
MATH 371 – Class notes/outline – September 3, 2013

Integers

The set of integers t. . . ,�3,�2,�1, 0, 1, 2, 3, . . .u is denoted by Z. The natural numbers t1, 2, 3, . . .u

is denoted by N. We’ll assume the definitions of addition and multiplication in N, also subtraction

in Z.

N and Z are ordered by the relation x ¥ y means x� y P N. They are totally (linearly) ordered

in the sense that for each x, y in N or Z, we have that either x ¥ y or y ¥ x (or both, in which case

x � y) is true.

Additionally, N is well-ordered, which means every non-empty subset of N has a smallest (first,

initial) element. This statement is equivalent to mathematical induction (you prove that the smallest

number for which the statement in question is false cannot exist, so the set of numbers for which

the statement is false must be empty).

Division with remainder: For every x P Z and d P N there is a unique r P Z and a q P Z such

that x � qd� r with 0 ¤ r   d.

(proof of uniqueness: suppose x � q1d � r1 � q2d � r2 with 0 ¤ r1   r2   d. Subtract and get

r2 � r1 � pq1 � q2qd, but 0 ¤ r2 � r1   d, and so r2 � r1 � 0. Existence: r is the smallest element

of tx� qd | q P Zu XN.)

Divisors: c | a means the remainder on division of a by c is zero — say “c divides a”. Write

rxsd (or just rxs when d is understood) to be the remainder when x is divided by d, so rxsd P

t0, 1, . . . , d� 1u.

Congruences: Write a � b pmod cq to mean that c | b � a. Note that a � rasc pmod cq, and

a � b pmod cq if and only if rasc � rbsc.

Proposition. If x1 � x2 pmod cq and y1 � y2 pmod cq then

x1 � x2 � y1 � y2 pmod cq and x1y1 � x2y2 pmod cq

Therefore, rxys � rrxsryss, which comes in handy for calculations. For example, repeated squaring

to do high powers of (big) numbers:

Example: What is r1211s21? Note that 11 � 23 � 2 � 1 so r1211s � rr122
3

sr122sr12ss (all mod

21). By squaring, compute (mod 21):

r121s � 12

r122s � r144s � 18 � r�3s

r124s � r182s � rp�3q2s � 9

r128s � r92s � r81s � r�3s � 18.

Therefore r1211s � r18�18�12s � r9�12s � r9�p�9qs � r�81s � 3. Note that 1211 � 743, 0080, 370, 688

so the long division way would have taken a while.
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Greatest common divisor: Let n P N (or Z). Define divpnq � td P N | d | nu (set of (positive)

divisors of n.
divp18q � t1, 2, 3, 6, 9, 18u

divp24q � t1, 2, 3, 4, 6, 8, 12, 24u

so divp18q X divp24q � t1, 2, 3, 6u � divp6q. Not a coincidence: gcdp18, 24q � 6.

Fact: (Euclid) Given m,n P Z, there is a unique d P N such that divpmq X divpnq � divpdq.

(proof: Assume that m,n P N Y t0u, get the result for all integers by fiddling with signs. Do

induction on minpm,nq.)

Essential fact about gcd’s: For any m,n P Z there exist λ, µ P Z such that

λm� µn � gcdpm,nq.

In fact you can characterize gcdpm,nq as the smallest positive number in tλm� µn |λ, µ P Zu.

Additional fact: gcdpm,nq � 1 if and only if there are λ and µ such that λm� µn � 1. (In this

case say m and n are relatively prime.

Can find m and n using the Euclidean algorithm (and keeping careful track along the way). The

idea is to replace the larger of m and n by the remainder on dividing by the smaller. Keep doing

this until you get to zero, then then next-to-last remainder is the gcd. Algorithmically express as

follows. Assume m ¡ n, and set r�1 � m, r0 � n. Also set λ�1 � 1, λ0 � 0, µ�1 � 0 and µ0 � 1.

Then keep increasing i until ri � 0, where ri � ri�2 � qiri�1 (this is division with remainder), also

using the same qi already defined, set λi � λi�2 � qiλi�1 and µi � µi�2 � qiµi�1. Check that at

each stage λim� µin � ri, so at the next-to-last stage you’ll have λim� µin � gcdpm,nq.

