MATH 371 - Homework assignment 1 - August 29, 2013

1. Prove that if a subset $S \subset \mathbb{Z}$ has a smallest element then it is unique (in other words, if x is a smallest element of S and y is also a smallest element of S then $x=y$).

We know the integers are linearly ordered (so for every pair $x, y \in \mathbb{Z}$ either $x<y$ or $y<x$ or $x=y$). So suppose x and y are smallest elements of S. We can't have $x<y$ or else y wouldn't be a smallest element, nor can we have $y<x$ or else x wouldn't be a smallest element. Therefore we must have $x=y$.
2. Calculate the remainder of 2^{500} after division by 341 by hand (use repeated squaring).

First, $500=256+128+64+32+16+4=2^{8}+2^{7}+2^{6}+2^{5}+2^{4}+2^{2}$. So we calculate: $2^{1}=1,2^{2}=2^{2^{1}}=4,2^{4}=2^{2^{2}}=16,2^{8}=2^{2^{3}}=256,2^{16}=2^{2^{4}}=65536 \equiv 64(\bmod 341)$, $2^{32}=2^{2^{5}} \equiv 64^{2} \equiv 4096 \equiv 4(\bmod 341), 2^{2^{6}} \equiv 4^{2} \equiv 16(\bmod 341), 2^{2^{7}} \equiv 16^{2} \equiv 256(\bmod 341)$ and $2^{2^{8}} \equiv 256^{2} \equiv 64(\bmod 341)$. Therefore

$$
2^{500} \equiv 2^{2^{8}} \cdot 2^{2^{7}} \cdot 2^{2^{6}} \cdot 2^{2^{5}} \cdot 2^{2^{4}} \cdot 2^{2^{2}} \equiv 64 \cdot 256 \cdot 16 \cdot 4 \cdot 64 \cdot 16(\bmod 341)
$$

We can be clever about calculating this: we already know that $64^{2} \equiv 4(\bmod 341), 16^{2}=256$ and $256^{2} \equiv 64(\bmod 341)$. So we can group the numbers together to get $2^{500} \equiv 16 \cdot 64 \equiv 1024 \equiv$ $1(\bmod 341)$.

You could simplify the whole calculation by noticing that $341=11 \cdot 31$ so we know that $2^{10} \equiv$ $1(\bmod 11)$ and $2^{30} \equiv 1(\bmod 31)$. Of course, $2^{30} \equiv 1(\bmod 11)$, therefore $2^{30} \equiv 1(\bmod 341)$. Therefore $2^{500} \equiv 2^{480} 2^{20} \equiv\left(2^{30}\right)^{16} 2^{20} \equiv 1^{16} 2^{20} \equiv 2^{20}(\bmod 341)$. But we know that $2^{5}=32 \equiv$ $1(\bmod 31)$, so $2^{20} \equiv\left(2^{5}\right)^{4} \equiv 1(\bmod 31)$; and we already know $2^{20}=\left(2^{10}\right)^{2} \equiv 1(\bmod 11)$, so $2^{500} \equiv 2^{20} \equiv 1(\bmod 341)$.
3. Let r be an integer greater than 1. An r-adic expansion of a number $x \in \mathbb{N}$ is an expression

$$
x=a_{0}+a_{1} r+a_{2} r^{2}+\cdots+a_{k} x^{k}
$$

where $k \in \mathbb{N}, a_{i} \in \mathbb{N}$ for all $0 \leqslant i \leqslant k$ and $0 \leqslant a_{i}<r$ for all $0 \leqslant i \leqslant k$. For instance, the 10 -adic expansion of 5129 is

