
MATH 371 – Homework assignment 1 – August 29, 2013

1. Prove that if a subset S � Z has a smallest element then it is unique (in other words, if x is a

smallest element of S and y is also a smallest element of S then x � y).

We know the integers are linearly ordered (so for every pair x, y P Z either x   y or y   x or

x � y). So suppose x and y are smallest elements of S. We can’t have x   y or else y wouldn’t be

a smallest element, nor can we have y   x or else x wouldn’t be a smallest element. Therefore we

must have x � y.

2. Calculate the remainder of 2500 after division by 341 by hand (use repeated squaring).

First, 500 � 256 � 128 � 64 � 32 � 16 � 4 � 28 � 27 � 26 � 25 � 24 � 22. So we calculate:

21 � 1, 22 � 22
1

� 4, 24 � 22
2

� 16, 28 � 22
3

� 256, 216 � 22
4

� 65536 � 64 pmod 341q,

232 � 22
5

� 642 � 4096 � 4 pmod 341q, 22
6

� 42 � 16 pmod 341q, 22
7

� 162 � 256 pmod 341q and

22
8

� 2562 � 64 pmod 341q. Therefore

2500 � 22
8

� 22
7

� 22
6

� 22
5

� 22
4

� 22
2

� 64 � 256 � 16 � 4 � 64 � 16 pmod 341q .

We can be clever about calculating this: we already know that 642 � 4 pmod 341q, 162 � 256 and

2562 � 64 pmod 341q. So we can group the numbers together to get 2500 � 16 � 64 � 1024 �

1 pmod 341q.

You could simplify the whole calculation by noticing that 341 � 11 � 31 so we know that 210 �

1 pmod 11q and 230 � 1 pmod 31q. Of course, 230 � 1 pmod 11q, therefore 230 � 1 pmod 341q.

Therefore 2500 � 2480220 � p230q16220 � 116220 � 220 pmod 341q. But we know that 25 � 32 �

1 pmod 31q, so 220 � p25q4 � 1 pmod 31q; and we already know 220 � p210q2 � 1 pmod 11q, so

2500 � 220 � 1 pmod 341q.

3. Let r be an integer greater than 1. An r-adic expansion of a number x P N is an expression

x � a0 � a1r � a2r
2 � � � � � akx

k

where k P N, ai P N for all 0 ¤ i ¤ k and 0 ¤ ai   r for all 0 ¤ i ¤ k. For instance, the 10-adic

expansion of 5129 is

5129 � 9 � 2 � 101 � 1 � 102 � 5 � 103

and the 8-adic expansion of 156 is

156 � 4 � 3 � 81 � 2 � 82.

(a) Compute the 7-adic expansion of 130.

(b) Prove that every x P N (with x ¡ 0) can be written as x � ark � b, where 0 ¤ a   r ,

0 ¤ b   rk and k � maxti P N | ri ¤ xu.

(c) Use (b) to prove (by induction?) that every natural number has a unique r-adic expansion.

(a) 130 � 2 � 49 � 32 � 2 � 49 � 4 � 7 � 4 � 4 � 4 � 7 � 2 � 72.
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(b) Let k be as defined in the problem, and consider the set S � tx�ark | a P Z and x�ark ¥ 0u.

We have S � NYt0u so S has a smallest element, b. We certainly have b ¥ 0 by the definition of S

and we have b   rk since otherwise we could subtract rk from b and find a smaller element of S. The

value of a that produces this b has the property that 0 ¤ a   r since 0 ¤ ark   x   rk�1 � rprkq.

(c) This time, let S � N be the set of natural numbers that do not have r-adic expansions. We

know 1 R S, so the smallest number in S is bigger than 1. If S is non-empty, x be the smallest

number in S. We know that x is not a power of r, since the r-adic expansion of rk is just 1 � rk.

Since x ¡ 1, we know that there are powers of r (i.e., rk for k ¥ 0) that are less than x. Let r` be

the largest power of r less than x. We know that the number x � r` has an r-adic expansion, say

x� r` � a0� a1r� a2r
2� � � � � a`r

` (where possibly a` � 0, but definitely a`   r� 1 because x was

the smallest number that didn’t. But then we’ll have

x � a0 � a1r � a2r
2 � � � � � pa` � 1qr`,

so x has an r-adic expansion. Therefore S is empty and every natural number has an r-adic

expansion.

4. Let the 10-adic expansion of x be

x � a0 � a110 � a2102 � � � � � ak10k

(where 0 ¤ ai   10 for all i).

(a) Prove that 2|x if and only if 2|a0.