Here’s an example for the computation of gcdp312, 81q:

i �1 0 1 2 3 4 5
ri 312 81 69 12 9 3 0
qi � � 3 1 5 1 3
λi 1 0 1 �1 6 �7 �
µi 0 1 �3 4 �23 27 �

The result is the next-to-last entry in the ri row, namely, gcdp312, 81q � 3. We also get that

�7 � 312� 27 � 81 � 3 � gcdp312, 27q.

A few important corollaries of this characterization of the gcd:

1. If a | bc and gcdpa, bq � 1 then a | c.

2. If gcdpa, bq � 1 and a | c and b | c then ab | c.

3. If gcdpa, bq � 1 and gcdpa, cq � 1 then gcdpa, bcq � 1.

First, think about why these should be true, and perhaps try and prove them yourself, before

looking at the following proofs:
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Proof of 1: Since gcdpa, bq � 1, we have λa�µb � 1 for some numbers λ, µ, therefore λac�µbc � c.

Since a divides both terms of the sum on the right, it divides the sum, therefore a | c.

Proof of 2: We are given λa � µb � 1 and c � ax � by for some numbers λ, µ, x, y. But then

c � λac� µbc � λaby � µbax � abpλy � µxq so ab | c.

Proof of 3: We know λa � µb � 1 and ρa � σc � 1 for some numbers λ, µ, ρ, σ. Therefore

pλa � µbqpρa � σcq � 1, i.e., λρa2 � λσac� µρab� µσbc � 1, i.e., pλρa� λσc� µρbqa� µσbc � 1.

So we’ve found an integer linear combination of a and bc that sums to 1, therefore gcdpa, bcq � 1.

For the moment, define Z{n � tx P N | 0 ¤ x   nu � t0, 1, 2, . . . , n � 1u simply as a set. You

probably remember giving it the structure of a cyclic group (and in fact it has a ring structure as

well), thanks to the proposition on page 1. Now suppose n factors as n � n1n2 � � �nk, and define

the “remainder map”

r : Z{nÑ Z{n1 � Z{n2 � � � � � Z{nk

to be the map that sends x P Z{n to the k-tuple of remainders prxsn1
, rxsn2

, . . . , rxsnk
q.

Lemma: If gcdpni, njq � 1 for all i � j, then the map r defined above is a bijection (i.e., it is

one-to-one and onto).

To prove this, we’ll repeatedly use corollaries 2 and 3 above. To show the map is injective (one-

to-one), suppose rpxq � rpyq. Then n1 | x � y, n2 | x � y, . . .nk | x � y since x and y leave the

same remainders when divided by any of the ni. From the first two of these, corollary 2 tells us that

n1n2 | x� y. But then corollary 3 tells us that gcdpn1n2, n3q � 1, so we can use corollary 2 to get

that n1n2n3 | x� y. Proceed inductively and finally arrive at n1n2 � � �nk | x� y, i.e., n | x� y. But

both x and y are non-negative and less than n, so this can’t happen unless x � y � 0, i.e., x � y.

So the map is injective. And since it’s a map of finite sets of the same size, it’s surjective as well.

This lemma leads naturally to:

The Chinese Remainder Theorem: (Sun-Tzu [c. 400 A.D.]) Let n � n1n2 � � �nk with gcdpni, njq �

1 for i � j. Then, given any integers a1, a2 . . . , ak the system of congruences

x � a1 pmod n1q

x � a2 pmod n2q

...
...

...

x � ak pmod nkq

has solutions x. The system has exactly one solution x in Z{n, and any two solutions are congruent

mod n. Also if x is one solution then x� kn is another solution for any k P Z.

