MATH 371 — Homework assignment 1 — August 29, 2013

1. Prove that if a subset S c Z has a smallest element then it is unique (in other words, if x is a
smallest element of S and y is also a smallest element of S then z = y).

We know the integers are linearly ordered (so for every pair z,y € Z either x < y or y < z or
x =1y). So suppose z and y are smallest elements of S. We can’t have < y or else y wouldn’t be
a smallest element, nor can we have y < z or else x wouldn’t be a smallest element. Therefore we
must have x = y.

2. Calculate the remainder of 2°%° after division by 341 by hand (use repeated squaring).

First, 500 = 256 + 128 + 64 + 32 + 16 + 4 = 28 + 27 + 26 125 4 24 1 22 So we calculate:
2l =1, 22 = 22" = 4, 2¢ = 22° = 16, 28 = = 256, 216 = 22° = 65536 = 64 (mod 341),
232 = 22° = 642 = 4096 = 4 (mod 341), 22° = 42 = 16 (mod 341), 22" = 162 = 256 (mod 341) and
22° = 2562 = 64 (mod 341). Therefore

2’

2500 = 92° . 927 92° 92 92" 92" — (4. 9561646416 (mod 341).

We can be clever about calculating this: we already know that 642 = 4 (mod 341), 162 = 256 and
2562 = 64 (mod 341). So we can group the numbers together to get 2°°° = 16 - 64 = 1024 =
1 (mod 341).

You could simplify the whole calculation by noticing that 341 = 11 - 31 so we know that 210 =
1 (mod 11) and 239 = 1 (mod 31). Of course, 23° = 1 (mod 11), therefore 23° = 1 (mod 341).
Therefore 2500 = 2480920 = (230)1620 = 116920 = 220 (;0d 341). But we know that 2° = 32 =
1 (mod 31), so 220 = (2°)* = 1 (mod 31); and we already know 220 = (2!0)2 = 1 (mod 11), so
2500 =220 =1 (mod 341).

3. Let r be an integer greater than 1. An r-adic expansion of a number x € N is an expression

xza()+a1r+a2r2+---+akxk

where k € N, a; € N forall 0 < i< kand 0 € a; < r for all 0 < i < k. For instance, the 10-adic
expansion of 5129 is
5129 =9 +2-10' +1-10° +5-10°

and the 8-adic expansion of 156 is

156 =4+ 3-8' +2.82

(a) Compute the 7-adic expansion of 130.

(b) Prove that every € N (with > 0) can be written as z = ar® + b, where 0 < a < r ,
0<b<r*and k=max{ieN|rl <z}

(c) Use (b) to prove (by induction?) that every natural number has a unique r-adic expansion.

(a) 130 =2-49+32=2-49+4 - T+4=4+4-7T+2- 7%



(b) Let k be as defined in the problem, and consider the set S = {x—ar* |a € Z and z—ark > 0}.
We have S € N U {0} so S has a smallest element, b. We certainly have b > 0 by the definition of S
and we have b < 7* since otherwise we could subtract r* from b and find a smaller element of S. The
value of a that produces this b has the property that 0 < a < 7 since 0 < ar® < z < r*+1 = r(rk).

(c) This time, let S © N be the set of natural numbers that do not have r-adic expansions. We
know 1 ¢ S, so the smallest number in S is bigger than 1. If S is non-empty, = be the smallest
number in S. We know that z is not a power of r, since the r-adic expansion of r* is just 1. r*.
Since z > 1, we know that there are powers of r (i.e., ¥ for k > 0) that are less than z. Let r* be
the largest power of r less than z. We know that the number 2 — ¢ has an r-adic expansion, say
r—7rt =ag+air +asr? +--- 4+ apr’ (where possibly a, = 0, but definitely a;, < 7 — 1 because = was
the smallest number that didn’t. But then we’ll have

x=ag+ar+ayr? + -+ (ag + 1),

so = has an r-adic expansion. Therefore S is empty and every natural number has an r-adic
expansion.

