MATH 371 - Homework assignment 1 - August 29, 2013

1. Prove that if a subset $S \subset \mathbb{Z}$ has a smallest element then it is unique (in other words, if x is a smallest element of S and y is also a smallest element of S then x = y).

- **2**. Calculate the remainder of 2^{500} after division by 341 by hand (use repeated squaring).
- **3.** Let r be an integer greater than 1. An r-adic expansion of a number $x \in \mathbb{N}$ is an expression

$$x = a_0 + a_1 r + a_2 r^2 + \dots + a_k x^k$$

where $k \in \mathbb{N}$, $a_i \in \mathbb{N}$ for all $0 \leq i \leq k$ and $0 \leq a_i < r$ for all $0 \leq i \leq k$. For instance, the 10-adic expansion of 5129 is

$$5129 = 9 + 2 \cdot 10^1 + 1 \cdot 10^2 + 5 \cdot 10^3$$

and the 8-adic expansion of 156 is

$$156 = 4 + 3 \cdot 8^1 + 2 \cdot 8^2.$$

(a) Compute the 7-adic expansion of 130.

(b) Prove that every $x \in \mathbb{N}$ (with x > 0) can be written as $x = ar^k + b$, where $0 \leq a < r$, $0 \leq b < r^k$ and $k = \max\{i \in \mathbb{N} \mid r^i \leq x\}$.

(c) Use (b) to prove (by induction?) that every natural number has a unique r-adic expansion.

4. Let the 10-adic expansion of x be

$$x = a_0 + a_1 10 + a_2 10^2 + \dots + a_k 10^k$$

(where $0 \leq a_i < 10$ for all *i*).

- (a) Prove that 2|x if and only if $2|a_0$.
- (b) Prove that 4|x if and only if $4|(a_0 + 2a_1)$.
- (c) Prove that 8|x if and only if $8|(a_0 + 2a_1 + 4a_2)$.
- (e) Prove that 5|x if and only if $5|a_0$.
- (f) Prove that 3|x if and only if $3|(a_0 + a_1 + \cdots + a_k)$.
- (g) Prove that 9|x if and only if $9|(a_0 + a_1 + \cdots + a_k)$.
- (h) Prove that 11|x if and only if $11|(a_0 a_1 + a_2 \cdots)$.
- (i) What is the rule for divisibility by 7?
- 5. Find $a, b \in \mathbb{Z}$ such that 89a + 55b = 1, and use this to find all solutions $x \in \mathbb{Z}$ to

$$89x \equiv 17 \pmod{55}.$$

6 (a) Suppose aM + bN = d, where $a, b, M, N \in \mathbb{Z}$ and N > 0. Prove that you can find $a', b' \in \mathbb{Z}$ such that a'M + b'N = d and $0 \leq a' < N$.

(b) Let $m, n \in \mathbb{Z}$ and suppose there exist $a, b \in \mathbb{Z}$ such that am + bn = 1. Prove that m and n are relatively prime.

 $\mathbf{2}$

7. Define the sequence Fibonacci numbers as follows: $F_0 = F_1 = 1$ and for n > 1, $F_n = F_{n-1} + F_{n-2}$. So the beginning of the sequence is $1, 1, 2, 3, 5, 8, 13, 21, \ldots$ From the beginning of the sequence it appears that $gcd(F_n, F_{n-1}) = 1$ for all $n \ge 1$. Either prove this or explain why it is not true.

8. Solve the system:

 $x \equiv 19 \pmod{504}$ $x \equiv -6 \pmod{35}$ $x \equiv 37 \pmod{16}$

That is, find *all* numbers x that satisfy all three congruences.

9 (a) Let p > 3 be a prime number. Prove that for every $a \in \mathbb{N}$ such that 1 < a < p - 1, there is a unique $b \in \mathbb{N}$ such that 1 < b < p - 1, $b \neq a$, and $ab \equiv 1 \pmod{p}$.

(b) Let p be a prime number. Prove that $(p-1)! \equiv -1 \pmod{p}$ (Hint: pair things up and apply part (a)). (This is called *Wilson's theorem.*)

(c) Is the converse of Wilson's theorem true? That is, if $n \ge 2$ and $(n-1)! \equiv -1 \pmod{n}$, is n necessarily a prime number? (Proof or counterexample — think about this first, and try to do it without resorting to the Internet).

10 (a) Let p be a prime number. Prove that

$$p \mid \binom{p}{i}$$
 for $1 \leq i \leq p-1$.

(b) Prove that

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

for integers a, b and a prime number p.

(c) Suppose

$$n \mid \binom{n}{i}$$
 for $1 \le i \le n-1$.

Does this imply that n is a prime number?