MATH 371 - Homework assignment 2 - September 6, 2013

1. Suppose $a, b \in \mathbb{N}$ such that $a+b=p$ is a prime number. Prove that $\operatorname{gcd}(a, b)=1$.
2. It seems that $\varphi(n)$ is even for $n>2$. Prove this, or find a counterexample.
3. You know that $\varphi(5)=4, \varphi(8)=4$ and $\varphi(10)=4$. So $(\mathbb{Z} / 5)^{*},(\mathbb{Z} / 8)^{*}$ and $(\mathbb{Z} / 10)^{*}$ are all (abelian) groups of order 4. There are two abelian groups of order 4 (actually, there are only two groups of order 4, and both are abelian), the cyclic group and the Klein 4-group. To which of these are $(\mathbb{Z} / 5)^{*},(\mathbb{Z} / 8)^{*}$ and $(\mathbb{Z} / 10)^{*}$ isomorphic?
4. (a) Prove that if $2^{n}+1$ is a prime number, then n must be a power of 2 . (Hint: First show that if $n=a b$ where b is odd, then $2^{a}+1$ is a factor of $2^{n}+1$.) The nth Fermat number F_{n} is defined to be $F_{n}=2^{2^{n}}+1$.
(b) Show that $F_{0}, F_{1}, F_{2}, F_{3}$ and F_{4} are prime.
(c) Show that $\prod_{i=0}^{n-1} F_{i}=F_{n}-2$.
(d) Use (c) to show that $\operatorname{gcd}\left(F_{m}, F_{n}\right)=1$ if $m \neq n$.
(e) Use (d) to give another proof that there are infinitely many prime numbers.
(f) Show that F_{5} is composite. In fact, it is not known whether any of the F_{n} for $n>4$ is prime.
5. Let $n \in \mathbb{N}$. Recall that we are writing $\operatorname{div}(n)$ for the set of (positive) divisors of n. Let $d(n)$ be the number of elements in this set, so $d(n)$ is the number of divisors of n.
(a) Show that $d(n)$ is a multiplicative function (i.e., if $\operatorname{gcd}(m, n)=1$ then $d(m n)=d(m) d(n)$.
(b) Find a formula for $d(n)$ in terms of the prime factorization of n as $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$.

Next, let $\sigma(n)$ be the sum of the (positive) divisors of n.
(c) Show that $\sigma(n)$ is also a multiplicative function.
(d) Find a formula for $\sigma(n)$ in terms of the prime factorization of n.
6. Suppose that $N=p q$ is the product of two diferent (big) prime numbers p and q. Show that p and q are solutions of the quadratic equation

$$
x^{2}+(\varphi(N)-N-1) x+N=0
$$

This shows that finding $\varphi(N)$ is just as hard as factoring N into primes.
7. (a) Using only Fermat's little theorem, show that 899 is composite.
(b) Show that 15 is not a strong pseudoprime relative to 11 .
(c) Show that 25 is a strong pseudoprime relative to 7 .
8. Show that $x^{4}+y^{4}=z^{4}$ has no nontrivial integer solutions (i.e., solutions where neither x nor y is zero).