4. Let the 10-adic expansion of = be
T =ag+a110 + anO2 + - +ak10k

(where 0 < a; < 10 for all 7).

a) Prove that 2|z if and only if 2|ag.

b) Prove that 4|z if and only if 4|(ag + 2a1).

c) Prove that 8| if and only if 8|(ag + 2a1 + 4as).

d) Prove that 5|z if and only if 5|ag.

e) Prove that 3|z if and only if 3|(ag + a1 + -+ - + ax).

f) Prove that 9|z if and only if 9|(ag + a1 + - -+ + ax).

g) Prove that 11|z if and only if 11|(ag —ay +ag —---).
h) What is the rule for divisibility by 77

S o~ o~ o~ o~~~

(a) Since 2 | 10, we have 2 | a110 4+ a210% + - - - + a4 10* and so 2 | z if and only if 2 | ao.

b) Likewise 4 | 102 s0 4 | a210? + --- + a;10* and so 4 | z if and only if 4 | ag + 10a;. But
10 =2 (mod 4) and so ag + 10a; = ag + 2a; (mod 4). Thus 4 | x if and only if 4 | ag + 2a;.

(c) Likewise 8 | 10® and so 8 | = if ad only if 8 | ag + 10a; + 100az. But 10 = 2 (mod 8) and
100 = 4 (mod 8), so 8 | z if and only if 8 | ag + 2a; + 4as.

(d) Since 5 | 10, we have 5 | @110 + ag10% + - - - + a;10% and so 5 | z if and only if 5 | ao.
(e) Since 10 =1 (mod 3), and so 1 = 100 = 10% = 10* = 10* (mod 3) we have
T =ag+a110 +a10® + -+ + 4,108 = ag + a1 + - -+ + ax (mod 3)
and so 3 | z if and only if 3 | ag + a1 + -+ + ay.
(f) Likewise 10 = 1 (mod 9), and so 1 = 100 = 10® = 10* = 10* (mod 9), and we have

r=ag+a110 +a10® + -+ ap10F =ag+ a1 + - + ay, (mod 9)



and so 9 | z if and only if 9 | ag + a1 + -+ + ay.

(g) Since 10 = —1 (mod 11), and so —10 = 100 = —10% = 10* = (—1)*10¥ = 1 (mod 11), and
we have
x=ag—a110 +a10® + --- + 4,108 = ag —ay 4+ -+ + (=1)*a; (mod 11)

and so 11 | z if and only if 3 | ap — ay + -+ + (=1)¥ay.

(h) Since 10 = 3 (mod 7), so 102 = 9 = 2 (mod 7), 10> = 6 (mod 7), 10* = 4 (mod 7),
10°equiv5 (mod 7) and 10 = 1 (mod 7) and it repeats from there, we have that 7 | z if and
only if

7| ap + 3a1 + 2a2 — a3 — 3ag — 2a5 + ag + 3a7 + 2as — ag — 3a1g — 2a11 + - .

5. Find a,b € Z such that 89a + 55b = 1, and use this to find all solutions x € Z to

89z =17 (mod 55).

it | -1 0 1 2 3 4 5 6 7 8 9
| 8 55 34 21 13 8 ) 3 2 1 0
g | — — 1 1 1 1 1 1 1 1 2
A 10 1 -1 2 -3 5 =8 13 =21 -—

w01 -1 2 -3 5 =8 13 -21 34 -—
The result is the next-to-last entry in the r; row, namely, ged(89,55) = 1. We also get that
—21-89+34-55 =1 = ged(89,55).

To get solutions to 89x = 17 (mod 55) we just multiply by 17 — so © = —21-17 = —357 =
28 (mod 55). So all the solutions of the equation are for the form z = 28 + 55n, for n € Z.

6 (a) Suppose aM + bN = d, where a,b, M, N € Z and N > 0. Prove that you can find a’,b’ € Z
such that @ M + N =d and 0 <a’ < N.

(b) Let m,n € Z and suppose there exist a,b € Z such that am + bn = 1. Prove that m and n
are relatively prime.

(a) For any integer k we will have (a + kN)M + (b —kM)N = d. Now let S = {a + kN |k €
Z and a + kN = 0}. This set has a smallest element, call it &’. It must be that 0 < a+ &' N < N or
else we’d have a + (k' —1)N e S and 0 < a+ (k' —1)N < a +k'N, which would be a contradiction.
Soa =a+k'N and & = b — k' M have the desired properties.

(b) Suppose ged(m,n) =d > 1. Then d | m and d | n, but then d | am + bn which contradicts
am+bn = 1.

