MATH 371 - Homework 9- November 9, 2013

- **1**. Factor $x^3 + x + 1$ into irreducible factors in $\mathbb{F}_p[x]$ for p = 2, 3, 5.
- **2**. (a) Show that $x^5 x + 1$ is an irreducible polynomial in $\mathbb{F}_3[x]$.
 - (b) Conclude that $E = \mathbb{F}_3[x]/\langle x^5 x + 1 \rangle$ is a field. How many elements does it have?
 - (c) Let $\alpha = [x]$ in E. What is the multiplicative inverse of α in E?
- **3**. How many monic irreducible polynomials are there of degree 12 in $\mathbb{F}_7[x]$? Find one.
- 4. (a) Calculate the value of the Legendre symbol $\left(\frac{713}{1009}\right)$.
 - (b) Show that if p is an odd prime number then

$$\begin{pmatrix} \frac{3}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{12} \\ -1 & \text{if } p \equiv \pm 5 \pmod{12} \end{cases}$$

5. (a) Calculate the remainder on division of the polynomial $x^7y^2 + x^3y^2 - y + 1$ by $(xy^2 - x, x = y^3)$. Use the lexicographic order.

(b) Repeat part (a) using the graded lexicographic order.

(c) Repeat parts (a) and (b) with the two polynomial divisors reversed.

(d) Suppose $I \subset k[x_1, \ldots, x_n]$ is a principal ideal, that is $I = \langle f \rangle$. Show that any finite subset of I containing λf for some non-zero $\lambda \in k$ is a Gröbner basis for I.