
MATH 371 – Class notes/outline – September 24, 2013

Rings

Armed with what we have looked at for the integers and polynomials over a field, we’re in a good

position to take up the general theory of rings.

Definitions: A ring is an abelian group pR,�q with an additional binary operation called multipli-

cation. For every x, y, z P R:

1. px � yq � z � x � py � zq
2. There exists an element 1 P R such that 1 � x � x � 1 � x

3. x � py � zq � x � y � x � z and py � zq � x � y � x� z � x.

(the identity for addition in R is denoted 0, and we’ll usually leave out the dot in x � y).

A set S � R is called a subring of R if S is a subgroup of pR,�q, 1 P S and xy P S if x, y P S.

An element x P R is called a zero divisor if there exists y P R with y � 0 but xy � 0 or yx � 0.

An element x P R is called a unit if there exists y P R such that xy � yx � 1. Then we write

y � x�1. The set of units in R is denoted R�.

R is called a commutative ring if xy � yx for all x, y P R.

Examples: Commutative rings: Z, Q, R, C, krx1, . . . , xns, Rrx1, . . . , xns.
Non-commutative rings: n� n matrices (with coefficients in a commutative ring) for n ¥ 2, quater-

nions H.

We will stick to commutative rings from here out, unless otherwise stipulated!!

More definitions: A field is a ring with R� � tr P R | r � 0u If K � L are fields and K is a subring

of L then K is called a subfield of L and L is called an extension field of K.

An integral domain (or sometimes just “domain”) is a ring with no zero divisors.

Proposition: In an integral domain R, suppose a, x, y P R with a � 0. If ax � ay then x � y (this

is called cancellation).

Let F be a field. Then F is an integral domain.

Example: The set Qpiq � ta� bi | a, b P Qu � C is a subring of C. In fact, Qpiq is a field so Qpiq
is a subfield of C. In algebra, if z � a � bi P C, it is common to call |z|2 � a2 � b2 the norm of z

and to denote it Npzq. Note that Npz1z2q � Npz1qNpz2q.

Within Qpiq there is the subring Zris of Gaussian integers. The norm Npzq of a Gaussian integer

z P Zris must be a non-negative integer, and then the multiplicative property of the norm implies

that z P Zris is a unit of Zris if and only if Npzq � 1 (Proof?). This yields Zris� � t�1,�iu. Note
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that prime numbers in Z are not necessarily “prime” in Zris, e.g., 5 � p2 � iqp2 � iq. More on this

phenomenon later.

Ideals: Just as we defined ideals in krx1, . . . , xns, we can define ideals in any ring. An ideal in R is

a subgroup I of pR,�q such that rx P I for every a P R and x P I. Note: R is an ideal of itself, and

I � R if and only if 1 P I. For r1, . . . , rs P R we can define

xr1, . . . , rsy � ta1r1 � � � � � asrs | a1, . . . , as P Ru
to be the ideal generated by r1, . . . , rs. If an ideal is generated by a finite set, it is called finitely

generated. You can also talk about ideals generated by infinite sets (the sums are still finite, but

the set from which the r’s are chosen can be infinite).

If I and J are ideals in R, then I X J and I � J � ti� j | i P I, j P Ju are also ideals in R. The

product IJ is defined to be the ideal generated by tij | i P I, j P Ju. Note that IJ � I X J .

The only ideals of a field F are t0u and F itself.

An ideal generated by one element xry is called a principal ideal. If R is an integral domain, and

every ideal of R is principal then R is called a principal ideal domain. We know that Z and krxs
(polynomials in one variable over a field) are principal ideal domains. Perhaps surprising:

Theorem: The ring of Gaussian integers Zris is a principal ideal domain.

(Idea of proof: If I is a non-zero ideal in Zris, then let d P I have minimal norm. For any z P I
consider z{d (in Qpiq), and let q P Zris with Npq � z{dq   1. Multiply this by Npdq to see that

Npqd� zq   Npdq but qz � d P I, a contradiction unless d � qz.)

For the record, krx, ys, Zrxs and Zr?�5s are not principal ideal domains.

Quotient rings: If I is an ideal of R, then the set R{I � trxs |x P Ru of (left) cosets rxs � x� I of

I (thinking of I as a subgroup of the abelian group pR,�q) can be made into a ring in the obvious

way (recall rxs � rys means x � y P I): rxs � rys � rx � ys and rxsrys � rxys for all rxs, rys P R{I.

This new ring is called the quotient ring of R by I. Note r0s is the additive identity and r1s the

multiplicative identity in R{I, and rxs � r0s if and only if x P I.