7. Define the sequence of Fibonacci numbers as follows: Fy = F; = 1 and for n > 1, F,, =
F, 1+ F, 5. So the beginning of the sequence is 1,1,2,3,5,8,13,21,.... From the beginning of the



sequence it appears that ged(F,, F,—1) = 1 for all n > 1. Either prove this or explain why it is not
true.

It is true that ged(F,,, Fr,—1) = 1. We can prove this by induction. It’s clearly true for n = 1, so
suppose ged(F,—1, Fl,—2) = 1. Then there are numbers A and p such that \F,,_1 + puF,,—_o = 1. But
then

1=AFh—1 —puFh_1+pFh_ + pF,_o = ()\ — H)Fn—l + ,Uf(Fn—l + Fn_2) = ()\ — ,U,)Fn_l + ukF,,

which shows that ged(F,,—1, F,) = 1 by 6(b) above.

8. Solve the system:
2 =19 (mod 504)

x = —6 (mod 35)
x = 37 (mod 16)

That is, find all numbers x that satisfy all three congruences.

There are no solutions — if x = 37 = 5 (mod 16) then x = 16a + 5 = 4(4a + 1) + 1, so
=1 (mod 4). But 504 = 4-126, so if x = 19 (mod 504) then x = 504b + 19 = 4(126b + 4) + 3, so
2z = 3 (mod 4), a contradiction.

9 (a) Let p > 3 be a prime number. Prove that for every a € N such that 1 < a < p — 1, there is a
unique b € N such that 1 <b<p—1,b+#a, and ab=1 (mod p).

(b) Let p be a prime number. Prove that (p —1)! = —1 (mod p) (Hint: pair things up and apply
part (a)). (This is called Wilson’s theorem.)

(c) Is the converse of Wilson’s theorem true? That is, if n = 2 and (n — 1)! = —1 (mod n), is
n necessarily a prime number? (Proof or counterexample — think about this first, and try to do it
without resorting to the Internet).

(a) Since every number in 1 < a < p — 1 is relatively prime to p, we can find b and p such that
ba + up = 1. By problem 6(a) we can choose b and p so that 0 < b < p so we have ba =1 (mod p).

We can’t have b = a since then we’d have a? =

(mod p) but then a would have to be either 1 or
p — 1, which it isn’t. b is unique, since if there were another such number o’ between 1 and p — 1,
then (assuming b is the larger of the two) b — b would have the property that (b—0")a =0 (mod p),
ie,p| (b—"b)a. But p divides neither b — b’ nor a since they’re both less than p — 1, contradicting

the fact that p is prime.

(b) Since (p —1)! is the product of all the numbers up to p — 1, it contains every pair of numbers
a, b as we found in part (a), and every number is part of such a pair except for 1 and p — 1. So
p-=1-1---1-(p—1)=p—1=—1 (mod p).

(c) The converse is true — if p is composite, then we can write p = ab for two numbers a and b
between 2 and p — 1. But both these numbers will be factors of (p — 1)! so we’ll have p | (p — 1)!,
ie, (p—1)!'=0 (mod p).




10 (a) Let p be a prime number. Prove that

pI(Y) fori<i<p-t
1

(b) Prove that
(a+b)P =d” +0" (mod p)

for integers a, b and a prime number p.

(¢) Suppose
n .
n|<) for1<i<n-1
i

Does this imply that n is a prime number?

|
(a) Because (p) = %, we have that p! = (p) [¢!(p — 9)!]. Now certainly p | p!, but p does
i il(p —1)! i
not divide #!(p — 4)!, since all the factors of i!(p — ¢)! are less than p (this uses the basic fact that
p divides a product if and only if p divides at least one of the factors). Using that same fact, we

deduce that p | (f)

(b) This follows easily from the binomial theorem and part (a), since p divides the binomial
coeflicients in all the terms except the initial and final terms.

(c) Yes. Let p be the smallest prime factor of n. Then n cannot divide (n) , because the p in the

p! in the denominator of the binomial coefficient will cancel a power of p from the n in the n! in the
numerator, and the (n — p)! in the denominator will cancel all of the other factors in the numerator

that have any powers of p as divisors. So (n) will be a factor of p short of being divisible by n.
p