The uniqueness etc statements at the end are obvious from the Lemma, so we’ll concentrate on

existence of a solution. For each i between 1 and k, set mi � n{ni. Since mi is the product of all

the nj ’s except for ni, and the nj ’s are relatively prime, repeated application of corollary 3 above

shows that gcdpmi, niq � 1, therefore there are numbers λi and µi so that λini � µimi � 1. Let

βi � µimi � µin{ni. Then we have λiniai � βiai � ai, which shows that βiai � ai pmod niq and

since mi � 0 pmod njq for j � i, we have βiai � 0 pmod njq for j � i. From these observations it

is easy to see that x � β1a1 � β2a2 � � � � � βkak is a solution to the problem.
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As an example, let’s find the number x less than 30 that leaves remainder 1 when divided by

2, leaves remainder 2 when divided by 3 and leaves remainder 4 when divided by 5. So we need

to solve x � 1 pmod 2q, x � 2 pmod 3q, x � 4 pmod 5q (note that 2 � 3 � 5 � 30). The Euclidean

algorithm tells us that �7 � 2 � 1 � 15 � 1, so we take β1 � 1 � 15 � 15. Then �3 � 3 � 1 � 10 � 1 so

we take β2 � 1 � 10 � 10. Finally �1 � 5 � 1 � 6 � 1 so we take β3 � 1 � 6 � 6. So one number that

solves the congruences is 15 � 1� 10 � 2� 6 � 4 � 59, which is congruent to 29 mod 30. And 29 is the

unique solution of our problem.

Euler’s ϕ-function: Write pZ{nq� for the subset of Z{n consisting of numbers x P t0, 1, . . . , n�

1u for which gcdpx, nq � 1. By corollary 3 above, this set is closed under multiplication (mod n),

since gcdp1, nq � 1 we have 1 P pZ{nq�, and since in the expression λn � µx � 1 it is possible

to choose µ such that 0 ¤ µ   n (this is homework problem 6(a)), we get that µ also satisfies

gcdpµ, nq � 1 and µx � 1 pmod nq, so multiplicative inverses exist in pZ{nq�. Hence pZ{nq� is a

group with the operation of multiplication.

What is the order of the group pZ{nq�? This doesn’t seem so obvious. It is obviously a function

of n, and Euler decided to give this function the name ϕ, so ϕpnq is now called Euler’s ϕ-function.

Here is a table for some small values of n:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ϕpnq 0 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6

It looks like ϕpnq is even for all n ¡ 2 — deciding whether this is true will be part of next week’s

homework. On the other hand, it might be hard to discern any other patterns here. One impor-

tant property of ϕ is that it is one of a number of remarkable number theoretic functions called

multiplicative functions, which is the content of the following:

Proposition: If m and n are relatively prime, then ϕpmnq � ϕpmqϕpnq.

The hypothesis of m and n being relatively prime is essential, for instance note 4 � ϕp3qϕp6q �

ϕp18q � 6. To prove the proposition, we’ll use the remainder map r defined above, in this case

r : Z{mnÑ Z{m� Z{n,

and the fact proved in the lemma that r is a bijection.If we can show that the restriction of rpxq P

pZ{mq� � pZ{nq� if and only if x P pZ{mnq� we’ll be done, since the restriction of a bijection is still

a bijection (so these two sets must therefore be the same size). In other words we have to show that

gcdpx,mq � gcdpx, nq � 1 if and only if gcdpx,mnq � 1. The “only if” part is corollary 3 from the

bottom of page 2. And if gcdpx,mnq � 1 then there are λ and µ such that λx� µmn � 1, in other

words λx� pµnqm � 1 (so gcdpx,mq � 1) and λx� pµmqn � 1 (so gcdpx, nq � 1) and we are done.

It’s a bit subtle, but note that the place where we used gcdpm,nq � 1 is that r is a bijection.

Euler’s theorem: Given a P Z and n P N such that gcdpa, nq � 1, we have aϕpnq � 1 pmod nq.

This is simply the fact that the order of an element of a group divides the order of the group (in

this case the group is pZ{nq�.

Prime numbers

A number p P N is prime if it is not expressible as the product of natural numbers less than

itself. In other words, p is prime if and only if divppq � t1, pu and 1 � p. Because of this, we have
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that if p is prime, then for any natural number x, either p|x or else gcdpp, xq � 1. Also, thanks to

corollary 1 on page 2, we have:

Basic fact about prime numbers: If p is prime and p | ab, then either p | a or p | b (or both).

Prime numbers are the multiplicative building blocks of N and Z. In particular

Unique factorization: Every natural number can be expressed as a product of prime numbers

in a unique way (up to the order of the factors).

