MATH 371 – Homework assignment 1 – August 29, 2013

1. Prove that if a subset $S \subset \mathbb{Z}$ has a smallest element then it is unique (in other words, if x is a smallest element of S and y is also a smallest element of S then x = y).

We know the integers are linearly ordered (so for every pair $x, y \in \mathbb{Z}$ either x < y or y < x or x = y). So suppose x and y are smallest elements of S. We can't have x < y or else y wouldn't be a smallest element, nor can we have y < x or else x wouldn't be a smallest element. Therefore we must have x = y.

2. Calculate the remainder of 2^{500} after division by 341 by hand (use repeated squaring).

First, $500 = 256 + 128 + 64 + 32 + 16 + 4 = 2^8 + 2^7 + 2^6 + 2^5 + 2^4 + 2^2$. So we calculate: $2^1 = 1, 2^2 = 2^{2^1} = 4, 2^4 = 2^{2^2} = 16, 2^8 = 2^{2^3} = 256, 2^{16} = 2^{2^4} = 65536 \equiv 64 \pmod{341},$ $2^{32} = 2^{2^5} \equiv 64^2 \equiv 4096 \equiv 4 \pmod{341}, 2^{2^6} \equiv 4^2 \equiv 16 \pmod{341}, 2^{2^7} \equiv 16^2 \equiv 256 \pmod{341}$ and $2^{2^8} \equiv 256^2 \equiv 64 \pmod{341}$. Therefore

$$2^{500} \equiv 2^{2^8} \cdot 2^{2^7} \cdot 2^{2^6} \cdot 2^{2^5} \cdot 2^{2^4} \cdot 2^{2^2} \equiv 64 \cdot 256 \cdot 16 \cdot 4 \cdot 64 \cdot 16 \pmod{341}$$

We can be clever about calculating this: we already know that $64^2 \equiv 4 \pmod{341}$, $16^2 = 256$ and $256^2 \equiv 64 \pmod{341}$. So we can group the numbers together to get $2^{500} \equiv 16 \cdot 64 \equiv 1024 \equiv 1 \pmod{341}$.

You could simplify the whole calculation by noticing that $341 = 11 \cdot 31$ so we know that $2^{10} \equiv 1 \pmod{11}$ and $2^{30} \equiv 1 \pmod{31}$. Of course, $2^{30} \equiv 1 \pmod{11}$, therefore $2^{30} \equiv 1 \pmod{341}$. Therefore $2^{500} \equiv 2^{480}2^{20} \equiv (2^{30})^{16}2^{20} \equiv 1^{16}2^{20} \equiv 2^{20} \pmod{341}$. But we know that $2^5 = 32 \equiv 1 \pmod{31}$, so $2^{20} \equiv (2^5)^4 \equiv 1 \pmod{31}$; and we already know $2^{20} \equiv (2^{10})^2 \equiv 1 \pmod{11}$, so $2^{500} \equiv 2^{20} \equiv 1 \pmod{341}$.

3. Let r be an integer greater than 1. An r-adic expansion of a number $x \in \mathbb{N}$ is an expression

$$x = a_0 + a_1 r + a_2 r^2 + \dots + a_k x^k$$

where $k \in \mathbb{N}$, $a_i \in \mathbb{N}$ for all $0 \leq i \leq k$ and $0 \leq a_i < r$ for all $0 \leq i \leq k$. For instance, the 10-adic expansion of 5129 is

$$5129 = 9 + 2 \cdot 10^1 + 1 \cdot 10^2 + 5 \cdot 10^3$$

and the 8-adic expansion of 156 is

$$156 = 4 + 3 \cdot 8^1 + 2 \cdot 8^2.$$

(a) Compute the 7-adic expansion of 130.

(b) Prove that every $x \in \mathbb{N}$ (with x > 0) can be written as $x = ar^k + b$, where $0 \leq a < r$, $0 \leq b < r^k$ and $k = \max\{i \in \mathbb{N} \mid r^i \leq x\}$.

- (c) Use (b) to prove (by induction?) that every natural number has a unique r-adic expansion.
- (a) $130 = 2 \cdot 49 + 32 = 2 \cdot 49 + 4 \cdot 7 + 4 = 4 + 4 \cdot 7 + 2 \cdot 7^2$.

