
MATH 371 – Midterm I – October 3, 2013

1. (a) Use the Euclidean algorithm to find the greatest common divisor of 312 and 252, and two

integers λ and µ satisfying 312λ� 252µ � gcdp312, 252q.

(b) Find a polynomial ppxq P Rrxs such that xpy � xx4� 3x3�x� 3 , x3� 2x2� 5x� 6y � Rrxs,
and prove that the two ideals are equal.

(a)

i �1 0 1 2 3
ri 312 252 60 12 0
qi � � 1 4 5
λi 1 0 1 �4 �
µi 0 1 �1 5 �

Therefore gcdp312, 252q � 12 and �4 � 312 � 5 � 252 � 12.

(b)

i �1 0 1 2
ri x4 � 3x3 � x� 3 x3 � 2x2 � 5x� 6 3x2 � 12x� 9 0
qi � � x� 1 1

3x� 2
3

λi 1 0 1 �
µi 0 1 �x� 1 �

Therefore gcdpx4 � 3x3 � x� 3 , x3 � 2x2 � 5x� 6q � 3x2 � 12x� 9 and 3x2 � 12x� 9 � 1 � px4 �
3x3 � x� 3q � p�x� 1q � px3 � 2x2 � 5x� 6q.

Let I � xx4� 3x3� x� 3 , x3� 2x2� 5x� 6y. Then I � xpy, where p � 3x2� 12x� 9. We have

x4 � 3x3 � x� 3 � 1
3 px2 � x� 1qp3x2 � 12x� 9q and x3 � 2x2 � 5x� 6 � 1

3 px� 2qp3x2 � 12x� 9.

Thus both generators of I are divisible by p, therefore I � xpy. And from our gcd expression we

have that p P I, therefore xpy � I. Putting these two inclusions together gives I � xpy.

2. Let I and J be ideals in the the commutative ring R, with the property that I � J � R.

(a) Prove that IJ � I XJ (recall that IJ is the ideal generated by products of the form xy, with

x P I and y P J .

(b) Generalize the Chinese Remainder Theorem to this context: Prove that there is an isomor-

phism

ϕ : R{pI X Jq Ñ R{I �R{J.

(c) Give an example of a ring R and ideals I and J of R satisfying IJ � I X J .

(a) Suppose x P IJ , then x � °n
i�1 piqi where pi P I and qi P J for all i. But we have piqi P I

(because I is an ideal and pi P I), and likewise we have piqi P J . Therefore IJ � I X J .

Now suppose x P I X J . Since I � J � R, we have 1 P I � J , therefore there is a P I and b P J
such that a� b � 1. Therefore x � pa� bqx P IJ since ax P IJ and xb P IJ (since x is in both I and

J , a P I and b P J). Therefore I X J � IJ . Putting the two inclusions together gives I X J � IJ .
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(b) We’ll find a surjective homomorphism ϕ from R to R{I � R{J with kernel I X J , and then

the first isomorphism theorem (that the image of ϕ is isomorphic to R{ kerϕ) will imply that ϕ is

an isomorphism. The map ϕ will send x P R to the pair prxsI , rxsJq, where rxsI is the coset of I

containing x and rxsJ is the coset of J containing x. This is clearly a ring homomorphism (by the

standard properties of cosets of ideals), and the kernel of R consists of all elements x with rxsI � I

and rxsJ � J , so x P I X J . This is just what we needed to complete the proof.

(c) Let R � Z, and let I � x24y and J � x20y. Any element in IJ must be a multiple of 480, so

IJ � x480y. But I X J � x120y.

3. The cissoid of Diocles is an affine plane curve in R2. Diocles (around 180 b.c.) described

the cissoid in a way that amounts to the following: Begin with the unit circle centered at the

origin. For each a between �1 and 1, consider the line L that connects the point p1, 0q to the point

p�a,�?1 � a2q on the unit circle (note the �a). The point on L with x-coordinate a is a point on

the cissoid, and the cissoid is the locus of all such points:

(a) Prove that the cissoid is an affine variety by finding its equation in x and y.

