fermat's little theorem. Since $p_{i}-1 \mid n-1$, we have $n-1=k_{i}\left(p_{i}-1\right)$. Therefore

$$
a^{n-1}=a^{k_{i}\left(p_{i}-1\right)}=\left(a^{p_{i}-1}\right)^{k} \equiv 1^{k} \equiv 1\left(\bmod p_{i}\right)
$$

(c) If $\operatorname{gcd}\left(a, p_{i}\right) \neq 1$, then $p_{i} \mid a$ since $p_{i}$ is prime, and so $a \equiv 0\left(\bmod p_{i}\right)$. And so $a^{n} \equiv 0 \equiv$ $a\left(\bmod p_{i}\right)$.
(d) Since $p_{i} \mid a^{n}-a$ for all $i$, we have $\left(p_{1} \cdots p_{k}\right)(\bmod a)^{n}-a$ by repeated application of Corollary 2. In other words, $n \mid a^{n}-a$.

