
MATH 371 – Class notes/outline – September 12, 2013

Polynomials

Another source of ring theory is the study of polynomials, particularly polynomials “over a field”.

For now, we’ll restrict our attention to the fields Q, R and C of rational, real and complex numbers

respectively. Later we’ll deal with other fields, and sometimes with polynomials over a ring (like Z).

A monomial in the variables x1, . . . , xn is a product xα1
1 � xα2

2 � � �xαn
n where all the exponents

α1, . . . , αn are non-negative integers. The total degree of the monomial is α1 � � � � � αn.

A multi-index α � pα1, . . . , αnq represents all the exponents in a monomial, and we’ll often write

xα for xα1
1 � xα2

2 � � �xαn
n . We’ll also write |α| � α1 � � � � � αn for the total degree.

A polynomial f in x1, . . . , xn with coefficients in the field k is a finite linear combination of

monomials. We’ll write

f �
¸
α

aαx
α

where the aα P k. The set of all polynomials in x1, . . . , xn with coefficients in k is denoted

krx1, . . . , xns. If there are only two or three variables we might write things like Qrx, ys or Rrx, y, zs.

Just so we’re using words the same way: aα is called the coefficient of the monomial xα. The

product aαx
α is called a term of f . And the total degree of f is the maximum total degree of any

of its terms.

Since the sum and product of polynomials is a polynomial and since addition and multiplication

of polynomials satisfies all the standard properties (commutative, associative, distributive), we have

that krx1, . . . , xns is a commutative ring.

Definition: For a field k and a positive integer n, define n-dimensional affine space over k to be

the set

kn � tpa1, a2, . . . , anq | a1, . . . , an P ku.

By analogy with R, R2 etc, call k1 � k the affine line and k2 the affine plane.

Connect polynomials to affine space by evaluation. If f P krx1, . . . , xns, then f . . . kn Ñ k by

substituting a1 for x1, a2 for x2, etc in each term of f and calculating the resulting value, which

will clearly be an element of k.

Over an infinite field (like Q, R or C, a polynomial f represents the zero function if and only if

it is the zero polynomial. But over finite fields (Z{p for p prime is a field) it’s possible that f could

be the zero function even though f is not the zero polynomial (think xp � x thanks to Fermat’s

little theorem). So over an infinite field, f and g represent the same function iff they are the same

polynomial. (Proof of this uses that polynomial of degree n in one variable has at most n roots,

which we’ll prove later).

Affine varieties: “Varieties” are the basic objects in algebraic geometry. If k is a field and f1, . . . fs
are polynomials in krx1, . . . , xns. then

Vpf1, . . . , fsq � tpa1, . . . , anq P k
n | fipa1, . . . , anq � 0, i � 1 . . . , su
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is the affine variety defined by f1, . . . , fs (the set of solutions of the simultaneous equations f1 �

0,. . . ,fs � 0).

So in R2, here is Vpx2 � y2 � 1q:

All conic sections are affine varieties, as are graphs of polynomials and graphs of rational functions

(quotients of polynomials, since y � p{q can be rewritten qy � p � 0). Examples in R3 include

things like the hyperboloid Vpx2 � y2 � z2 � 1q and the cone Vpx2 � y2 � z2q:

A more complicated example is provided by Vpx2 � y2z2 � z3q:
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The latter two varieties show examples of “singular points” – the origin in the cone and the whole

y axis where the last surface intersects itself.

Now consider a curve in R3 — we can obtain a curve as the intersection of two surfaces, say

Vpy � x2, z � x3q. Here are the two surfaces y � x2 � 0 and z � x3 � 0 together with the curve:

It would seem that when we have one equation in R2 we get a curve (a 1-dimensional object); one

equation in R3 gives a surface, which is 2-dimensional. And when we had two equations in R3 we

got a curve, 1-dimensional. So it looks like the imposition of each equation reduces the dimension of

the geometric object by one. While this is generally true, things are much more subtle. For instance,

consider Vpxz, yzq:
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This variety consists of two pieces, a plane (which has the “wrong” dimension) wqtogether with a

line. In thinking about dimension, you might also remember how tricky it can be in linear algebra to

predict in advance the dimension of the solution space to a set of linear equations in many unknowns

(this is another example of an affine variety, sometimes called a linear variety for obvious reasons).

Sometimes the dimension can depend on the field chosen, for instance Vpx2 � y2 � 1q is the

empty set over R or Q, but defines a variety of one (complex) dimension over C.

