MATH 371 - Midterm II - November 14, 2013

1. (a) Calculate the irreducible factorization of the polynomial $x^{7}-1 \in \mathbb{F}_{2}[x]$.
(b) Is the ring $\mathbb{F}_{2}[x] /\left\langle x^{7}-1\right\rangle$ a field? Is it an integral domain?
(c) What about the ring $\mathbb{F}_{2}[x] /\langle p(x)\rangle$ where $p(x)=\left(x^{7}-1\right) /(x-1)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$?
(a) Let $f(x)=x^{7}-1$. Since $x f(x)=x^{8}-x=x^{2^{3}}-x$, we have that $x f(x)$ is the product of all the monic irreducible polynomials of degrees 1 and 3 . In $\mathbb{F}_{2}[x]$ the monic irreducible polynomials of degree 1 are x and $x+1$, and the monic irreducible polynomials of degree 3 (which are the ones for which neither 0 nor 1 is a root) are $x^{3}+x^{2}+1$ and $x^{3}+x+1$. Therefore

$$
x^{7}-1=(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)
$$

is the irreducible factorization.
(b) The ring $R=\mathbb{F}_{2}[x] /\langle p(x)\rangle$ has basis $\left\{1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right\}$ as a vector space over \mathbb{F}_{2}, where $\alpha=[x] \in R$. But from the factorization in part (a), we have that in $R,(\alpha+1)\left(\alpha^{3}+\alpha^{2}+1\right)\left(\alpha^{3}+\right.$ $\alpha+1)=0$, so that R is neither a field nor an integral domain.
(c) Since $p(x)=\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)$ is not irreducible, the ring $\mathbb{F}_{2}[x] /\langle p(x)\rangle$ is neither a field nor an integral domain for the same reason as (b).
2. For any prime $p>5$, calculate the Legendre symbol $\left(\frac{5}{p}\right)$. (Quadratic reciprocity might come in handy.) Is 5 a square $\bmod 157$?

Since $5 \equiv 1(\bmod 4)$, we have $\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)$, and in this symbol we can replace p by its (necessarily nonzero) remainder (since p is prime) mod 5. Thus:

$$
\left(\frac{5}{p}\right)=\left\{\begin{array}{ccc}
1 & \text { if } & p \equiv \pm 1(\bmod 5) \\
-1 & \text { if } & p \equiv \pm 2(\bmod 5)
\end{array}\right.
$$

because only 0 and ± 1 are squares $\bmod 5$. Since $157 \equiv 2(\bmod 5)$, we have that 5 is not a square $\bmod 157$.
3. If we use the graded lexicographic order with $x>y>z$, is $\left\{x^{4} y^{2}-z^{5}, x^{3} y^{3}-1, x^{2} y^{4}-2 z\right\}$ a Gröbner basis for the ideal generated by these polynomials? Why or why not?

Let $f(x, y, z)=x^{4} y^{2}-z^{5}, g(x, y, z)=x^{3} y^{3}-1$ and $h(x, y, z)=x^{2} y^{4}-2 z$. Since $y f-x g=-y z^{5}+x$ and since the leading term of this with respect to grlex order, namely $y z^{5}$, is not in the ideal $\left\langle x^{4} y^{2}, x^{3} y^{3}, x^{2} y^{4}\right\rangle$ generated by the leading terms of f, g and h (since every polynomial in that ideal is divisible by x^{2}), the given polynomials do not comprise a Gröbner basis for the ideal they generate.
4. Let $f_{1}, f_{2}, f_{3}, \ldots \in k\left[x_{1}, \ldots, x_{n}\right]$ be an infinite collection of polynomials, and let $I=\left\langle f_{1}, f_{2}, f_{3}, \ldots\right\rangle$ be the ideal they generate. Prove that there is an integer N such that $I=\left\langle f_{1}, f_{2}, \ldots, f_{N}\right\rangle$.

We know that I is finitely generated, so there is a finite set of polynomials $g_{1}, g_{2}, \ldots, g_{r}$ so that for any $p \in I$ we have a set of polynomials $b_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$ for $i=1, \ldots, r$ such that $p=\sum_{i=1}^{r} b_{i} g_{i}$. Now for each $i=1, \ldots, r$ there is a finite set of polynomials $a_{i j} \in k\left[x_{1}, \ldots, x_{n}\right]$ for $j=1, \ldots, N_{i}$ such that $g_{i}=\sum_{j=1}^{N_{i}} a_{i j} f_{j}$. So we can take $N=\max _{i}\left(N_{i}\right)$ and by substituting this last sum for g_{i} in the previous one, we can express any polynomial $p \in I$ in terms of f_{1}, \ldots, f_{N}, so $I=\left\langle f_{1}, \ldots, f_{N}\right\rangle$.
5. Factor completely the cyclotomic polynomial $\Phi_{p}(x) \in \mathbb{F}_{p}[x]$. (Surprise!)

We know that $\Phi_{p}(x)=\left(x^{p}-1\right) /(x-1)$. But $x^{p}-1=x^{p}-1^{p}=(x-1)^{p}$ by the "freshman dream". so we have $\Phi_{p}(x)=(x-1)^{p-1}$. That's it.
6. Let F be a field and K an extension field of F. An element $\alpha \in K$ is called algebraic over F if α is a root of some polynomial $f(x) \in F[x]$.
(a) If $\alpha \in K$ is algebraic over F, show that there is a monic, irreducible polynomial $m(x) \in F[x]$ of which α is a root. (Consider the polynomial of smallest degree for which α is a root.)
(b) Show that if $f(x) \in F[x]$ is any polynomial such that $f(\alpha)=0$, then $m(x)$ divides $f(x)$ in $F[x]$. (Use the division algorithm.)
(c) Show that, given α there is only one monic, irreducible polynomial $m(x) \in F[x]$ such that $m(\alpha)=0$.
(a) By definition, the set of polynomials $S=\{p(x) \in F[x] \mid p \neq 0$ and $p(\alpha)=0\}$ is non-empty. So the set of degrees of such polynomials is a non-empty set of non-negative numbers, which has a smallest element d. Let $p(x)$ be an element of S of this smallest degree d. By dividing p by its leading coefficient c we can arrange for $m(x)=p(x) / c$ to be monic. Now we have to show that $m(x)$ is irreducible. But if $m(x)$ were reducible, it would be the product of two polynomials $q(x), r(x) \in F[x]$ both of degree strictly less than d. Moreover, we'll have $q(\alpha) r(\alpha)=m(\alpha)=0$, so one of $q(\alpha)$ or $r(\alpha)$ is zero, which would contradict the minimality of the degree d. Thus m is a monic, irreducible polynomial of which α is a root.
(b) Let $f(x)$ be a polynomial having α as a root. Using the division algorithm, write $f(x)=$ $q(x) m(x)+r(x)$, where either r is the zero polynomial or else the degree of r is less than the degree of $m(x)$. Evaluating both sides at $x=\alpha$ gives the equation $f(\alpha)=q(\alpha) m(\alpha)+r(\alpha)$ or $0=0+r(\alpha)$, so $r(\alpha)=0$. If r were not the zero polynomial we would contradict the minimality of the degree of m. So $r=0$ and so m divides f.
(c) If there were another such polynomial, say $m^{\prime}(x)$, then by part (b) we would have $m \mid m^{\prime}$ and $m^{\prime} \mid m$, which would imply m^{\prime} is a constant multiple of m. But since both are monic, they must be equal.