(b) Let k be as defined in the problem, and consider the set $S = \{x - ar^k \mid a \in \mathbb{Z} \text{ and } x - ar^k \ge 0\}$. We have $S \subset \mathbb{N} \cup \{0\}$ so S has a smallest element, b. We certainly have $b \ge 0$ by the definition of S and we have $b < r^k$ since otherwise we could subtract r^k from b and find a smaller element of S. The value of a that produces this b has the property that $0 \le a < r$ since $0 \le ar^k < x < r^{k+1} = r(r^k)$.

(c) This time, let $S \subset \mathbb{N}$ be the set of natural numbers that do *not* have *r*-adic expansions. We know $1 \notin S$, so the smallest number in *S* is bigger than 1. If *S* is non-empty, *x* be the smallest number in *S*. We know that *x* is not a power of *r*, since the *r*-adic expansion of r^k is just $1 \cdot r^k$. Since x > 1, we know that there are powers of *r* (i.e., r^k for $k \ge 0$) that are less than *x*. Let r^ℓ be the largest power of *r* less than *x*. We know that the number $x - r^\ell$ has an *r*-adic expansion, say $x - r^\ell = a_0 + a_1r + a_2r^2 + \cdots + a_\ell r^\ell$ (where possibly $a_\ell = 0$, but definitely $a_\ell < r - 1$ because *x* was the smallest number that didn't. But then we'll have

$$x = a_0 + a_1 r + a_2 r^2 + \dots + (a_\ell + 1) r^\ell,$$

so x has an r-adic expansion. Therefore S is empty and every natural number has an r-adic expansion.

4. Let the 10-adic expansion of x be

$$x = a_0 + a_1 10 + a_2 10^2 + \dots + a_k 10^k$$

(where $0 \leq a_i < 10$ for all *i*).

(a) Prove that 2|x if and only if $2|a_0$.

- (b) Prove that 4|x if and only if $4|(a_0 + 2a_1)$.
- (c) Prove that 8|x if and only if $8|(a_0 + 2a_1 + 4a_2)$.
- (d) Prove that 5|x if and only if $5|a_0$.
- (e) Prove that 3|x if and only if $3|(a_0 + a_1 + \cdots + a_k)$.
- (f) Prove that 9|x if and only if $9|(a_0 + a_1 + \cdots + a_k)$.
- (g) Prove that 11|x if and only if $11|(a_0 a_1 + a_2 \cdots)$.
- (h) What is the rule for divisibility by 7?

(a) Since $2 \mid 10$, we have $2 \mid a_1 10 + a_2 10^2 + \dots + a_k 10^k$ and so $2 \mid x$ if and only if $2 \mid a_0$.

(b) Likewise $4 \mid 10^2$ so $4 \mid a_2 10^2 + \dots + a_k 10^k$ and so $4 \mid x$ if and only if $4 \mid a_0 + 10a_1$. But $10 \equiv 2 \pmod{4}$ and so $a_0 + 10a_1 \equiv a_0 + 2a_1 \pmod{4}$. Thus $4 \mid x$ if and only if $4 \mid a_0 + 2a_1$.

(c) Likewise 8 | 10³ and so 8 | x if ad only if 8 | $a_0 + 10a_1 + 100a_2$. But $10 \equiv 2 \pmod{8}$ and $100 \equiv 4 \pmod{8}$, so 8 | x if and only if 8 | $a_0 + 2a_1 + 4a_2$.

- (d) Since 5 | 10, we have 5 | $a_1 10 + a_2 10^2 + \cdots + a_k 10^k$ and so 5 | x if and only if 5 | a_0 .
- (e) Since $10 \equiv 1 \pmod{3}$, and so $1 \equiv 100 \equiv 10^3 \equiv 10^4 \equiv 10^k \pmod{3}$ we have

$$x \equiv a_0 + a_1 10 + a_2 10^2 + \dots + a_k 10^k \equiv a_0 + a_1 + \dots + a_k \pmod{3}$$

and so $3 \mid x$ if and only if $3 \mid a_0 + a_1 + \cdots + a_k$.

