MATH 371 - Homework 6- October 16, 2013

1. (a) Let $\varphi: R \rightarrow S$ be a ring homomorphism, and suppose S is an integral domain. Prove that $\operatorname{ker}(\varphi) \subset R$ is a prime ideal.
(b) Let I and J be ideals of R and P be a prime ideal of R. Prove that if $I J \subset P$ then either $I \subset P$ or $J \subset P$.
(c) Suppose R is a principal ideal domain. Prove that every ideal in the quotient ring R / I is principal.
2. Is the ring $\mathbb{Z}[\sqrt{-2}]$ a Euclidean domain? How about $\mathbb{Z}[\sqrt{-3}]$? How about $\mathbb{Z}[\sqrt{-5}]$?
3. Prove there are infinitely many prime numbers congruent to $3 \bmod 4$ (see the end of the notes on rings for primes congruent to $1 \bmod 4)$.
4. Let p be a prime integer. Define

$$
\mathbb{Z}_{(p)}=\left\{\left.\frac{a}{s} \in \mathbb{Q} \right\rvert\, p \nmid s\right\} \subset \mathbb{Q} .
$$

(a) Prove that \mathbb{Z} is a subring of $\mathbb{Z}_{(p)}$ and that $\mathbb{Z}_{(p)}$ is a subring of \mathbb{Q}. What is the field of fractions of $\mathbb{Z}_{(p)}$?
(b) What are the units in $\mathbb{Z}_{(p)}$?
(c) Show that every non-zero element $\alpha \in \mathbb{Z}_{(p)}$ can be written uniquely as $u p^{n}$ where u is a unit and $n \geqslant 0$.
(d) Let I be a non-zero ideal of $\mathbb{Z}_{(p)}$. Show that $I=\left\langle p^{n}\right\rangle$ for some $n \geqslant 0$.
(e) Show that $\mathbb{Z}_{(p)}$ contains only one maximal ideal.
5. Show that $R[x]$ is an integral domain if R is an integral domain.
6. (a) Suppose the rational number $\alpha=a / s$, where a and s where $\operatorname{gcd}(a, s)=1$. Show that if α is a root of the polynomial

$$
a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]
$$

then $a \mid a_{0}$ and $s \mid a_{n}$.
(b) Prove that if a rational number α is a root of a monic polynomial in $\mathbb{Z}[x]$, then $\alpha \in \mathbb{Z}$.
(c) Generalize this to the case where R is a unique factorization domain and F is its field of fractions (so the conclusion is that if $\alpha \in F$ is a root of a monic polynomial in $R[x]$ then in fact $\alpha \in R$).
7. (a) Show that if p is prime then $\Phi_{p}(x)=x^{p-1}+\cdots+x+1$.
(b) Show that if p is prime then $\Phi_{p^{k}}(x)=\Phi_{p}\left(x^{p^{k-1}}\right)$.
(c) Show that if $n \geqslant 3$ is odd then $\Phi_{2 n}(x)=\Phi_{n}(-x)$.
8. Let $\varphi: R \rightarrow S$ be a ring homomorphism. Prove that $\bar{\varphi}: R[x] \rightarrow S[x]$ given by

$$
\bar{\varphi}\left(a_{n} x^{n}+\cdots+a_{1} x+a_{0}\right)=\varphi\left(a_{n}\right) x^{n}+\cdots+\varphi\left(a_{1}\right) x+\varphi\left(a_{0}\right)
$$

is a ring homomorphism.
9. (a) Calculate $\Phi_{8}(x)$.
(b) Show that Φ_{8} is reducible in $\mathbb{F}_{p}[x]$ for $p \equiv 1(\bmod 4)$.
(c) Suppose that $p \equiv 3(\bmod 8)$. Show that there is an element $a \in \mathbb{F}_{p}$ such that $a^{2}=-2$ (maybe you don't have to find a to do this!). Prove for such a value of a that $\Phi_{8}=\left(x^{2}+a x-1\right)\left(x^{2}-a x-1\right)$ in $\mathbb{F}_{p}[x]$.
(d) Now suppose $p \equiv 7(\bmod 8)$. Show that there is an $a \in \mathbb{F}_{p}$ such that $a^{2}=2$. Prove for such a value of a that $\Phi_{8}=\left(x^{2}+a x-1\right)\left(x^{2}-a x-1\right)$ in $\mathbb{F}_{p}[x]$.
(e) Conclude that Φ_{8} is reducible in $\mathbb{F}_{p}[x]$ for all prime numbers p.

10 (from class, 10/17): We know that there is, up to isomorphism, one field with $8=2^{3}$ elements. There are two irreducible cubic polynomials in $\mathbb{F}_{2}[x]$, namely $p=x^{3}+x^{2}+1$ and $q=x^{3}+x+1$. Therefore $E=\mathbb{F}_{2}[x] /\langle p\rangle$ and $E^{\prime}=\mathbb{F}_{2}[x] /\langle q\rangle$ are both fields of order 8. Describe these fields explicitly and then find the isomorphism $\varphi: E \rightarrow E^{\prime}$.