$$
5129=9+2 \cdot 10^{1}+1 \cdot 10^{2}+5 \cdot 10^{3}
$$

and the 8 -adic expansion of 156 is

$$
156=4+3 \cdot 8^{1}+2 \cdot 8^{2}
$$

(a) Compute the 7 -adic expansion of 130 .
(b) Prove that every $x \in \mathbb{N}$ (with $x>0$) can be written as $x=a r^{k}+b$, where $0 \leqslant a<r$, $0 \leqslant b<r^{k}$ and $k=\max \left\{i \in \mathbb{N} \mid r^{i} \leqslant x\right\}$.
(c) Use (b) to prove (by induction?) that every natural number has a unique r-adic expansion.
(a) $130=2 \cdot 49+32=2 \cdot 49+4 \cdot 7+4=4+4 \cdot 7+2 \cdot 7^{2}$.
(b) Let k be as defined in the problem, and consider the set $S=\left\{x-a r^{k} \mid a \in \mathbb{Z}\right.$ and $\left.x-a r^{k} \geqslant 0\right\}$. We have $S \subset \mathbb{N} \cup\{0\}$ so S has a smallest element, b. We certainly have $b \geqslant 0$ by the definition of S and we have $b<r^{k}$ since otherwise we could subtract r^{k} from b and find a smaller element of S. The value of a that produces this b has the property that $0 \leqslant a<r$ since $0 \leqslant a r^{k}<x<r^{k+1}=r\left(r^{k}\right)$.
(c) This time, let $S \subset \mathbb{N}$ be the set of natural numbers that do not have r-adic expansions. We know $1 \notin S$, so the smallest number in S is bigger than 1 . If S is non-empty, x be the smallest number in S. We know that x is not a power of r, since the r-adic expansion of r^{k} is just $1 \cdot r^{k}$. Since $x>1$, we know that there are powers of r (i.e., r^{k} for $k \geqslant 0$) that are less than x. Let r^{ℓ} be the largest power of r less than x. We know that the number $x-r^{\ell}$ has an r-adic expansion, say $x-r^{\ell}=a_{0}+a_{1} r+a_{2} r^{2}+\cdots+a_{\ell} r^{\ell}$ (where possibly $a_{\ell}=0$, but definitely $a_{\ell}<r-1$ because x was the smallest number that didn't. But then we'll have

$$
x=a_{0}+a_{1} r+a_{2} r^{2}+\cdots+\left(a_{\ell}+1\right) r^{\ell}
$$

so x has an r-adic expansion. Therefore S is empty and every natural number has an r-adic expansion.
4. Let the 10 -adic expansion of x be

$$
x=a_{0}+a_{1} 10+a_{2} 10^{2}+\cdots+a_{k} 10^{k}
$$

(where $0 \leqslant a_{i}<10$ for all i).
(a) Prove that $2 \mid x$ if and only if $2 \mid a_{0}$.
(b) Prove that $4 \mid x$ if and only if $4 \mid\left(a_{0}+2 a_{1}\right)$.
(c) Prove that $8 \mid x$ if and only if $8 \mid\left(a_{0}+2 a_{1}+4 a_{2}\right)$.
(d) Prove that $5 \mid x$ if and only if $5 \mid a_{0}$.
(e) Prove that $3 \mid x$ if and only if $3 \mid\left(a_{0}+a_{1}+\cdots+a_{k}\right)$.
(f) Prove that $9 \mid x$ if and only if $9 \mid\left(a_{0}+a_{1}+\cdots+a_{k}\right)$.
(g) Prove that $11 \mid x$ if and only if $11 \mid\left(a_{0}-a_{1}+a_{2}-\cdots\right)$.
(h) What is the rule for divisibility by 7 ?
(a) Since $2 \mid 10$, we have $2 \mid a_{1} 10+a_{2} 10^{2}+\cdots+a_{k} 10^{k}$ and so $2 \mid x$ if and only if $2 \mid a_{0}$.
(b) Likewise $4 \mid 10^{2}$ so $4 \mid a_{2} 10^{2}+\cdots+a_{k} 10^{k}$ and so $4 \mid x$ if and only if $4 \mid a_{0}+10 a_{1}$. But $10 \equiv 2(\bmod 4)$ and so $a_{0}+10 a_{1} \equiv a_{0}+2 a_{1}(\bmod 4)$. Thus $4 \mid x$ if and only if $4 \mid a_{0}+2 a_{1}$.
(c) Likewise $8 \mid 10^{3}$ and so $8 \mid x$ if ad only if $8 \mid a_{0}+10 a_{1}+100 a_{2}$. But $10 \equiv 2(\bmod 8)$ and $100 \equiv 4(\bmod 8)$, so $8 \mid x$ if and only if $8 \mid a_{0}+2 a_{1}+4 a_{2}$.
(d) Since $5 \mid 10$, we have $5 \mid a_{1} 10+a_{2} 10^{2}+\cdots+a_{k} 10^{k}$ and so $5 \mid x$ if and only if $5 \mid a_{0}$.
(e) Since $10 \equiv 1(\bmod 3)$, and so $1 \equiv 100 \equiv 10^{3} \equiv 10^{4} \equiv 10^{k}(\bmod 3)$ we have

$$
x \equiv a_{0}+a_{1} 10+a_{2} 10^{2}+\cdots+a_{k} 10^{k} \equiv a_{0}+a_{1}+\cdots+a_{k}(\bmod 3)
$$

and so $3 \mid x$ if and only if $3 \mid a_{0}+a_{1}+\cdots+a_{k}$.
(f) Likewise $10 \equiv 1(\bmod 9)$, and so $1 \equiv 100 \equiv 10^{3} \equiv 10^{4} \equiv 10^{k}(\bmod 9)$, and we have