Existence is by induction; show that the smallest natural number that can’t be factored must

itself be prime. Uniqueness is by cancellation: if x has two factorizations x � p1p2 � � � pk � q1q2 � � � q`,

then cancel all the common factors from both sides. If there’s anything left, use the basic fact above

to show that anything that remains on one side must in fact also be on the other, contradicting that

all common factors were cancelled.

Euclid’s theorem: There are infinitely many prime numbers.

Calcuating ϕpnq: Use prime factorization to calculate ϕpnq. Since we can factor n � pe11 p
e2
2 � � � pekk ,

from the proposition above we only need a formula for ϕppeq. But the numbers less than but not

relatively prime to pe are simply the multiples of p, namely p, 2p, 3p, ppe�1qp, so there are pe�1 of

them. Therefore ϕppeq � pe � pe�1 if p is prime. From this we get:

If n � pe11 p
e2
2 � � � pekk , then

ϕpnq � n

�
1�

1

p1


�
1�

1

p2



� � �

�
1�

1

pk



.

The RSA cryptosystem

The RSA system is a “public-key” system. This means that the method of encrypting messages

is made public, but the method of decrypting encoded messages is kept secret. This is possible

because the system is based on the difficulty of factoring large (on the order of 10200) numbers. The

method starts with two large (on the order of 10100) prime numbers p and q (which are kept secret),

and their product N � pq (which is made public).

The “message” to be sent is cast in the form of a number X (this can be done in many ways

and can be quite simplistic, because the power of the system is in the large primes p and q — so a

system like A� 01, B� 02, etc is perfectly fine), where 0 ¤ X   N . A very long message can be

broken up and represented by a sequence of numbers X1, X2, . . ..

To encrypt the message, a special exponent e is chosen (and published, so anyone can encrypt

a message), and the encrypted message is rXesN (we know a reasonably efficient way to compute

this, using repeated squaring). The key point in the workings of the RSA system is that there is

a unique number d with the property that rpXeqdsN � rXedsN � X, so an encrypted message can

be deciphered by raising it to the dth power mod N . And it’s important to keep the number d a

secret, so that only those who know it can decode encrypted messages. As it turns out, figuring out

d, given N and e is an impracticable task, equivalent to factoring N into its constituent primes p

and q. So as long as p, q and d are kept secret, only the intended recipient will be able to decode

messages, even though anyone can send them.
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So the challenge of the RSA system is to come up with two big primes p and q to multiply together

(more on this below), and to come up with appropriate exponents e and d, so that rXedsN � X. To

do this, we’ll be using Euler’s theorem, together with our method for computing the ϕ-function.

In particular, since N � pq, we have that ϕpNq � ϕppqϕpqq � pp� 1qpq � 1q.

Proposition: For any k P N, we have Xkpp�1qpq�1q�1 � X pmod Nq for all X P Z.

In other words, N | pXkpp�1qpq�1q�1 �X. By good old corollary 2, it’s enough to show this with

N replaced by p and q individually, since they’re (relatively) prime. The proof is the same for p

and q so we just do it for p. Since p is prime, we either have p | X or gcdpp,Xq � 1. In the first

case, X � 0 pmod pq and so any power of X is congruent to zero mod p, so the result is trivial. If

gcdpp,Xq � 1, note that Euler’s theorem tells us that Xϕppq � Xp�1 � 1 pmod pq. Raise both sides

to the kpq � 1q power (1 raised to any power is still 1 mod p), and get Xkpp�1qpq�1q � 1 pmod pq.

Multiply both sides of this by X to get the result in this case, and we are done.

Now, for the encryption exponent e, choose any number such that 0 ¤ e   N and gcdpe, ϕpNqq �

gcdpe, pp � 1qpq � 1qq � 1. There are lots of them! By problem 6(a) of the first homework, we can

thus choose λ and µ with 0   µ   pp�1qpq�1q so that λpp�1qpq�1q�µe � 1. Claim the decryption

exponent d is equal to µ. To see this, put k � �λ and see that de � µe � kpp� 1qpq� 1q � 1, which

is just what is needed to apply the proposition above.

Finding large primes

To implement the RSA system, we need a method for producing those large, 100-digit prime

numbers to multiply together. Large prime numbers are rare, but not exceedingly so among numbers

that size, so the standard method for finding them involves testing a bunch of large odd numbers (a

few hundred, maybe) until you find prime ones.