(b) Prove that 4|x if and only if 4|pa0 � 2a1q.

(c) Prove that 8|x if and only if 8|pa0 � 2a1 � 4a2q.

(d) Prove that 5|x if and only if 5|a0.

(e) Prove that 3|x if and only if 3|pa0 � a1 � � � � � akq.

(f) Prove that 9|x if and only if 9|pa0 � a1 � � � � � akq.

(g) Prove that 11|x if and only if 11|pa0 � a1 � a2 � � � � q.

(h) What is the rule for divisibility by 7?

(a) Since 2 | 10, we have 2 | a110 � a2102 � � � � � ak10k and so 2 | x if and only if 2 | a0.

(b) Likewise 4 | 102 so 4 | a2102 � � � � � ak10k and so 4 | x if and only if 4 | a0 � 10a1. But

10 � 2 pmod 4q and so a0 � 10a1 � a0 � 2a1 pmod 4q. Thus 4 | x if and only if 4 | a0 � 2a1.

(c) Likewise 8 | 103 and so 8 | x if ad only if 8 | a0 � 10a1 � 100a2. But 10 � 2 pmod 8q and

100 � 4 pmod 8q, so 8 | x if and only if 8 | a0 � 2a1 � 4a2.

(d) Since 5 | 10, we have 5 | a110 � a2102 � � � � � ak10k and so 5 | x if and only if 5 | a0.

(e) Since 10 � 1 pmod 3q, and so 1 � 100 � 103 � 104 � 10k pmod 3q we have

x � a0 � a110 � a2102 � � � � � ak10k � a0 � a1 � � � � � ak pmod 3q

and so 3 | x if and only if 3 | a0 � a1 � � � � � ak.

(f) Likewise 10 � 1 pmod 9q, and so 1 � 100 � 103 � 104 � 10k pmod 9q, and we have

x � a0 � a110 � a2102 � � � � � ak10k � a0 � a1 � � � � � ak pmod 9q
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and so 9 | x if and only if 9 | a0 � a1 � � � � � ak.

(g) Since 10 � �1 pmod 11q, and so �10 � 100 � �103 � 104 � p�1qk10k � 1 pmod 11q, and

we have

x � a0 � a110 � a2102 � � � � � ak10k � a0 � a1 � � � � � p�1qkak pmod 11q

and so 11 | x if and only if 3 | a0 � a1 � � � � � p�1qkak.

(h) Since 10 � 3 pmod 7q, so 102 � 9 � 2 pmod 7q, 103 � 6 pmod 7q, 104 � 4 pmod 7q,

105equiv5 pmod 7q and 106 � 1 pmod 7q and it repeats from there, we have that 7 | x if and

only if

7 | a0 � 3a1 � 2a2 � a3 � 3a4 � 2a5 � a6 � 3a7 � 2a8 � a9 � 3a10 � 2a11 � � � � .

5. Find a, b P Z such that 89a� 55b � 1, and use this to find all solutions x P Z to

89x � 17 pmod 55q .

i �1 0 1 2 3 4 5 6 7 8 9
ri 89 55 34 21 13 8 5 3 2 1 0
qi � � 1 1 1 1 1 1 1 1 2
λi 1 0 1 �1 2 �3 5 �8 13 �21 �
µi 0 1 �1 2 �3 5 �8 13 �21 34 �

The result is the next-to-last entry in the ri row, namely, gcdp89, 55q � 1. We also get that

�21 � 89 � 34 � 55 � 1 � gcdp89, 55q.

To get solutions to 89x � 17 pmod 55q we just multiply by 17 — so x � �21 � 17 � �357 �

28 pmod 55q. So all the solutions of the equation are for the form x � 28 � 55n, for n P Z.

6 (a) Suppose aM � bN � d, where a, b,M,N P Z and N ¡ 0. Prove that you can find a1, b1 P Z

such that a1M � b1N � d and 0 ¤ a1   N .

(b) Let m,n P Z and suppose there exist a, b P Z such that am � bn � 1. Prove that m and n

are relatively prime.

(a) For any integer k we will have pa � kNqM � pb � kMqN � d. Now let S � ta � kN | k P

Z and a� kN ¥ 0u. This set has a smallest element, call it k1. It must be that 0 ¤ a� k1N   N or

else we’d have a� pk1 � 1qN P S and 0 ¤ a� pk1 � 1qN   a� k1N , which would be a contradiction.

So a1 � a� k1N and b1 � b� k1M have the desired properties.