We’ve already met the quotient rings Z{xdy – this is a field if and only if d is prime and otherwise

has zero divisors (unless d � 0 in which case you still have Z). If p is a prime number, we’ll write

Fp for the field Z{xpy.

Prime and maximal ideals: By analogy with the basic property of prime numbers, namely that

if p | ab then either p | a or p | b, we define a prime ideal I � R to be an ideal such that if xy P I
then either x P I or y P I (or both). If I is a prime ideal and I � R then R{I is an integral domain

(and conversely).

A maximal ideal is one not properly contained in any other proper ideal, i.e., I is maximal if for

any other ideal J , the containment I � J implies that either J � I or J � R. An ideal I � R is

maximal if and only if R{I is a field.

Homomorphisms of rings: A mapping f : R Ñ S from one ring to another is called a homo-

morphism (or, more precisely, a ring homomorphism) if it is a group homomorphism from pR,�q
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to pS,�q (i.e., if fpx � yq � fpxq � fpyq for all x, y P R) and if fpxyq � fpxqfpyq for all x, y P R.

It’s called an isomorphism if it’s a bijection (and so is invertible), and then R and S are isomorphic

(denoted R � S).

The map R Ñ R{I given by x ÞÑ rxs is the canonical example of a ring homomorphism (it’s

surjective but not injective unless I � t0u).

The kernel kerpfq � tr P R | fprq � 0u of a ring homomorphism is an ideal of R and the image

is a subring of S. The standard isomorphism theorem is almost immediate, that if f : R Ñ S is a

homomorphism with kerpfq � K, then f : R{K Ñ fpRq (where fpr�Kq � fprq is well-defined and

an isomorphism.

For every ring R there is a unique homomorphism f : Z Ñ R. Using this homomorphism one

can define nr for n P Z and r P R as nr � fpnqr � r � r � � � � � r pn timesq. The generator of the

kernel of this homomorphism is the characteristic of the ring R. If R is an integral domain, then

this generator is a prime number. If moreover R is finite then it is a field.

The binomial theorem is true in any ring:

pa� bqn � an �
�n

1

	
an�1b� � � � �

�
n

n� 1



abn�1 � bn

for n P N (proof by induction). From this get the “freshman’s dream”: In a ring R of prime

characteristic p, we have

px� yqpe � xp
e � yp

e

for all x, y P R and e P N. (Induct on e and use that p | �pi � for 1 ¤ i ¤ p � 1 from homework 1).

Use this to show that the “Frobenius map” F : RÑ R given by F pxq � xp is a ring homomorphism.

Fraction field of an integral domain: Just as you make Q from Z, given any integral domain

R you can make a natural field Q containing R, such that Q is the smallest field containing R (in

the sense that if F is any other field and there is an injective homomorphism RÑ F , then there is

an injective homomorphism Q Ñ F which extends it.) Q comprises equivalence classes of symbols

r{s for r, s P R with s � 0 where r{s � r1{s1 means that rs1 � r1s. And so it goes.

For instance, the field of fractions of Zris is Qpiq.

Factorization

In the integers and polynomials over a field, the ideas of divisibility and factorization are impor-

tant. These led to the notion of prime numbers and irreducible polynomials. We generalize these

ideas here to arbitrary integral domains. So from here out in these notes, we’ll assume all our rings

are integral domains (so that in particular, the cancellation law holds).

Definitions: Let R be an integral domain. For x, y P R, say y divides x, write y | x if x � ry for

some r P R. We have y | x if and only if xxy � xyy. We’ll have xxy � xyy if and only if r P R�, in

which case we say x and y are associates in R.

The element d P R is called a greatest common divisor of a, b P R if d | a and d | b and for any

other x which divides both a and b, we have x | d as well. If R is a principal ideal domain, then

xa, by � xdy for some d and d is a greatest common divisor of a and b (Proof?).
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A non-unit r in R is called irreducible if r � ab for a, b P R implies that either a or b is a

unit. A non-zero non-unit x P R is said to have a factorization into irreducible elements if there

are irreducibles p1, . . . , pr P R such that x � p1 � � � pr And x is said to have unique factorization

into irreducible elements if for any other irreducible factorization x � q1 � � � qs we have that every

pi for i � 1, . . . , r divides qj for some j � 1, . . . , s (which implies that qj � upi where u is a unit).

In particular, r � s. A domain R such that every non-zero non-unit has unique factorization into

irreducible elements is called a unique factorization domain.

A non-zero non-unit p in R is called a prime element if p | xy for x, y P R implies that either

p | x or p | y.

Proposition. A prime element is irreducible.