A basic property: If V,W � kn are affine varieties, so are V Y W and V X W . In fact, if

V � Vpf1, . . . , fsq and W � Vpg1, . . . , gtq then

V XW � Vpf1, . . . , fs, g1, . . . , gtq

V YW � Vpfigk | 1 ¤ i ¤ s, 1 ¤ j ¤ tq.

Rational functions and parametrizations: A rational function is a quotient of polynomials f{g,

where f, g P krx1, . . . , xns and g is not the zero polynomial. The set of rational functions is denoted

kpx1, . . . , xnq.

A parametrization of an algebraic variety V P kn is a set of equations

x1 � ϕ1pt1, . . . , tmq

x2 � ϕ2pt1, . . . , tmq

...
...

...

xn � ϕnpt1, . . . , tmq

where for each pt1, . . . , tmq P k
m, for which ϕ1, . . . , ϕn are defined, the point px1, . . . , xnq lies in V .

It is usually also required that V be the “smallest” affine variety containing these points. If all the

functions ϕ1, . . . , ϕn are of the same type (polynomial, rational, etc.) the parametrization gets that

label (a rational parametrization, etc.).
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For example

x �
1 � t2

1 � t2
, y �

2t

1 � t2

is a rational parametrization of the circle Vpx2 � y2 � 1q (it hits all the points except p�1, 0q).

You can derive this parametrization by considering lines through the point p�1, 0q. Except for the

vertical line, each line through p�1, 0q will intersect the circle at another point px, yq, and will also

intersect the y-axis at the point p0, tq.

As another example, the equations

x � tpu2 � t2q y � u z � u2 � t2

parametrize the surface Vpx2 � y2z2 � z3q given above.

For yet another example, it is easy to see that the parametric equations x � t, y � t2, z � t3

parametrize the curve Vpy� x2, z� x3q discussed above (it is usually called the twisted cubic. Let’s

now consider the surface consisting of all the tangent lines to the twisted cubic. For a specific

value of t, the tangent line at the point pt, t2, t3q has direction vector p1, 2t, 3t2q and so it can be

parametrized as x � t � u, y � t2 � 2tu, z � t3 � 3t2u. And letting t vary in these equations as

well, we get a parametrization of the tangent surface to the twisted cubic. Here is a picture of this

surface.

To show that the tangent surface of the twisted cubic is actually an affine variety, we note that it is

Vp4x3z � 3x2y2 � 4y3 � 6xyz � z2q.

These examples naturally lead so two questions: (1) Does every affine variety have a ratio-

nal parametrization? (Unfortunately, the answer to this question is ”No”.) (2) Given a rational

parametrization of an affine variety, can we recover the defining (implicit) equations? The answer to

this question is, perhaps surprisingly, ”Yes”, and there are algorithms for this. We need to develop

a little bit of machinery to understand them.

Ideals

The concept of an ideal in a ring is fundamental. An ideal in the polynomial ring krx1, . . . , xns

is a subset I � krx1, . . . , xns that satisfies:



6

1. the zero polynomial is in I.

2. If f and g are in I then f � g P I.

3. If f P I and h is any polynomial in krx1, . . . , xns then hf P I.

The ideal generated by a finite set: Let f1, . . . , fs be polynomials in krx1, . . . , xns. Then

xf1, . . . .fsy �

#
ş

i�1

hifi |h1, . . . , hs P krx1, . . . , xns

+

is an ideal, called the ideal generated by f1, . . . , fs.

The ideal xf1, . . . , fsy gives the left-hand sides of all the “polynomial consequences” of the equa-

tions f1 � 0, f2 � 0,. . . ,fs � 0.

If V is an affine variety, then the set of polynomials f P krx1, . . . , xns such that fpa1, . . . , anq � 0

for all pa1, . . . , anq P V is an ideal. Call this ideal IpV q (the ideal of V ). It’s an easy proposition

that if the ideals xf1, . . . , fsy and xg1, . . . , gry are the same (two different bases for the same ideal)

then Vpf1, . . . , fsq � Vpg1, . . . , grq.

Example: The ideal of the twisted cubic: Recall that the twisted cubic is V � Vpy � x2, z � x3q.

