MATH 371 - Homework 7- October 25, 2013

1. Let R be a unique factorization domain, with fraction field F (if you want, you can assume $R=\mathbb{Z}$ and $F=\mathbb{Q}$, but also try the general case). Let $p(x) \in R[x]$. (Recall that we have proved that the ring $F[x]$ of polynomials in a single variable over a field is a unique factorization domain).
(a) Suppose $p(x)=a(x) b(x)$ for a pair of nonconstant polynomials $a(x), b(x) \in F[x]$ (so p is reducible in $F[x]$). Show that there is an element $d \in R$ and polynomials $A(x), B(x) \in R[x]$ such that $d p(x)=A(x) B(x)$.
(b) Assume that the element d in part (a) is not a unit of R. Then d has a factorization as $d=p_{1} p_{2} \cdots p_{k}$ into primes in R which is unique up to order and multiplication by units. Explain why $\left\langle p_{i}\right\rangle \subset R$ is a prime ideal in R. Further, explain why $\left\langle p_{i}\right\rangle \subset R[x]$ (where this time $\left\langle p_{i}\right\rangle$ means all polynomial multiples of p_{i}) is a prime ideal in $R[x]$.
(c) Explain why $\left(R /\left\langle p_{i}\right\rangle\right)[x] \cong R[x] /\left\langle p_{i}\right\rangle$, where on the left $\left\langle p_{i}\right\rangle \subset R$ and on the right $\left\langle p_{i}\right\rangle \subset R[x]$, and then show that $R[x] /\left\langle p_{i}\right\rangle$ is an integral domain.
(d) Prove that it must be the case that either $p_{i} \mid A(x)$ or $p_{i} \mid B(x)$ in $R[x]$, and so we can cancel p_{i} from both sides of $d p(x)=A(x) B(x)$ within $R[x]$.
(e) Explain why this implies that $p(x)$ can be factored into $p(x)=\bar{A}(x) \bar{B}(x)$, where $\bar{A}(x), \bar{B}(x) \in$ $R[x]$.
(This fact, namely if p is reducible in $F[x]$ then it is reducible in $R[x]$ is sometimes called Gauss's lemma.)
2. (a) Using problem 1 , show that if R is a unique factorization domain with fraction field F, and p is a polynomial such that the greatest common divisor of all the coefficients of p is 1 (this happens for instance if p is monic) then p is irreducible in $R[x]$ if and only if p is irreducible in $F[x]$.
(b) Suppose $p(x)$ is a polynomial in $R[x]$. After factoring out the greatest common divisor of the coefficients, so $p(x)=d q(x)$, explain why $q(x)$ has a unique (up to order and multiplying by units in R) factorization in $R[x]$ (given what you know about $F[x]$), and so p has a unique factorization in $R[x]$.
(c) Explain why this implies that, for an integral domain R, R is a unique factorization domain if and only if $R[x]$ is.
(d) Show that this implies that if R is a unique factorization domain, then so is $R\left[x_{1}, \ldots, x_{n}\right]$ for any (finite) number of variables x_{1}, \ldots, x_{n}.
3. (a) Let R be a ring, and I an ideal of R. Show that $I[x]$ polynomials with coefficients in I is an ideal of $R[x]$, and that $R[x] / I[x] \cong(R / I)[x]$. Explain why, if I is a prime ideal of R then $I[x]$ is a prime ideal of $R[x]$.
(b) Now suppose R is an integral domain, I is a proper ideal of R and $f(x)$ is a non-constant monic polynomial in $R[x]$. Prove that if $f(x)$ (actually, the image of f) cannot be factored into two
polynomials of lower degree in $(R / I)[x]$ then $f(x)$ is irreducible in $R[x]$.
(c) Show that for all $k \geqslant 2, f(x)=x^{k}+x+1$ is irreducible in $\mathbb{Z}[x]$ (consider the image of f in $\mathbb{F}_{2}[x]$.
(d) Suppose p is a prime number (in \mathbb{Z}) and let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ be a monic polynomial of degree $n \geqslant 1$. Suppose that $p \mid a_{i}$ for all $i=0,1, \ldots, n-1$ but p^{2} does not divide a_{0}. Prove that f is irreducible in $\mathbb{Z}[x]$ and in $\mathbb{Q}[x]$. (Consider the reduction of $f \bmod p$.)
(e) Show that $x^{4}+10 x+5$ is irreducible in $\mathbb{Z}[x]$.
(f) Show that if p is prime, then the cyclotomic polynomial $\Phi_{p}(x)$ is irreducible in $\mathbb{Z}[x]$ (Apply part (d) to $\Phi_{p}(x+1)$).
(e) Generalize part (d) to an arbitrary integral domain ("Let P be a prime ideal of the integral domain R...") and prove it.
4. Let $R=\mathbb{F}_{2}[x] /\left\langle x^{3}+1\right\rangle$ and let $\alpha=[x] \in R$.
(a) Find an irreducible factorization of $x^{3}+1$ in $\mathbb{F}_{2}[x]$.
(b) How many elements does R have? Write down the multiplication rule for elements of R.
(c) Which elements of R are units? What group is R^{*} ?
5. Suppose F is a (the) finite field with p^{n} elements and $E \subseteq F$ is a finite field with p^{m} elements.
(a) Prove that $m \mid n$ (view F as a vector space over E).
(b) If $a \mid b$, for $a, b \in \mathbb{N}$, prove that $x^{p^{a}}-x \mid x^{p^{b}}-x$ in $\mathbb{Z}[x]$.
(c) If $m \mid n$, prove that F contains a subfield with p^{m} elements explicitly by showing that $\left\{x \in F \mid x^{p^{m}}=x\right\}$ is a subfield of F with p^{m} elements.
6. (a) How many monic irreducible polynomials of degree 3 are there in $\mathbb{F}_{11}[x]$?
(b) How many monic irreducible polynomials of degree 6 are there in $\mathbb{F}_{13}[x]$?