(Idea of proof): If p is prime and p � ab, then either p | a or p | b. If p | a then a � rp, but then

p � rpb. Cancelling the p’s shows that b is a unit, so p is irreducible.

Proposition: Let R be a domain for which every non-zero non-unit has a factorization into irre-

ducibles. Every irreducible element is prime if and only if R is a unique factorization domain.

(Idea of proof): (ñ) If x has two irreducible factorizations x � p1 � � � pr � q1 � � � qs then each pi
must divide some qj and vice versa because they’re also prime. (ð) Suppose x is irreducible and

x | ab. Then ab � xr, factor both sides into irreducibles (on the right, do this by factoring r into

irreducibles, on the left do this by factoring a and b into irreducibles) – by uniqueness x must be an

associate of one of the factors on the left, which is a factor of either a or b, so x is prime.

Example: In R � Zr?�5s � ta� b
?�5 | a, b P Zu, the number 2 is irreducible but not prime. See

this because there are two irreducible factorizations of 6 � 2 � 3 � p1 � ?�5qp1 � ?�5q. (Use the

norm function Npa� b?�5q � a2� 5b2 to conclude that Zr?�5s� � t�1u and that the four factors

are irreducible).

Our goal now is to show that if R is a principal ideal domain, then R is also a unique factorization

domain.

Lemma: Let R be a principal ideal domain and x P R a non-zero element. Then x has an irreducible

factorization.

(Idea of proof): If x is irreducible then we’re done. If not, factor x � p1q1 where neither p1 nor q1 is

a unit. But then xxy ( xp1y and xxy ( xq1y. If one of p1, q1 is not irreducible we can further factor.

This process cannot go on forever since you can’t have an infinite increasing sequence of ideals in a

principal ideal domain (Proof?), and it will terminate in an irreducible factorization of x.

Proposition: Let R be a principal ideal domain that is not a field. An ideal xxy � R is a maximal

ideal if and only if x is irreducible.

Proof. If x is irreducible and xxy � xyy, then x � sy, but then s must be a unit. Thus xxy � xyy or

xyy � R, so xxy is a maximal ideal. On the other hand, if xxy is maximal and x � sy then one of

s, y must be a unit, otherwise xxy ( xyy ( R, contradicting that xxy is maximal.

Theorem. A principal ideal domain R is a unique factorization domain.
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Proof. From the lemma above, we know that every non-zero element in R has a factorization, so

we only have to prove uniqueness. We’ll apply one of the propositions above and show that every

irreducible element is prime. So let p P R be irreducible and suppose p | ab but p - a. Then

a R xpy therefore xa, py ) xpy. Since xpy is maximal by the proposition immediately above, we have

xa, py � R � x1y. Therefore there are λ, µ P R such that λa � µp � 1, therefore λab � µbp � b.

But we know that p | ab therefore p | b, and so p is prime, and we’re done. (Doesn’t this proof look

familiar? See the proof of corollary 1 on page 3 of the notes on integers.)

Examples: The ring Zr?�5s is not a principal ideal domain since 2 is an irreducible element that

is not prime. In fact I � x2, 1�?�5y is not a principal ideal — if x P I then x � p2a�bq�b?�� 5

for a, b P Z and use the norm function from before.

The ring of Gaussian integers Zris, being a principal ideal domain, is a unique factorization

domain.

One more task before we leave the realm of factorization for a bit: In which rings (integral

domains) can we use the Euclidean algorithm (rather than factoring) to find greatest common

divisors? The answer is that we have to have a version of the division algorithm so that for every

x, d P R with d � 0 there exist q, r P R such that x � qd� r and r is “smaller” than d in some sense.

Definition: A Euclidean domain R is an integral domain on which there is a function N that maps

the nonzero elements of R to the non-negative integers and which satisfies: for every x, d P R with

d � 0 there exist q, r P R such that x � qd� r with either r � 0 or Nprq   Npdq.

So the integers (with N the absolute value function), polynomials in one variable over a field

(with N the degree function) and the Gaussian integers (with N the norm function) are all Euclidean

domains. Mimic the proof of the fact that the ring of Gaussian integers is a principal ideal domain

(on page 2) to get

Theorem: A Euclidean domain R is a principal ideal domain (hence a unique factorization domain).

And once you have the division algorithm, the Euclidean algorithm follows.

There are principal ideal domains that are not Euclidean domains. Zrp1�?�19q{2s is one such,

but that is not so easy to prove.

The Gaussian integers and number theory

The theorem on page 2 shows that the ring of Gaussian integers Zris is a Euclidean domain

where the function N is the norm function as we defined it there: Npa � biq � a2 � b2. So the

Gaussian integers are a unique factorization domain. It is interesting to ask what are the primes in

Zris, and to start with asking what happens to the ordinary integer primes.