We’ll show that IpV q � xy � x2, z � x3y. It’s easy to see that xy � x2, z � x3y � IpV q. To show the

reverse inclusion, we first show that any polynomial f P Rrx, y, zs can be expressed as

f � q1px, y, zqpy � x2q � q2px, y, zqpz � x3q � rpxq

where q1, q2, r P Rrx, y, zs and r is a function of x alone. First consider the case where f � xaybzc

is a monomial. We can then write:

xaybzc � xapx2 � py � x2qqbpx3 � pz � x3qqc

� xapx2b � terms divisible by py � x2qqpx3c � terms divisible by pz � x3qq.

Multiplying this out gives

xaybzc � q1px, y, zqpy � x2q � q2px, y, zqpz � x3q � xa�2b�3c

so the claim is true for monomials. But then it’s true for all polynomials, which after all are sums

of monomials.

Now we can prove that IpV q � xy � x2, z � x3y. Suppose f P IpV q. Using the parametrization

x � t, y � t2, z � t3 of V we see that we must have fpt, t2, t3q � 0. But then

0 � fpt, t2, t3q � h1pt, t
2, t3qpt2 � t2q � h2pt, t

2, t3qpt3 � t3q � rptq � 0 � 0 � rptq.

Therefore rpxq � 0 and so f must be in xy � x2, z � x3y.

As a corollary, we get that fpx, y, zq P xy � x2, z � x3y if and only if fpt, t2, t3q � 0.

Observe what happened here. We started with some polynomials f1, . . . , fs P krx1, . . . , xns, which

determine the affine variety Vpf1, . . . , fsq, which in turn determines the ideal IpVpf1, . . . , fsqq. In
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the example of the twisted cubic, we had IpVpf1, . . . , fsqq � xf1, . . . , fsy, but in general we only

have

xf1, . . . , fsy � IpVpf1, . . . , fsqq.

For instance xx2, y2y � Rrx, ys is a proper subset of xx, yy � IVpx2, y2q. More about this later (the

precise relation is given by a theorem called Hilbert’s Nullstellensatz).

For now, we note the inverse relationship: For affine varieties V,W � krx1, . . . , xns, we have

V �W if and only if IpW q � IpV q, and V �W if and only if IpV q � IpW q.

For now, we leave this situation with three questions:

1. (Ideal Description) Can every ideal I � krx1, . . . xns be written as xf1, . . . , fsy for some

f1, . . . , fs P krx1, . . . , xns ? In particular, is every ideal I � krx1, . . . , xns finitely generated ?

2. (Ideal Membership) Given f1, . . . , fs P krx1, . . . , xns, is there a way to decide whether a given

f P krx1, . . . , xns is in the ideal xf1, . . . , fsy ?

3. (Nullstellensatz) Given xf1, . . . , fsy P krx1, . . . , xns, what is the precise relation between xf1, . . . , fsy

and IpVpf1, . . . , fsqq?

Polynomials in one variable over a field

The case of krxs, polynomials in a single variable over a field, is special but particularly instruc-

tive. We can deal with all three of the questions above and get reasonably satisfying answers. The

main reason for this is that there is a division with remainder algorithm for polynomials in krxs.

Some jargon first: We’ll just say the degree of a polynomial in one variable instead of total degree,

and we’ll write degpfq for the degree of the polynomial f . There can be only one term of degree

degpfq, and if m � degpfq the polynomial looks like

fpxq � amx
m � am�1x

m�1 � � � � � a1x� a0 with am � 0.

The term amx
m is the leading term of f , and we’ll write LTpfq, and am is the leading coefficient of

f .

Because k is a field, we have that LTpfq | LTpgq if and only if degpgq ¥ degpfq.

The division algorithm: Suppose f, g P krxs, and g is not the zero polynomial. Then there are

unique polynomials q, r P krxs with r � 0 or degprq   degpgq such that

f � qg � r.

Moreover, there is an algorithm for finding q and r.

Uniqueness first: If f � q1g � r1 as well, then we have 0 � pq1 � qqg � pr1 � rq. If q1 � q � 0 then

r1 � r � 0 in which case g | r1 � r. But degprq   degpgq so this is impossible unless r1 � r � 0, a

contradiction.

Existence of q and r is provided by the algorithm itself — it is the familiar long division algorithm

from high school algebra: Given f and g, we set q � 0 and r � f . If degpfq ¥ degprq we then
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let z � LTpfq{LTpgq, replace q by q � z and replace r by r � zg. Note that the degree of r must

have decreased in this process. We repeat this process until either r � 0 or degprq   degpgq. The

resulting q and r are the ones guaranteed by the statement above.