$$
x \equiv a_{0}+a_{1} 10+a_{2} 10^{2}+\cdots+a_{k} 10^{k} \equiv a_{0}+a_{1}+\cdots+a_{k}(\bmod 9)
$$

and so $9 \mid x$ if and only if $9 \mid a_{0}+a_{1}+\cdots+a_{k}$.
(g) Since $10 \equiv-1(\bmod 11)$, and so $-10 \equiv 100 \equiv-10^{3} \equiv 10^{4} \equiv(-1)^{k} 10^{k} \equiv 1(\bmod 11)$, and we have

$$
x \equiv a_{0}-a_{1} 10+a_{2} 10^{2}+\cdots+a_{k} 10^{k} \equiv a_{0}-a_{1}+\cdots+(-1)^{k} a_{k}(\bmod 11)
$$

and so $11 \mid x$ if and only if $3 \mid a_{0}-a_{1}+\cdots+(-1)^{k} a_{k}$.
(h) Since $10 \equiv 3(\bmod 7)$, so $10^{2} \equiv 9 \equiv 2(\bmod 7), 10^{3} \equiv 6(\bmod 7), 10^{4} \equiv 4(\bmod 7)$, 10^{5} equiv $5(\bmod 7)$ and $10^{6} \equiv 1(\bmod 7)$ and it repeats from there, we have that $7 \mid x$ if and only if

$$
7 \mid a_{0}+3 a_{1}+2 a_{2}-a_{3}-3 a_{4}-2 a_{5}+a_{6}+3 a_{7}+2 a_{8}-a_{9}-3 a_{10}-2 a_{11}+\cdots
$$

5. Find $a, b \in \mathbb{Z}$ such that $89 a+55 b=1$, and use this to find all solutions $x \in \mathbb{Z}$ to

$$
89 x \equiv 17(\bmod 55)
$$

i	-1	0	1	2	3	4	5	6	7	8	9
r_{i}	89	55	34	21	13	8	5	3	2	1	0
q_{i}	-	-	1	1	1	1	1	1	1	1	2
λ_{i}	1	0	1	-1	2	-3	5	-8	13	-21	-
μ_{i}	0	1	-1	2	-3	5	-8	13	-21	34	-

The result is the next-to-last entry in the r_{i} row, namely, $\operatorname{gcd}(89,55)=1$. We also get that

$$
-21 \cdot 89+34 \cdot 55=1=\operatorname{gcd}(89,55)
$$

To get solutions to $89 x \equiv 17(\bmod 55)$ we just multiply by $17-$ so $x=-21 \cdot 17=-357 \equiv$ $28(\bmod 55)$. So all the solutions of the equation are for the form $x=28+55 n$, for $n \in \mathbb{Z}$.

6 (a) Suppose $a M+b N=d$, where $a, b, M, N \in \mathbb{Z}$ and $N>0$. Prove that you can find $a^{\prime}, b^{\prime} \in \mathbb{Z}$ such that $a^{\prime} M+b^{\prime} N=d$ and $0 \leqslant a^{\prime}<N$.
(b) Let $m, n \in \mathbb{Z}$ and suppose there exist $a, b \in \mathbb{Z}$ such that $a m+b n=1$. Prove that m and n are relatively prime.
(a) For any integer k we will have $(a+k N) M+(b-k M) N=d$. Now let $S=\{a+k N \mid k \in$ \mathbb{Z} and $a+k N \geqslant 0\}$. This set has a smallest element, call it k^{\prime}. It must be that $0 \leqslant a+k^{\prime} N<N$ or else we'd have $a+\left(k^{\prime}-1\right) N \in S$ and $0 \leqslant a+\left(k^{\prime}-1\right) N<a+k^{\prime} N$, which would be a contradiction. So $a^{\prime}=a+k^{\prime} N$ and $b^{\prime}=b-k^{\prime} M$ have the desired properties.
(b) Suppose $\operatorname{gcd}(m, n)=d>1$. Then $d \mid m$ and $d \mid n$, but then $d \mid a m+b n$ which contradicts $a m+b n=1$.
7. Define the sequence of Fibonacci numbers as follows: $F_{0}=F_{1}=1$ and for $n>1, F_{n}=$ $F_{n-1}+F_{n-2}$. So the beginning of the sequence is $1,1,2,3,5,8,13,21, \ldots$. From the beginning of the
sequence it appears that $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)=1$ for all $n \geqslant 1$. Either prove this or explain why it is not true.

