
MATH 371 – Class notes/outline – October 15, 2013

More on polynomials

We now consider polynomials with coefficients in rings (not just fields) other than R and C.

(Our rings continue to be commutative and have multiplicative identities).

The formal definition of a polynomial p with coefficients in a ring R is that it is a function p : NÑ
R such that ppnq � 0 for all but finitely many n. We tend to write pn rather than ppnq, and instead

of writing pp0, p1, . . .q we write p0�p�1x�p2x2�p3x3�� � � . So x is the function p0, 1, 0, 0, . . .q, x2 is

the function p0, 0, 1, 0, 0, . . .q and we can identify an element r of R with the function pr, 0, 0, 0, . . .q.
Given two polynomials p and q we form p� q by letting pp� qqpnq � pp� qqn � pn � qn and

ppqqpnq � ppqqn �
ņ

i�0

piqn�i.

In this way we make the ring of polynomials (in one variable) with coefficients in R into a ring,

denoted Rrxs. The degree of a polynomial p is the largest value of n for which pn � 0, the leading

coefficient is pn, and the leading term of p is pnx
n. Two polynomials p and q are equal if and only

if ppnq � qpnq for all n ¥ 0. There is a natural inclusion RÑ Rrxs that sends r P R to the constant

polynomial r — this is a ring homomorphism.

There’s some weirdness that can happen for polynomials with coefficients in an arbitrary commu-

tative ring R. For instance, let R � Z{x4y and consider p � q � 2x� 1. Then degppq � degpqq � 2

but pq � 1 in this ring, so degppqq � 0. But if the leading coefficient of p or q is not a zero divisor

then

degppqq � degppq � degpqq.
Also, if R is an integral domain, then Rrxs� � R� (where we identify R with the polynomials of

degree zero in Rrxs).

Just as we have to be careful with the degree of a product, we have to be a little bit careful with

the division algorithm. The most general statement one can make is that if the leading coefficient of

the polynomial d P Rrxs is not a zero-divisor, then given f P Rrxs, there exist polynomials q, r P Rrxs
such that

f � qd� r

where either r � 0 or none of the terms in r is divisible by the leading term of d. Note the care with

which we have to say this, and the odd things that can happen in the division algorithm, which now

goes as follows:

1. Given f and d, where the leading coefficient dn of d is not a zero divisor, begin by setting

q � 0, r � 0 and s � f . Note that f � qd� pr � sq.
2. If s � 0, then we’re done, output q and r.

3. Let smx
m be the leading term of s.

4. If dnx
n divides smx

m, then m ¥ n and sm � cdn for a unique c P R and so smx
m �

pcxm�nqpdnxnq. In this case, put q :� q � cxm�n and s :� x� pcxm�ndq.
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5. On the other hand, of dnx
n does not divide smx

m, then put r :� r�smxm and s :� s�smxm.

6. After all of this, we still have f � qd� pr � sq.
7. Go pack to step 2.

Because the degree of s decreases each time through the loop, the process will stop after at most

degpsq � 1 times and yield the result described above.

If the leading coefficient of d is a unit in R, then we have the standard result that f � qd � r

with degprq   degpdq. Note that this is true for monic polynomials (leading coefficient is 1) and

that a monic polynomial of degree ¥ 1 is never a unit in Rrxs (proof?).

Roots. Given any ρ P R, we have the evaluation homomorphism ϕρ : Rrxs Ñ R (note which way it

goes):

ϕρppq � ppρq � p0 � p1ρ� � � � � pnρ
n.

Borrow the notation from affine varieties and set V ppq � tρ P R | ppρq � 0u to be the set of roots of

p P Rrxs. We have that ρ P R is a root of p P Rrxs if and only if x � ρ divides p. (The proof uses

the division algorithm to write p � qpx� ρq � r with degprq � 0, i.e., r P R, so ppρq � r and ρ is a

root if and only if r � 0, i.e., px � ρq | p.) The multiplicity of a root ρ of p is denoted νρppq and is

the largest value of n such that px� ρqn | p.

A little weirdness: Let R � Z{x6y and let p � x2 � 3x � 2 P Rrxs. Here’s a table of ppρq for

ρ P R:
ρ 0 1 2 3 4 5
ppρq 2 0 0 2 0 0

So V ppq � t1, 2, 4, 5u and p has four roots even though its degree is only 2. It’s certainly not true

that p � px� 1qpx� 2qpx� 4qpx� 5q, although p � px� 1qpx� 2q � px� 4qpx� 5q (since 3 � �3 in

R etc).

On the other hand, if R is an integral domain, and p, q P Rrxs then V ppqq � V ppq Y V pqq. This

in turn implies that if p � 0 and V ppq � tρ1, . . . , ρsu then

ppxq � Qpxqpx� ρ1qνρ1 ppq � � � px� ρsqνρs ppq,
where Q P Rrxs and V pQq � H. The number of roots of p, counted with multiplicities, is bounded

by the degree of p. (Prove this by induction on the degree of p).

