MATH 371 - Homework 7- November 1, 2013

1. I'm not sure what I was thinking with problem 3(c) last week, so let's try it again - for some values of k the polynomial $x^{k}+x+1$ is irreducible in $\mathbb{Z}[x]$ but for other values of k it's not. Which are which? Proof?
2. Prove that one of 2,3 or 6 is a square in \mathbb{F}_{p} for every prime p. Conclude that the polynomial

$$
x^{6}-11 x^{4}+36 x^{2}-36=\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-6\right)
$$

has a root $\bmod p$ for every p but has no root in \mathbb{Z}.
3. (a) Show that the polynomial $x^{p}-x-a$ is irreducible in $\mathbb{F}_{p}[x]$ for any $a \in \mathbb{F}_{p}$ provided $a \neq 0$.
(b) Let $\alpha=[x]$ in $E=\mathbb{F}_{p}[x] /\left\langle x^{p}-x-a\right\rangle$ and show that the mapping $\varphi: E \rightarrow E$ which takes 1 to 1 and α to $\alpha+1$ is an automorphism of E that fixes \mathbb{F}_{p}. Then show that this automorphism generates a cyclic group of automorphisms of E over \mathbb{F}_{p}.
4. Find implicit equations for the affine varieties parametrized as follows:
(a) In $\mathbb{R}^{4}: x_{1}=2 t_{1}-5 t_{2}, x_{2}=t_{1}+2 t_{2}, x_{3}=-t_{1}+t_{2}, x_{4}=t_{1}+3 t_{2}$.
(b) In $\mathbb{R}^{3}: x=t, y=t^{4}, z=t^{7}$
5. Show that all polynomial parametric curves in k^{2} (k a field) are contained in affine algebraic varieties as follows:
(a) Show that the number of distinct monomials $x^{a} y^{b}$ of total degree $\leqslant m$ in $k[x, y]$ is equal to $(m+1)(m+2) / 2$.
(b) Show that if $f(t) g(t)$ are polynomials of degree $\leqslant n$ in t, then for m large enough, the "monomials" $[f(t)]^{a}[g(t)]^{b}$ with $a+b \leqslant m$ are linearly dependent.
(c) Deduce that if C is the polynomial parametric curve in k^{2} given by $x=f(t), y=g(t)$, then C is contained in $\mathbf{V}(F)$ for some $F \in k[x, y]$.
(d) Generalize the above to show that any polynomial parametric surface in k^{3} given by $x=$ $f(t, u), y=g(t, u), z=h(t, u)$ is contained in an algebraic surface $\mathbf{V}(F)$ for some $F \in k[x, y, z]$.