It is true that $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)=1$. We can prove this by induction. It's clearly true for $n=1$, so suppose $\operatorname{gcd}\left(F_{n-1}, F_{n-2}\right)=1$. Then there are numbers λ and μ such that $\lambda F_{n-1}+\mu F_{n-2}=1$. But then

$$
1=\lambda F_{n-1}-\mu F_{n-1}+\mu F_{n-1}+\mu F_{n-2}=(\lambda-\mu) F_{n-1}+\mu\left(F_{n-1}+F_{n-2}\right)=(\lambda-\mu) F_{n-1}+\mu F_{n}
$$

which shows that $\operatorname{gcd}\left(F_{n-1}, F_{n}\right)=1$ by $6(\mathrm{~b})$ above.
8. Solve the system:

$$
\begin{aligned}
& x \equiv 19(\bmod 504) \\
& x \equiv-6(\bmod 35) \\
& x \equiv 37(\bmod 16)
\end{aligned}
$$

That is, find all numbers x that satisfy all three congruences.
There are no solutions - if $x \equiv 37 \equiv 5(\bmod 16)$ then $x=16 a+5=4(4 a+1)+1$, so $x \equiv 1(\bmod 4)$. But $504=4 \cdot 126$, so if $x \equiv 19(\bmod 504)$ then $x=504 b+19=4(126 b+4)+3$, so $x \equiv 3(\bmod 4)$, a contradiction.

9 (a) Let $p>3$ be a prime number. Prove that for every $a \in \mathbb{N}$ such that $1<a<p-1$, there is a unique $b \in \mathbb{N}$ such that $1<b<p-1, b \neq a$, and $a b \equiv 1(\bmod p)$.
(b) Let p be a prime number. Prove that $(p-1)!\equiv-1(\bmod p)$ (Hint: pair things up and apply part (a)). (This is called Wilson's theorem.)
(c) Is the converse of Wilson's theorem true? That is, if $n \geqslant 2$ and $(n-1)!\equiv-1(\bmod n)$, is n necessarily a prime number? (Proof or counterexample - think about this first, and try to do it without resorting to the Internet).
(a) Since every number in $1<a<p-1$ is relatively prime to p, we can find b and μ such that $b a+\mu p=1$. By problem 6 (a) we can choose b and μ so that $0 \leqslant b<p$ so we have $b a \equiv 1(\bmod p)$. We can't have $b=a$ since then we'd have $a^{2} \equiv 1(\bmod p)$ but then a would have to be either 1 or $p-1$, which it isn't. b is unique, since if there were another such number b^{\prime} between 1 and $p-1$, then (assuming b is the larger of the two) $b-b^{\prime}$ would have the property that $\left(b-b^{\prime}\right) a \equiv 0(\bmod p)$, i.e., $p \mid\left(b-b^{\prime}\right) a$. But p divides neither $b-b^{\prime}$ nor a since they're both less than $p-1$, contradicting the fact that p is prime.
(b) Since $(p-1)$! is the product of all the numbers up to $p-1$, it contains every pair of numbers a, b as we found in part (a), and every number is part of such a pair except for 1 and $p-1$. So $(p-1)!\equiv 1 \cdot 1 \cdots 1 \cdot(p-1) \equiv p-1 \equiv-1(\bmod p)$.
(c) The converse is true - if p is composite, then we can write $p=a b$ for two numbers a and b between 2 and $p-1$. But both these numbers will be factors of $(p-1)$! so we'll have $p \mid(p-1)$!, i.e., $(p-1)!\equiv 0(\bmod p)$.

10 (a) Let p be a prime number. Prove that

$$
p \left\lvert\,\binom{ p}{i} \quad\right. \text { for } 1 \leqslant i \leqslant p-1
$$

(b) Prove that

$$
(a+b)^{p} \equiv a^{p}+b^{p} \quad(\bmod p)
$$

for integers a, b and a prime number p.
(c) Suppose

$$
n \left\lvert\,\binom{ n}{i} \quad\right. \text { for } 1 \leqslant i \leqslant n-1
$$

Does this imply that n is a prime number?
(a) Because $\binom{p}{i}=\frac{p!}{i!(p-i)!}$, we have that $p!=\binom{p}{i}[i!(p-i)!]$. Now certainly $p \mid p!$, but p does not divide $i!(p-i)$!, since all the factors of $i!(p-i)!$ are less than p (this uses the basic fact that p divides a product if and only if p divides at least one of the factors). Using that same fact, we deduce that $p \left\lvert\,\binom{ p}{i}\right.$.
(b) This follows easily from the binomial theorem and part (a), since p divides the binomial coefficients in all the terms except the initial and final terms.
(c) Yes. Let p be the smallest prime factor of n. Then n cannot divide $\binom{n}{p}$, because the p in the $p!$ in the denominator of the binomial coefficient will cancel a power of p from the n in the $n!$ in the numerator, and the $(n-p)$! in the denominator will cancel all of the other factors in the numerator that have any powers of p as divisors. So $\binom{n}{p}$ will be a factor of p short of being divisible by n.