Proposition: If z P Zris is a Gaussian integer such that Npzq � p and p is a prime number,

then z is a prime element of Zris.

Idea of proof: Since primes and irreducibles are the same in a UFD, we’ll show that z is irreducible.

If z � ab then Npzq � NpaqNpbq, so one of Npaq and Npbq has to be 1 and the other p. But the

one with norm 1 is a unit, so z is irreducible.
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Now we know that some prime numbers like 5 � p2� iqp2� iq and 13 � p3� 2iqp3� 2iq become

reducible in Zris. We examine this phenomenon a little more closely.

Lemma (Lagrange): Let p be a prime number (i.e., a prime integer). If p � 1 pmod 4q then the

congruence

x2 � �1 pmod pq
has a solution.

Proof: In fact, writing p � 4n � 1 we can take x � p2nq!. Use Wilson’s theorem (problem 9(b) on

Homework 1), which tells us that pp� 1q! � p4nq! � �1 pmod pq. But

p4nq! � p4nqp4n� 1qp4n� 2q � � � p4n� 2n� 1qp2nqp2n� 1q � � � 3 � 2 � 1

and we note that 4n � �1 pmod pq, 4n � 1 � �2 pmod pq,. . . ,p4n � 2n � 1q � �2n pmod pq so it

follows that pp2nq!q2 � p4nq! � �1 pmod pq.

Corollary. A prime number p � 1 pmod 4q is not prime in Zris.

Because there’s an x such that x2 � 1 � 0 pmod pq, i.e., p | x2 � 1 � px� iqpx� iq. But p - x� i

and p - x� i, since x{p� p1{pqi R Zris.

This leads to a famous theorem of Fermat:

Fermat’s two-square theorem: A prime number p � 1 pmod 4q is the sum of two uniquely

determined squares.

Proof. (Uniqueness) Suppose p � a2 � b2. Then p � pa� biqpa� biq in Zris and since Npa� biq �
a2� b2 � p is prime, but the proposition above we have that a� bi is irreducible. Now suppose also

p � c2 � d2. Therefore p � pc� diqpc� diq is another irreducible factorization of p. Since Zris is a

UFD, we must have that c� di is a unit times either a� bi or a� bi, and similarly for c� di. But

the units of Zris are �1,�i, so we must have ta2, b2u � tc2, d2u.

(Existence) From the corollary above, we know that p is not prime in Zris, so write p � yz where

y � a � bi is prime in Zris. We can’t have z a unit, or else p would be prime, so Npzq ¡ 1. But

Nppq � p2 so the only choice is Npzq � p and Npyq � p. But Npyq � a2 � b2 so we have expressed

p � a2 � b2.

Note that this proof doesn’t tell us how to find a and b so that a2�b2 � p. There is an algorithm

for this, but before we can present it, we need to digress a bit on quadratic residues — this has to

do with whether one can solve the equation x2 � a pmod pq for various numbers a.

Definition: Let p be a prime number. If p - a then a is called a quadratic residue modulo p if there

exists x P Z such that a � x2 pmod pq. Otherwise, a is called a quadratic non-residue modulo p. If

p | a then a is considered neither a quadratic residue nor a quadratic non-residue. This definition is

encapsulated in the Legendre symbol:

�
a

p



�
$&
%

0 if p | a
1 if a is a quadratic residue modulo p
�1 if a is a quadratic non-residue modulo p.
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By thinking in the ring Z{xpy, we see that if a � x2 pmod pq for some integer x P Z, then there is

a y such that 0 ¤ y   p with a � y2 pmod pq. Therefore the quadratic residues in pZ{xpyq� are the

numbers r12s, r22s, . . . , rp � 1s2, where the brackets mean mod p. This tells us that the Legendre

symbol satisfies �
a

p



�
�
a� kp

p




for any k P Z.

A little experimenting will convince you that the following proposition ought to be true:

Proposition: If p is an odd prime then half the numbers 1, 2, . . . , p�1 are quadratic residues, while

the other half are quadratic non-residues mod p.

Proof. Since x2 � pp � xq2 pmod pq, the quadratic residues mod p are actually given by the first

pp � 1q{2 squares r12s, r22s, . . . , rppp � 1q{2q2s. And these numbers are different, since if ri2s � rj2s
we have p | pi2 � j2q � pi � jqpi � jq. But p cannot divide i � j if 0   i, j   pp � 1q{2 so we must

have p | i� j. So there are exactly pp� 1q{2 quadratic residues mod p, leaving pp� 1q{2 quadratic

non-residues.