(b) Prove that the cissoid is a rational affine variety by finding a rational parametrization of it.

(a) The line through p�a,?1 � a2q and p1, 0q has slope �?1 � a2{p1�aq and is y � �
?

1 � a2

p1 � aq px� 1q.
The point at x � a on this line has

y � �
?

1 � a2

1 � a
pa� 1q �

?
1 � a2

1 � a
p1 � aq.
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Therefore the point on the cissoid satisfies

y2 � p1 � x2qp1 � x2q
p1 � aq2 � p1 � aq3

1 � a
.

So the equation of the cissoid as an affine variety is p1 � xqy2 � p1 � xq3.

(b) Since the “interesting” point on the cissoid is p1, 0q, we’ll parametrize the cissoid by the

slopes of lines through p1, 0q. So assume y � mpx � 1q. Then p1 � xqm2px � 1q2 � p1 � xq3, i.e.,

p1 � xqm2 � 1 � x. Solving for x gives first pm2 � 1qx � 1 �m2, so

x � 1 �m2

m2 � 1
.

And since y � mpx� 1q, we get

y � m

� p1 �m2q � pm2 � 1q
m2 � 1



� �2m3

m2 � 1
.

4. Let R be a commutative ring, and suppose P is a prime ideal of R. Prove that if P contains no

zero-divisors then R is an integral domain.

Suppose xy � 0 in R with x � 0. Since 0 P P we must have either x P P or y P P . But P

contains no zero divisors, so if x P P then we must have y � 0, and if x R P then we must have

y P P and again y � 0. Since x and y were arbitrary, R must be an integral domain.

5. Suppose n ¡ 2 is a composite number. We are going to find a criterion for n to be a Carmichael

number as follows:

(a) Show that the condition an � a pmod nq for all a P Z implies the Carmichael condition

an�1 � 1 pmod nq for all a P Z satisfying gcdpa, nq � 1.

We already know from class that a Carmichael number n must have a prime factorization of the

form n � p1p2 � � � pk where k ¥ 3, pi is odd for all i, and pi � pj for i � j (i.e., n is square-free).

Now, suppose we have that n is odd, composite, square-free and p� 1 | n� 1 for all primes p that

divide n, and let a P Z.

(b) Explain why, if gcdpa, piq � 1, then an � a pmod piq (you’ll need Fermat’s little theorem and

good old corollary 2).

(c) Now explain why, if gcdpa, p1q � 1 (so that we’d necessarily have pi | a), then an � a �
0 pmod piq.

(d) Explain why (b) and (c) together imply an � a pmod nq.

Putting this all together, we have that a number n that is a product of at least three distinct

primes n � p1 � � � pk such that pi � 1 | n� 1 for all i must be a Carmichael number. It is true (but

requires a fact we don’t yet have a proof for, namely that the multiplicative group pZ{xpyq� is a

cyclic group) that all Carmichael numbers satisfy this condition. This gives a more efficient way to
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search for Carmichael numbers than trying all the numbers less than n satisfying gcdpa, nq � 1 to

make sure they satisfy an�1 � 1 pmod nq. As an extra-credit assignment over the weekend, write a

computer program that takes as input a list of all the prime numbers between 1000 and 3000, say,

and uses this criterion to search for Carmichael numbers greater than a million.

(a) Since gcdpa, nq � 1, there are λ and µ such that λa � µn � 1. But then 1 � λa � µn, so

λa � 1 pmod nq. Multiply both sides of an � a pmod nq by λ and get λaan�1 � λa pmod nq, and

so an�1 � 1 pmod nq.

(b) If gcdpa, piq � 1 then api�1 � 1 pmod piq by Fermat’s little theorem. Since pi � 1 | n� 1, we

have n� 1 � kippi � 1q. Therefore

an�1 � akippi�1q � papi�1qk � 1k � 1 pmod piq .

(c) If gcdpa, piq � 1, then pi | a since pi is prime, and so a � 0 pmod piq. And so an � 0 �
a pmod piq.

(d) Since pi | an�a for all i, we have pp1 � � � pkq pmod aqn�a by repeated application of Corollary

2. In other words, n | an � a.