(f) Likewise $10 \equiv 1 \pmod{9}$, and so $1 \equiv 100 \equiv 10^3 \equiv 10^4 \equiv 10^k \pmod{9}$, and we have

 $x \equiv a_0 + a_1 10 + a_2 10^2 + \dots + a_k 10^k \equiv a_0 + a_1 + \dots + a_k \pmod{9}$

and so $9 \mid x$ if and only if $9 \mid a_0 + a_1 + \cdots + a_k$.

(g) Since $10 \equiv -1 \pmod{11}$, and so $-10 \equiv 100 \equiv -10^3 \equiv 10^4 \equiv (-1)^k 10^k \equiv 1 \pmod{11}$, and we have

$$x \equiv a_0 - a_1 10 + a_2 10^2 + \dots + a_k 10^k \equiv a_0 - a_1 + \dots + (-1)^k a_k \pmod{11}$$

and so 11 | x if and only if 3 | $a_0 - a_1 + \cdots + (-1)^k a_k$.

(h) Since $10 \equiv 3 \pmod{7}$, so $10^2 \equiv 9 \equiv 2 \pmod{7}$, $10^3 \equiv 6 \pmod{7}$, $10^4 \equiv 4 \pmod{7}$, $10^5 equiv5 \pmod{7}$ and $10^6 \equiv 1 \pmod{7}$ and it repeats from there, we have that $7 \mid x$ if and only if

 $7 \mid a_0 + 3a_1 + 2a_2 - a_3 - 3a_4 - 2a_5 + a_6 + 3a_7 + 2a_8 - a_9 - 3a_{10} - 2a_{11} + \cdots$

5. Find $a, b \in \mathbb{Z}$ such that 89a + 55b = 1, and use this to find all solutions $x \in \mathbb{Z}$ to

 $89x \equiv 17 \pmod{55}.$

i	-1	0	1	2	3	4	5	6	7	8	9
r_i	89	55	34	21	13	8	5	3	2	1	0
q_i	—	—	1	1	1	1	1	1	1	1	2
λ_i	1	0	1	-1	2	-3	5	-8	13	-21	—
μ_i	0	1	-1	2	-3	5	-8	13	-21	34	

The result is the next-to-last entry in the r_i row, namely, gcd(89, 55) = 1. We also get that

 $-21 \cdot 89 + 34 \cdot 55 = 1 = \gcd(89, 55).$

To get solutions to $89x \equiv 17 \pmod{55}$ we just multiply by $17 - \text{so } x = -21 \cdot 17 = -357 \equiv 28 \pmod{55}$. So all the solutions of the equation are for the form x = 28 + 55n, for $n \in \mathbb{Z}$.

6 (a) Suppose aM + bN = d, where $a, b, M, N \in \mathbb{Z}$ and N > 0. Prove that you can find $a', b' \in \mathbb{Z}$ such that a'M + b'N = d and $0 \leq a' < N$.

(b) Let $m, n \in \mathbb{Z}$ and suppose there exist $a, b \in \mathbb{Z}$ such that am + bn = 1. Prove that m and n are relatively prime.

(a) For any integer k we will have (a + kN)M + (b - kM)N = d. Now let $S = \{a + kN | k \in \mathbb{Z} \text{ and } a + kN \ge 0\}$. This set has a smallest element, call it k'. It must be that $0 \le a + k'N < N$ or else we'd have $a + (k'-1)N \in S$ and $0 \le a + (k'-1)N < a + k'N$, which would be a contradiction. So a' = a + k'N and b' = b - k'M have the desired properties.

(b) Suppose gcd(m, n) = d > 1. Then $d \mid m$ and $d \mid n$, but then $d \mid am + bn$ which contradicts am + bn = 1.

7. Define the sequence of *Fibonacci numbers* as follows: $F_0 = F_1 = 1$ and for n > 1, $F_n = F_{n-1} + F_{n-2}$. So the beginning of the sequence is $1, 1, 2, 3, 5, 8, 13, 21, \ldots$ From the beginning of the

sequence it appears that $gcd(F_n, F_{n-1}) = 1$ for all $n \ge 1$. Either prove this or explain why it is not true.

It is true that $gcd(F_n, F_{n-1}) = 1$. We can prove this by induction. It's clearly true for n = 1, so suppose $gcd(F_{n-1}, F_{n-2}) = 1$. Then there are numbers λ and μ such that $\lambda F_{n-1} + \mu F_{n-2} = 1$. But then

$$1 = \lambda F_{n-1} - \mu F_{n-1} + \mu F_{n-1} + \mu F_{n-2} = (\lambda - \mu)F_{n-1} + \mu (F_{n-1} + F_{n-2}) = (\lambda - \mu)F_{n-1} + \mu F_n,$$

which shows that $gcd(F_{n-1}, F_n) = 1$ by 6(b) above.