We know that the algorithm will terminate (and work!) because the degree of r keeps decreasing,

and it can’t decrease below zero.

The first corollary of the division algorithm is the long-awaited result about the number of roots

of a polynomial in one variable:

Corollary: If k is a field and f is a non-zero polynomial in krxs then f has at most degpfq roots in

k.

Proof is by induction on degpfq. If a satisfies fpaq � 0, then write fpxq � px� aqqpxq � r where

degprq   degpx � aq, so r is a constant. We must have r � 0 as can be seen by substituting x � a

into this last equation. So now f � px�aqq where degpqq � degpfq� 1. But by induction the result

is true for polynomials of degree degpfq � 1, so we’re done.

Next, we can learn something about the structure of ideals in krxs.

Corollary: If k is a field then every ideal of krxs can be written in the form xfy for some f P krxs.

Moreover, f is unique up to multiplication by a non-zero constant.

Proof. Consider the ideal I � krxs. If I is the zero ideal, we’re done since I � x0y. Otherwise, let f

be the non-zero polynomial of minimal degree in I, and claim that xfy � I. Certainly xfy � I. Now

suppose g P I and write g � qf � r where either r � 0 or degprq   degpfq. Then r � g � qf P I so

we must have r � 0 to avoid a contradiction. Therefore g � qf P xfy, so I � xfy and we are done.

(Uniqueness is easy, since if xfy � xgy then f � pg and g � qf so degpgq � degpfq and p and q are

constants.

Definition: An ideal (in any ring, more later) generated by a single element is called a principal

ideal, and a ring like krxs where every ideal is principal is called a principal ideal domain. (We

actually need a bit more to justify the word “domain” but we’ll come back to this later). The ring

of integers Z is also a principal ideal domain.

How do you find the generator of an ideal in krxs if the ideal isn’t presented in this form? For

instance, what is the generator of the ideal xx4 � 1, x6 � 1y? The answer is the same as in the

integers:

Definition: A greatest common divisor of polynomials f, g P krxs is a polynomial h such that h | f

and h | g and such that if p is another polynomial that divides both f and g, then g | h. We write

gcdpf, gq for such a polynomial.

Properties of the gcd: (1) gcdpf, gq exists and is unique up to multiplication by a non-zero

constant, (2) gcdpf, gq generates the ideal xf, gy, and (3) There is an algorithm for calculating

gcdpf, gq.

Proof: (1) and (2): The ideal xf, gy is principal, say xf, gy � xhy, and claim that h � gcdpf, gq.

Certainly h divides f and g since they are in the ideal generated by h, and conversely h � λf�µg for
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some polynomials λ, µ P krxs, since h is in the ideal generated by f and g (sound familiar?). So if p is

another polynomial that divides both f and g then f � ap and g � bp so h � λap�µbp � pλa�µbqh

so p | h as well, so h is a gcd for f and g. By the above corollary, h is unique up to multiplication

by a constant.

Not surprisingly perhaps, the algorithm for computing gcdpf, gq is the Euclidean algorithm.

First note that gcdpf, gq � gcdpf � qg, gq for any polynomial q. Then the Euclidean algorithm for

polynomials works pretty much the same way as it does for integers. There’s even an extended

Euclidean algorithm so you can find the λ and µ so that λf � µg � gcdpf, gq.

Just for practice, we’ll run the extended Euclidean algorithm on the pair f � x4� 1, g � x6� 1:

i �1 0 1 2
ri x6 � 1 x4 � 1 x2 � 1 0
qi � � x2 x2 � 1
λi 1 0 1 �
µi 0 1 �x2 �

From this we conclude that gcdpx4 � 1, x6 � 1q � x2 � 1 and that 1px6 � 1q � x2px4 � 1q � x2 � 1.

What we have done so far gives us a complete answer to questions 1 and 2 above. Since

krxs is a principal ideal domain, the answer to the ideal description problem is “yes” — and in

fact every ideal I � krxs can be written as xfy for some f P krxs. To solve the ideal member-

ship problem, given f1, . . . fs P krxs, we need only calculate their gcd (by successively calculating

gcdpf1, gcdpf2, gcdpf3, . . . , fsq � � � qq) and then to decide whether a given f is in xf1, . . . , fsy, we just

have to see whether gcdpf1, . . . , fsq | f . The Nullstellensatz question is a little more subtle and we’ll

take that up later.


