MATH 371 - Homework 10- November 21, 2013

1. Along the lines of what we did in class, express $x^{4}+y^{4}$ as a function of $t_{1}=x+y$ and $t_{2}=x y$.
2. Use Lagrange multipliers to find the max and min of $x^{3}+2 x y z-z^{2}$ subject to the constraint $x^{2}+y^{2}+z^{2}=1$. (Let λ be the Lagrange multiplier. To solve the four equations in four unknowns that result, calculate a Gröbner basis using lex order with $\lambda>x>y>z$ so you get rid of λ first.)
3. Suppose you have numbers x, y, and z that satisfy the equations

$$
\begin{aligned}
& x+y+z=3 \\
& x^{2}+y^{2}+z^{2}=5 \\
& x^{3}+y^{3}+z^{3}=7
\end{aligned}
$$

(a) Prove that $x^{4}+y^{4}+z^{4}=9$. (Hint: Find a [reduced] Gröbner basis for the ideal corresponding to the above equations, and then find the remainder of $x^{4}+y^{4}+z^{4}$ with respect to that basis)
(b) What are $x^{5}+y^{5}+z^{5}$ and $x^{6}+y^{6}+z^{6}$?