So the question is, how do you efficiently test whether a large number is prime? In the 1980s,

Miller and Rabin came up with a surprising (even revolutionary) approach. They realized that

even though it seems quite hard (expensive) to prove whether a number is prime, there is a not-so-

expensive way to render determinations of primality that are right almost all of the time (in that

their error rate is less than 1 in 1050, say. And their method uses little more theory than what we

have already developed.

We’ll start with an easy corollary of Euler’s theorem:

Fermat’s little theorem: If p P N is a prime number and a P Z is not a multiple of p, then

ap�1 � 1 pmod pq.

Unfortunately, Fermat’s little theorem is not an if and only if statement; if it were then it would

give an easy test for primality. As it is, we can sometimes use it to tell whether a number is

composite. For example, if 10 were a prime number then 29 � 512 would be congruent to 1 mod 10,

but 29 � 2 pmod 10q. Therefore 10 is composite. But it is not necessarily the case that p is prime

if 2p�1 � 1 pmod pq, for example 2340 � 1 pmod 341q, but 341 � 11 � 31.

We’ll say that n is a base-a pseudoprime (or n is a pseudoprime relative to a) if an�1 � 1 pmod nq.

So we have that 341 is a base-2 pseudoprime. That’s the official lingo. But we’ll use more intuitive
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language and say that if n is a composite number, then a is a Fermat witness to the compositeness

of a if an�1 � 1 pmod nq (since this fact is a proof that n is composite), and that n is a Fermat liar

if an�1 � 1 pmod nq (even though n is not prime).

The fact that 2 is a Fermat liar for some n prevents the following test from being very reliable:

Given n, determine whether 2n�1 � 1 pmod nq. If not, then declare n to be composite

(with certainty); if so, then declare n to be prime (but this might not be so).

The Miller-Rabin primality test works somewhat like this, but reduces the doubt in the decla-

ration that n is prime to a microscopic amount. This is achieved by two improvements: First, the

method checks several bases (not just 2) to see if they are Fermat witnesses to the compositeness of

n. Second, it uses one additional test to reduce the probability that the method will be fooled even

further.

The second part of the Miller-Rabin test checks to see whether there is a “fake square root of 1”,

in other words, a number x P Z{N other than 1 or N � 1 (which is congruent to �1 mod N) such

that x2 � 1 pmod Nq. Such a number cannot exist if N is prime, since x2 � 1 � 0 pmod Nq means

that N | px� 1qpx� 1q. But if N is prime then this implies that either N | x� 1 or N | x� 1, i.e.,

x � �1 pmod Nq.

For example, if N � 8 we have four solutions to x2 � 1 � 0 pmod 8q, namely 1, 3, 5 and 7. This

shows that 8 is not a prime number.

So now we’ll say that a number b is a Miller-Rabin witness to the compositeness of N if b is

either a Fermat witness for N or else if the following holds: Express the even number N � 1 as 2tu,

where u is odd and t ¥ 1. Set x0 � bu, and then for i � 1, 2, . . . , t set xi � x2i�1 pmod Nq (so that

at the end of this process, xt � bN�1, which is needed for the Fermat test). If for any i we have

xi � 1 pmod Nq but xi�1 � �1 pmod Nq, then we’ve found a fake square root of 1 mod N (namely

b2
i�1u), and so b is a Miller-Rabin witness.

If N is composite but b is not a Miller-Rabin witness then b is called a strong pseudoprime

relative to N — but we’ll just call b a Miller-Rabin liar for N .

The Miller-Rabin algorithm for primality testing works like this: Choose several (maybe 100)

values of b from 1 ¤ b ¤ N � 1 randomly. If any of the chosen values of b is a Miller-Rabin witness

then N is definitely composite. If none of the values of b are MR-witnesses, then N is almost surely

prime.

How certain is “almost surely” here? To answer this we need:

Theorem: For any odd composite number N , the number of witnesses to the compositeness of N

is at least 1
2 pN � 1q.

First, we note that any non-witness b must be relatively prime to N , since a non-witness would

satisfy bN�1 � 1 pmod Nq, so there is a solution to bx � 1 pmod Nq, namely x � bn�2. Therefore

N | bx� 1, or bx� 1 � qN , i.e., bx� qN � 1 which means gcdpb,Nq � 1.