8. Solve the system:

$$x \equiv 19 \pmod{504}$$
$$x \equiv -6 \pmod{35}$$
$$x \equiv 37 \pmod{16}$$

That is, find *all* numbers x that satisfy all three congruences.

There are no solutions — if $x \equiv 37 \equiv 5 \pmod{16}$ then x = 16a + 5 = 4(4a + 1) + 1, so $x \equiv 1 \pmod{4}$. But $504 = 4 \cdot 126$, so if $x \equiv 19 \pmod{504}$ then x = 504b + 19 = 4(126b + 4) + 3, so $x \equiv 3 \pmod{4}$, a contradiction.

9 (a) Let p > 3 be a prime number. Prove that for every $a \in \mathbb{N}$ such that 1 < a < p - 1, there is a unique $b \in \mathbb{N}$ such that 1 < b < p - 1, $b \neq a$, and $ab \equiv 1 \pmod{p}$.

(b) Let p be a prime number. Prove that $(p-1)! \equiv -1 \pmod{p}$ (Hint: pair things up and apply part (a)). (This is called *Wilson's theorem.*)

(c) Is the converse of Wilson's theorem true? That is, if $n \ge 2$ and $(n-1)! \equiv -1 \pmod{n}$, is n necessarily a prime number? (Proof or counterexample — think about this first, and try to do it without resorting to the Internet).

(a) Since every number in 1 < a < p - 1 is relatively prime to p, we can find b and μ such that $ba + \mu p = 1$. By problem 6(a) we can choose b and μ so that $0 \le b < p$ so we have $ba \equiv 1 \pmod{p}$. We can't have b = a since then we'd have $a^2 \equiv 1 \pmod{p}$ but then a would have to be either 1 or p - 1, which it isn't. b is unique, since if there were another such number b' between 1 and p - 1, then (assuming b is the larger of the two) b - b' would have the property that $(b - b')a \equiv 0 \pmod{p}$, i.e., $p \mid (b - b')a$. But p divides neither b - b' nor a since they're both less than p - 1, contradicting the fact that p is prime.

(b) Since (p-1)! is the product of all the numbers up to p-1, it contains every pair of numbers a, b as we found in part (a), and every number is part of such a pair except for 1 and p-1. So $(p-1)! \equiv 1 \cdot 1 \cdots 1 \cdot (p-1) \equiv p-1 \equiv -1 \pmod{p}$.

(c) The converse is true — if p is composite, then we can write p = ab for two numbers a and b between 2 and p - 1. But both these numbers will be factors of (p - 1)! so we'll have $p \mid (p - 1)!$, i.e., $(p - 1)! \equiv 0 \pmod{p}$.

10 (a) Let p be a prime number. Prove that

$$p \mid \binom{p}{i}$$
 for $1 \leq i \leq p-1$.

(b) Prove that

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

for integers a, b and a prime number p.

(c) Suppose

$$n \mid \binom{n}{i}$$
 for $1 \leq i \leq n-1$.

Does this imply that n is a prime number?

(a) Because $\binom{p}{i} = \frac{p!}{i!(p-i)!}$, we have that $p! = \binom{p}{i} [i!(p-i)!]$. Now certainly $p \mid p!$, but p does not divide i!(p-i)!, since all the factors of i!(p-i)! are less than p (this uses the basic fact that p divides a product if and only if p divides at least one of the factors). Using that same fact, we deduce that $p \mid \binom{p}{i}$.

(b) This follows easily from the binomial theorem and part (a), since p divides the binomial coefficients in all the terms except the initial and final terms.

(c) Yes. Let p be the smallest prime factor of n. Then n cannot divide $\binom{n}{p}$, because the p in the p! in the denominator of the binomial coefficient will cancel a power of p from the n in the n! in the numerator, and the (n-p)! in the denominator will cancel all of the other factors in the numerator that have any powers of p as divisors. So $\binom{n}{p}$ will be a factor of p short of being divisible by n.