(b) Suppose gcdpm,nq � d ¡ 1. Then d | m and d | n, but then d | am � bn which contradicts

am� bn � 1.

7. Define the sequence of Fibonacci numbers as follows: F0 � F1 � 1 and for n ¡ 1, Fn �

Fn�1�Fn�2. So the beginning of the sequence is 1, 1, 2, 3, 5, 8, 13, 21, . . .. From the beginning of the
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sequence it appears that gcdpFn, Fn�1q � 1 for all n ¥ 1. Either prove this or explain why it is not

true.

It is true that gcdpFn, Fn�1q � 1. We can prove this by induction. It’s clearly true for n � 1, so

suppose gcdpFn�1, Fn�2q � 1. Then there are numbers λ and µ such that λFn�1 � µFn�2 � 1. But

then

1 � λFn�1 � µFn�1 � µFn�1 � µFn�2 � pλ� µqFn�1 � µpFn�1 � Fn�2q � pλ� µqFn�1 � µFn,

which shows that gcdpFn�1, Fnq � 1 by 6(b) above.

8. Solve the system:

x � 19 pmod 504q

x � �6 pmod 35q

x � 37 pmod 16q

That is, find all numbers x that satisfy all three congruences.

There are no solutions — if x � 37 � 5 pmod 16q then x � 16a � 5 � 4p4a � 1q � 1, so

x � 1 pmod 4q. But 504 � 4 � 126, so if x � 19 pmod 504q then x � 504b� 19 � 4p126b� 4q � 3, so

x � 3 pmod 4q, a contradiction.

9 (a) Let p ¡ 3 be a prime number. Prove that for every a P N such that 1   a   p� 1, there is a

unique b P N such that 1   b   p� 1, b � a , and ab � 1 pmod pq.

(b) Let p be a prime number. Prove that pp� 1q! � �1 pmod pq (Hint: pair things up and apply

part (a)). (This is called Wilson’s theorem.)

(c) Is the converse of Wilson’s theorem true? That is, if n ¥ 2 and pn � 1q! � �1 pmod nq, is

n necessarily a prime number? (Proof or counterexample — think about this first, and try to do it

without resorting to the Internet).

(a) Since every number in 1   a   p� 1 is relatively prime to p, we can find b and µ such that

ba� µp � 1. By problem 6(a) we can choose b and µ so that 0 ¤ b   p so we have ba � 1 pmod pq.

We can’t have b � a since then we’d have a2 � 1 pmod pq but then a would have to be either 1 or

p � 1, which it isn’t. b is unique, since if there were another such number b1 between 1 and p � 1,

then (assuming b is the larger of the two) b� b1 would have the property that pb� b1qa � 0 pmod pq,

i.e., p | pb� b1qa. But p divides neither b� b1 nor a since they’re both less than p� 1, contradicting

the fact that p is prime.

(b) Since pp� 1q! is the product of all the numbers up to p� 1, it contains every pair of numbers

a, b as we found in part (a), and every number is part of such a pair except for 1 and p � 1. So

pp� 1q! � 1 � 1 � � � 1 � pp� 1q � p� 1 � �1 pmod pq.

(c) The converse is true — if p is composite, then we can write p � ab for two numbers a and b

between 2 and p � 1. But both these numbers will be factors of pp � 1q! so we’ll have p | pp � 1q!,

i.e., pp� 1q! � 0 pmod pq.
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10 (a) Let p be a prime number. Prove that

p |
�p
i

	
for 1 ¤ i ¤ p� 1.

(b) Prove that

pa� bqp � ap � bp pmod pq

for integers a, b and a prime number p.

(c) Suppose

n |
�n
i

	
for 1 ¤ i ¤ n� 1.

Does this imply that n is a prime number?

(a) Because
�p
i

	
�

p!

i!pp� iq!
, we have that p! �

�p
i

	
ri!pp� iq!s. Now certainly p | p!, but p does

not divide i!pp � iq!, since all the factors of i!pp � iq! are less than p (this uses the basic fact that

p divides a product if and only if p divides at least one of the factors). Using that same fact, we

deduce that p |
�p
i

	
.

(b) This follows easily from the binomial theorem and part (a), since p divides the binomial

coefficients in all the terms except the initial and final terms.

(c) Yes. Let p be the smallest prime factor of n. Then n cannot divide

�
n

p



, because the p in the

p! in the denominator of the binomial coefficient will cancel a power of p from the n in the n! in the

numerator, and the pn� pq! in the denominator will cancel all of the other factors in the numerator

that have any powers of p as divisors. So

�
n

p



will be a factor of p short of being divisible by n.