Thus, all non-witnesses are contained in pZ{Nq�. We’ll show that they are contained in a proper
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subgroup B � pZ{Nq� — since the order of a subgroup divides the order of the group, B can have

at most half the number of elements pZ{Nq� does, which will show that the number of non-witnesses

is at most 1
2 pn� 1q.

There are two cases to consider. The first case, which applies most of the time, is pretty easy to

handle. It is the case where there is at least one Fermat witness x to the compositeness of N within

pZ{Nq�, i.e., xN�1 � 1 pmod Nq. In this case, we’ll take B to be the set

B � tb P pZ{Nq� | bN�1 � 1 pmod Nqu.

We know that B � H since �1 P B, and B is clearly closed under multiplication, so B is a subgroup

of pZ{Nq�. Every non-witness belongs to B by definition, but x R B, therefore B is a proper

subgroup of pZ{Nq�, so |B| ¤ 1
2 |pZ{Nq

�|   1
2 pN � 1q and so the number of witnesses must be

greater than N � 1
2 pn� 1q � 1

2 pn� 1q.

The second case (rare but harder) is when every x P pZ{Nq� is a Fermat non-witness, i.e., for

every x such that 1 ¤ x   N and gcdpx,Nq � 1 we have xN�1 � 1 pmod Nq. When this occurs, N

is called a Carmichael number. We’re going to need some preliminary results to deal with this case.

The first one shows that Carmichael numbers are at least somewhat unusual.

Lemma: If N is a Carmichael number, then N has at least three distinct prime factors and N is

not divisible by the square of any prime.

We’ll deal with the second part first. So suppose that p2 | N for some prime p, so we can write

N � pkx with k ¡ 1 and p - x. Since clearly gcdppk, xq � 1, we can use the Chinese Remainder

Theorem to find a number z such that 1 ¤ z   N , z � p � 1 pmod pkq, and z � 1 pmod xq. Since

gcdpz, pkq � 1 (which implies gcdpz, pq � 1) and gcdpz, xq � 1, we know that gcdpz,Nq � 1 by good

old corollary 3.

Now, we’ll show that z is a Fermat witness for N . To do this, we’ll show that zN�1 � 1 pmod p2q

(and so it cannot be the case that zN�1 � 1 pmod Nq, since if p2 - zN�1 � 1 then N , which has p2

as a divisor, can’t divide zN�1 � 1 either).

To show that zN�1 � 1 pmod p2q we begin with the fact that pp � 1qp � 1 pmod p2q (see

this by expanding the left side out, the only tricky term is the linear one), which implies (recall

z � p� 1 pmod p2q) that

zN � pp� 1qN � pp� 1qppp
k�1xq � 1p

k�1x � 1 pmod p2q .

Thus zN � z pmod p2q which implies that zN�1 � 1 pmod p2q and so p2 - N for any prime p.

Now we have to show that a Carmichael number must have at least three distinct prime factors.

So we’ll show that a product of two distinct primes N � pq with p   q cannot be a Carmichael

number (i.e., there must be a Fermat witness to the compositeness of N). We will need to use a

fact about polynomials whose proof we are going to postpone until a week or so from now, when

we take up a more systematic study of polynomials: A polynomial ppxq of degree d can have at

most d distinct roots (solutions of ppxq � 0 pmod pq in t0, 1, . . . , p � 1u) if p is prime (we saw a

counterexample to this above is p is not prime, namely x2 � 1 � 0 pmod 8q). The specific instance

of this we are going to use for our Carmichael numbers allows us to assert that there are at most
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p� 1 solutions of xp�1 � 1 pmod qq. Since p   q, this means we can choose x P t1, . . . , q � 1u such

that xp�1 � 1 pmod qq. We claim that such an x is a Fermat witness for N . In particular, we have

xN�1 � xpq�1 � xpq�qxp�1 � pxpqq�1xp�1 � xp�1 � 1 pmod qq

(we know that pxpqq�1 � q pmod qq by Fermat’s little theorem because q is prime). And since

xN�1 � 1 pmod qq, we have xN�1 � 1 pmod Nq and we are done with the proof of the lemma.

