1. (a) Find a parametrization for $V(x+2 y-2 z+w+1, x+y+z-w-2)$.
(b) Find the equation of the affine variety determined by the parametric equations

$$
x=\frac{t}{1+t}, \quad y=1-\frac{1}{t^{2}}
$$

2. (a) Draw a graph in \mathbb{R}^{2} of the affine variety $V\left(x^{2}-y^{2}-1\right)$ - this is the "unit hyperbola".
(b) Find a rational parametrization of the hyperbola by considering non-vertical lines through $(-1,0)$ and their intersections with the hyperbola. Interpret what happens for values of the parameter for which the parametrization is undefined.
3. (a) Parametrize the sphere $V\left(x^{2}+y^{2}+z^{2}-1\right)$ in \mathbb{R}^{3} using reasoning similar to the method in the notes for parametrizing the circle. Use lines through the point $(0,0,1)$ that intersect the $x y$-plane at the point $(u, v, 0)$ and then intersect the sphere at the point $x=h_{1}(u, v) . y=h_{2}(u, v), z=h_{3}(u, v)$ - your task is to find the three rational functions h_{1}, h_{2} and h_{3}.
(b) Use similar reasoning to parametrize the $n-1$-dimensional sphere $V\left(x_{1}^{2}+\cdots+x_{n}^{2}-1\right)$ in \mathbb{R}^{n}. Keep in mind that you should need $n-1$ parameters.
4. The strophoid is the curve given parametrically by

$$
x=a \sin t, \quad y=a \tan t(1+\sin t)
$$

where a is a constant ($a=\frac{1}{2}$ in the following picture, the curve is asymptotic to the line $x=a$ as $y \rightarrow \pm \infty)$:

(a) Find a polynomial $p(x, y)$ so that the strophoid is $V(p)$. (Careful, the answer is not $\left(a^{2}-x^{2}\right) y^{2}-$ $\left.x^{2}(a+x)^{2}\right)$.
(b) Find an algebraic parametrization of the strophoid.
5. (a) Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and let $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{s}\right]$. Explain why the following statements are equivalent:

- $f_{1}, \ldots, f_{s} \in I$.
- $\left\langle f_{1}, \ldots, \boldsymbol{f}_{s}\right\rangle \subset I$.
(b) Use (a) to prove the following pairs of ideals are equal in $\mathbb{Q}[x, y]$:

1. $\langle x+y, x-y\rangle=\langle x, y\rangle$
2. $\left\langle x+x y, y+x y, x^{2}, y^{2}\right\rangle=\langle x, y\rangle$
3. $\left\langle 2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right\rangle=\left\langle x^{2}-4, y^{2}-1\right\rangle$
4. (a) Let $V \in \mathbb{R}^{3}$ be the curve parametrized by $\left(t, t^{3}, t^{4}\right)$. Prove that V is an affine variety and determine $I(V)$ (use the reasoning given in the notes for the twisted cubic).
(b) Repeat part (a) for the curve parametrized as $\left(t^{2}, t^{3}, t^{4}\right)$. This one's a little harder.
5. Let \mathbb{F}_{2} be the field with two elements (we had been calling this $\mathbb{Z} / 2$). Find the ideal $I \subset \mathbb{F}_{2}[x, y]$ consisting of all polynomials that are zero at every point (all four of them) of \mathbb{F}_{2}^{2}.
6. The Nullstellensatz is fairly straightforward for the ring $\mathbb{C}[x]$ because every polynomial $p \in \mathbb{C}[x]$ factors completely into linear factors:

$$
p(x)=a\left(x-r_{1}\right)^{e_{1}}\left(x-r_{2}\right)^{e_{2}} \cdots\left(x-r_{k}\right)^{e_{k}}
$$

(a) For the polynomial above, what is $V(p)$?
(b) We have $\operatorname{deg}(p)=e_{1}+\cdots+e_{k}$. It is possible that $\operatorname{deg}(p)>k$. Find a polynomial q such that $\operatorname{deg}(q)=k$ and $V(q)=V(p)$. What is $I(V(p))$?
(c) The polynomial q in the above is called the reduced or square-free part of p. We'll denote it as $q=f_{R}$. Prove that

$$
f_{R}=\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}
$$

where f^{\prime} is the (formal) derivative of f, i.e., if $f=a_{m} x^{m}+\cdots+a_{0}$ then $f^{\prime}=m a_{m} x^{m-1}+\cdots+a_{1}$.
(d) Show that $x^{3}+x+1$ is square-free.
(e) Find the square-free part of

$$
x^{11}-x^{10}+2 x^{8}-4 x^{7}+3 x^{5}-3 x^{4}+x^{3}+3 x^{2}-x-1 .
$$