Theorem (Euler): Let p be an odd prime and let a be an integer not divisible by p. Then

�
a

p



� app�1q{2 pmod pq .

Proof: If a is a quadratic residue mod p then a � x2 pmod pq where p - x for some x P Z. Thus

app�1q{2 � px2qpp�1q{2 � xp�1 � 1 pmod pq

as it should, by Fermat’s little theorem. Therefore we have at least pp � 1q{2 different solutions in

Z{xpy to the congruence Xpp�1q{2 � 1 � 0 pmod pq. But we know that this polynomial can have at

most pp� 1q{2 solutions, so all the quadratic non-residues do not satisfy this equation. This means

that if a is a quadratic non-residue then app�1q{2 � 1 pmod pq. But papp�1q{2q2 � ap�1 � 1 pmod pq
by Fermat’s little theorem again, so we must have app�1q{2 � �1 pmod pq.

Corollary: If p is an odd prime, then the Legendre symbols satisfy:

�
ab

p



�
�
a

p


�
b

p



.

Corollary: Let p be an odd prime. Then �1 is a quadratic residue mod p if p � 1 pmod 4q and �1

is a quadratic non-residue mod p if p � 3 pmod 4q.

An amazing theorem about Legendre symbols is Gauss’s famous law of quadratic reciprocity,

which states that if p and q are odd primes then

�
p

q


�
q

p



� p�1qpp�1qpq�1q{4.

We’ll have more to say about this later.
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Now back to that algorithm for finding Fermat’s two squares that add up to the prime p if

p � 1 pmod 4q. It begins with an alternative proof of Lagrange’s lemma above. Another way to get

a solution to the congruence x2 � �1 pmod pq is to use Euler’s theorem above, as follows: Suppose

a is quadratic-non-residue mod p, then Euler’s theorem tells us that app�1q{2 � �1 pmod pq. But

since p � 1 pmod 4q, we have pp � 1q{4 is an integer so we can take x � rapp�1q{4s. Calculating

rapp�1q{4s (by repeated squaring) is much easier than calculating ppp�1q{2q! and finding a quadratic

non-residue a is easy by trial and error since half the numbers between 1 and p� 1 work.

Now for the algorithm. Given a prime p such that p � 1 pmod 4q, choose a solution to the

congruence x2 � �1 pmod pq such that 0   x   p{2 (Why can this always be done?). Then use the

Euclidean algorithm on p and x. The first two remainders a and b in the process such that both a

and b are less than
?
p will satisfy a2 � b2 � p. That’s it.

Here are a couple of examples:

Suppose p � 41. Then x � 9 satisfies x2 � �1 pmod 41q. And the Euclidean algorithm applied

to 41 and 9 gives:
i �1 0 1 2 3 4
ri 41 9 5 4 1 0
qi � � 4 1 1 4
λi 1 0 1 �1 2 �9
µi 0 1 �4 5 �9 41

The first two remainders less than
?

41 are 5 and 4 and 41 � 52 � 42.

Let p � 113. Then x � 15 satisfies x2 � �1 pmod 113q. So

i �1 0 1 2 3 4
ri 113 14 8 7 1 0
qi � � 7 1 1 7
λi 1 0 1 �1 2 �15
µi 0 1 �7 8 �15 113

We conclude that 113 � 82 � 72.

Finally, we do an extension of Euclid’s proof on infinitely many primes to primes congruent to 1

mod 4, using Gaussian integers.

Lemma: A prime number p � 3 pmod 4q is a prime element in Zris.

Proof. Suppose z � a� bi is a prime element in Zris that divides p, so p � zy for some y P Zris.
Since Nppq � p2 we have Npzq � p or Npzq � p2. But Npzq � c2 � d2 cannot equal p since the sum

of two squares cannot be congruent to 3 mod 4, but then Npyq � 1 so y is a unit and p was prime

in Zris.

Lemma: If p is an odd prime number dividing x2 � 1 for some x P Z, then p � 1 pmod 4q.

This is because x2�1 � px� iqpx� iq in Zris and p doesn’t divide either factor so can’t be prime

in Zris.

Theorem: There are infinitely many primes congruent to 1 mod 4.
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If only finitely many, say they are p1, . . . , pn, then form the number M � pp1p2 � � � pnq2�1. Then

M is not a power of 2 (why?) so it’s divisible by an odd prime, which must be congruent to 1 mod

4, but none of the pi’s divide M . So there must be more of them.

This is a really special case of a celebrated result of Dirichlet on primes in arithmetic progressions.

We’ll prove a less special case later.