Now we’re in the home stretch:

Proposition: If N is a Carmichael number, then at least 3
4 of the numbers in t0, 1, . . . , Nu are

Miller-Rabin witnesses to the compositeness of N .

Correspondingly, we’re going to show there are at most n�1
4 Miller-Rabin liars. As before, factor

N � 1 as N � 1 � 2tu with t ¥ 1 and u odd. Partition the set t1, 2, . . . n� 1u into disjoint subsets

X,Y, Z1, Z2, . . . , Zt as follows:

• x P X if gcdpx,Nq ¡ 1.

• x P Y if xu � 1 pmod Nq

• x P Zj if x2
ju � 1 pmod Nq but x2

j�1u � 1 pmod Nq.

The set X contains no Miller-Rabin liars, since all the elements of X are in fact Fermat witnesses

for N . We claim that |Y |   1
8 pN � 1q and each Zj contains at most 1

7 |Zj | Miller-Rabin liars. If this

claim is true, then

number of MR-liars ¤ |Y | � 1
7 pN � 1� |Y |q � 6

7 |Y | �
1
7 pN � 1q ¤ 6

7 p
1
8 pN � 1qq � 1

7 pN � 1q � 1
4 pN � 1q

which will complete the proof of the proposition.

So, let N � p1p2 � � � pk where k ¥ 3 and the pi are distinct odd primes. By the Chinese Remainder

Theorem, choosing x P t1, 2, . . . , n � 1uzX is equivalent to choosing numbers xi P t1, 2, . . . , pi � 1u

for each i � 1, 2, . . . , k (i.e., it must be the case that x � 0 pmod piq for all i because x and N have

no common factors other than 1).

Now, x P Y means xu � 1 pmod Nq. By the uniqueness part of the Chinese Remainder Theorem,

this means that xui � 1 pmod piq for all i (since 1 must be the only number int1, . . . , N � 1u with

x1 � x2 � � � � � xk � 1). But we can show that at most half of the numbers y in t1, . . . , pi � 1u

satisfy yu � 1 pmod piq: This is because the set Bi of y satisfying yu � 1 pmod piq forms a group

under multiplication, but pi � 1 R Bi since u is odd and so ppi � 1qu � p�1qu � �1 � 1 pmod piq.

Therefore |Bi| ¤
1
2 ppi � 1q.

Therefore, when we specify x by picking xi P t1, . . . , pi � 1u uniformly and at random for each

i � 1, 2, . . . , k, the probability that all of the xi satisfy xui � 1 pmod piq is at most p 12 q
k ¤ 1

8 since

k ¥ 3. Thus |Y | ¤ 1
8 pN � 1q.

Finally, we turn to the sets Zj . As above, an element x of Zj can be represented by the k-tuple

px1, x2, . . . , xkq, where xi P t1, . . . , pi � 1u, but now x P Zj means that x2
ju

i � 1 pmod pqi for all i.

Because pi is prime, this implies that x2
j�1u

i � �1 pmod piq for each i. So to each x P Zj we can
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associated a k-tuple of � and � signs according to the signs of x2
j�1u

i pmod piq. Note that the sign

sequence is never p�,�, . . . ,�q or else we’ll have x P Z` for some `   j.

Since �1 pmod Nq is represented by the sign sequence p�,�, . . . ,�q, the only way for x to be a

Miller-Rabin liar is for its sign sequence to be all minus signs. If Zj contains a Miller-Rabin liar, then

the equation x2
j�1u � �1 pmod piq has a solution which we’ll call yi for each i � 1, . . . , k. Now use

the Chinese Remainder Theorem to find a number wi P t1, . . . , N � 1u satisfying wi � yi pmod piq

and wi � 1 pmod pjq for all j � i. Then multiplication of x P t1, . . . , Nu by wi flips the ith sign in

the sign sequence of x and leaves the others fixed — and thus gives a 1� 1 correspondence between

the elements of j with the original and flipped sign sequences. Since you can get from one sign

sequence to any other by a succession of individual sign flips, each of the 2k � 1 possible sequences

occurs an equal number of times (namely |Zj |{p2
k � 1q. And since k ¥ 3, we have that the number

of liars (i.e., the size of the set with all negatives in the sign sequence) in Zj is at most 1
7 |Zj |.


