MATH 371 - Homework assignment 1 - August 29, 2013

1. Prove that if a subset $S \subset \mathbb{Z}$ has a smallest element then it is unique (in other words, if x is a smallest element of S and y is also a smallest element of S then $x=y$).
2. Calculate the remainder of 2^{500} after division by 341 by hand (use repeated squaring).
3. Let r be an integer greater than 1. An r-adic expansion of a number $x \in \mathbb{N}$ is an expression

$$
x=a_{0}+a_{1} r+a_{2} r^{2}+\cdots+a_{k} x^{k}
$$

where $k \in \mathbb{N}, a_{i} \in \mathbb{N}$ for all $0 \leqslant i \leqslant k$ and $0 \leqslant a_{i}<r$ for all $0 \leqslant i \leqslant k$. For instance, the 10-adic expansion of 5129 is

$$
5129=9+2 \cdot 10^{1}+1 \cdot 10^{2}+5 \cdot 10^{3}
$$

and the 8 -adic expansion of 156 is

$$
156=4+3 \cdot 8^{1}+2 \cdot 8^{2}
$$

(a) Compute the 7 -adic expansion of 130 .
(b) Prove that every $x \in \mathbb{N}$ (with $x>0$) can be written as $x=a r^{k}+b$, where $0 \leqslant a<r$, $0 \leqslant b<r^{k}$ and $k=\max \left\{i \in \mathbb{N} \mid r^{i} \leqslant x\right\}$.
(c) Use (b) to prove (by induction?) that every natural number has a unique r-adic expansion.
4. Let the 10 -adic expansion of x be

$$
x=a_{0}+a_{1} 10+a_{2} 10^{2}+\cdots+a_{k} 10^{k}
$$

(where $0 \leqslant a_{i}<10$ for all i).
(a) Prove that $2 \mid x$ if and only if $2 \mid a_{0}$.
(b) Prove that $4 \mid x$ if and only if $4 \mid\left(a_{0}+2 a_{1}\right)$.
(c) Prove that $8 \mid x$ if and only if $8 \mid\left(a_{0}+2 a_{1}+4 a_{2}\right)$.
(e) Prove that $5 \mid x$ if and only if $5 \mid a_{0}$.
(f) Prove that $3 \mid x$ if and only if $3 \mid\left(a_{0}+a_{1}+\cdots+a_{k}\right)$.
(g) Prove that $9 \mid x$ if and only if $9 \mid\left(a_{0}+a_{1}+\cdots+a_{k}\right)$.
(h) Prove that $11 \mid x$ if and only if $11 \mid\left(a_{0}-a_{1}+a_{2}-\cdots\right)$.
(i) What is the rule for divisibility by 7 ?
5. Find $a, b \in \mathbb{Z}$ such that $89 a+55 b=1$, and use this to find all solutions $x \in \mathbb{Z}$ to

$$
89 x \equiv 17(\bmod 55)
$$

6 (a) Suppose $a M+b N=d$, where $a, b, M, N \in \mathbb{Z}$ and $N>0$. Prove that you can find $a^{\prime}, b^{\prime} \in \mathbb{Z}$ such that $a^{\prime} M+b^{\prime} N=d$ and $0 \leqslant a^{\prime}<N$.
(b) Let $m, n \in \mathbb{Z}$ and suppose there exist $a, b \in \mathbb{Z}$ suchs that $a m+b n=1$. Prove that m and n are relatively prime.
7. Define the sequence Fibonacci numbers as follows: $F_{0}=F_{1}=1$ and for $n>1, F_{n}=F_{n-1}+F_{n-2}$. So the beginning of the sequence is $1,1,2,3,5,8,13,21, \ldots$. From the beginning of the sequence it appears that $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)=1$ for all $n \geqslant 1$. Either prove this or explain why it is not true.
8. Solve the system:

$$
\begin{aligned}
& x \equiv 19(\bmod 504) \\
& x \equiv-6(\bmod 35) \\
& x \equiv 37(\bmod 16)
\end{aligned}
$$

That is, find all numbers x that satisfy all three congruences.
9 (a) Let $p>3$ be a prime number. Prove that for every $a \in \mathbb{N}$ such that $1<a<p-1$, there is a unique $b \in \mathbb{N}$ such that $1<b<p-1, b \neq a$, and $a b \equiv 1(\bmod p)$.
(b) Let p be a prime number. Prove that $(p-1)!\equiv-1(\bmod p)$ (Hint: pair things up and apply part (a)). (This is called Wilson's theorem.)
(c) Is the converse of Wilson's theorem true? That is, if $n \geqslant 2$ and $(n-1)!\equiv-1(\bmod n)$, is n necessarily a prime number? (Proof or counterexample - think about this first, and try to do it without resorting to the Internet).

10 (a) Let p be a prime number. Prove that

$$
p \left\lvert\,\binom{ p}{i} \quad\right. \text { for } 1 \leqslant i \leqslant p-1
$$

(b) Prove that

$$
(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p)
$$

for integers a, b and a prime number p.
(c) Suppose

$$
n \left\lvert\,\binom{ n}{i} \quad\right. \text { for } 1 \leqslant i \leqslant n-1
$$

Does this imply that n is a prime number?

