1. Factor $x^{3}+x+1$ into irreducible factors in $\mathbb{F}_{p}[x]$ for $p=2,3,5$.
2. (a) Show that $x^{5}-x+1$ is an irreducible polynomial in $\mathbb{F}_{3}[x]$.
(b) Conclude that $E=\mathbb{F}_{3}[x] /\left\langle x^{5}-x+1\right\rangle$ is a field. How many elements does it have?
(c) Let $\alpha=[x]$ in E. What is the multiplicative inverse of α in E ?
3. How many monic irreducible polynomials are there of degree 12 in $\mathbb{F}_{7}[x]$? Find one.
4. (a) Calculate the value of the Legendre symbol $\left(\frac{713}{1009}\right)$.
(b) Show that if p is an odd prime number then

$$
\left(\frac{3}{p}\right)=\left\{\begin{array}{ccc}
1 & \text { if } & p \equiv \pm 1(\bmod 12) \\
-1 & \text { if } & p \equiv \pm 5(\bmod 12)
\end{array}\right.
$$

5. (a) Calculate the remainder on division of the polynomial $x^{7} y^{2}+x^{3} y^{2}-y+1$ by $\left(x y^{2}-x, x=y^{3}\right)$. Use the lexicographic order.
(b) Repeat part (a) using the graded lexicographic order.
(c) Repeat parts (a) and (b) with the two polynomial divisors reversed.
(d) Suppose $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a principal ideal, that is $I=\langle f\rangle$. Show that any finite subset of I containing λf for some non-zero $\lambda \in k$ is a Gröbner basis for I.