An interesting example: Consider the polynomial xp � x P Fprxs. Then V pxp � xq � Fp by

Fermat’s little theorem, therefore

xp � x � xpx� 1qpx� 2q � � � px� pp� 1qq
in Fprxs. Compare the coefficients of degree 1 on both sides and get pp � 1q! � �1 in Fp, which

gives another (easier? more natural?) proof of Wilson’s theorem.

Derivatives: In the context of a general commutative ring R, we can’t use calculus (limits and

such) to define the derivative of a polynomial. But we can just appropriate the formula from there,

and define p1 � nanx
n�1 � pn � 1qan�1x

n�2 � � � � � a1 if p � anx
n � an�1x

n�1 � � � � � a1x � a0.

Then you can formally prove the sum and product rules for derivatives.
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It’s easy to prove that if p2 | q then p | q1 and an element ρ P R is a multiple root of p (i.e.,

νρppq ¡ 1) if and only if ρ is a root of both p and p1.

One fact about derivatives that doesn’t carry over from calculus is the mean-value theorem. So

there are non-constant polynomials with derivative zero – for instance q � xp P Fprxs.

Cyclotomic polynomials: Let’s go back to Crxs for a bit and consider the “nth roots of unity”,

i.e., the complex numbers ξ that satisfy ξn � 1. As is well known, the nth roots of unity are

ξ � e2πki{n for k � 0, 1, . . . , n � 1. The number ξ is called a primitive nth root of unity if ξn � 1

but ξk � 1 for 0   k   n. We have that e2πki{n is a primitive nth root of unity if and only if

gcdpk, nq � 1. Thus there are ϕpnq primitive nth roots of unity (where ϕ is Euler’s ϕ-function).

Moreover, if ζ is a primitive nth root of unity and ζm � 1. then n | m (because then e2πmki{n � 1

so mk{n is an integer; n | mk and gcdpk, nq � 1 implies n | m).

The nth cyclotomic polynomial Φnpxq is defined to be the monic polynomial whose roots are

precisely the primitive nth roots of unity. So

Φnpxq �
¹

1¤k¤n, gcdpk,nq�1

px� e2πki{nq.

The first few Φn are

Φ1pxq � x� 1

Φ2pxq � x� 1

Φ3pxq �
�
x�

�
�1

2
� i

?
3

2



�
x�

�
�1

2
� i

?
3

2




� x2 � x� 1

Φ4pxq � px� iqpx� iq � x2 � 1

It is remarkable that the cyclotomic polynomials seem to (and do) all have integer coefficients, which

allows us to define them as polynomials over any ring, and the following is true:

Proposition: For all n ¥ 1, (i) xn � 1 � ±d|n Φdpxq, and (ii) Φnpxq P Zrxs, i,e., the cyclotomic

polynomials have integer coefficients.

Proof. The roots of xn � 1 are all the nth roots of unity. The roots of the Φdpxq are the primitive

dth roots of unity, where d | n, so all the roots of the product on the right side of (i) are roots of

xn � 1. But each root of xn � 1 must be a primitive dth root of unity for some d ¤ n for which

d | n. Thus the polynomials on the left and right sides of (i) have the same roots, and they are both

monic, so they are equal (since C is a field). To prove Φnpxq P Zrxs we use induction on n. We know

the first few cases are true. For n ¡ 1, set f � ±d n, d|n Φd, so that xn � 1 � Φn f . By induction

(since f is the product of Φd’s for d   n), we know that f is a monic integer polynomial. Division

of polynomials in Zrxs gives xn � 1 � qf � r where r � 0 or degprq   degpfq and q P Zrxs. Since f

is monic, we have that q and r are unique in Zrxs as well as in Crxs, so we must have q � Φn and

r � 0. Therefore Φn � q P Zrxs.

The identity (i) above is true in any Rrxs, via the canonical homomorphism from Z to R,

extended to be a homomorphism from Zrxs to Rrxs. So we generalize the notion of primitive nth

root of unity to any commutative ring R: α P R is a primitive nth root of unity if αn � 1 and αk � 1

for 1 ¤ k   n.
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Lemma: Suppose R is an integral domain, and let α P R. If Φnpαq � 0 and if α is not a multiple

root of xn � 1 P Rrxs, then α is a primitive nth root of unity in R.

Proof. The identity xn � 1 � ±d|n Φdpxq in Rrxs means there is a factorization qΦn � xn � 1 for

some q P Rrxs. Therefore αn � 1 � qpαqΦnpαq � 0 and so αn � 1. If α is a primitive dth root of

unity for some 1 ¤ d   n, then we must have d | n by the parenthetical remark above. In this case,

we have xn � 1 � ±c|d Φcpxq by (i) again, and since R is an integral domain we’ll have Φcpαq � 0

for some c | d. But now α is a root of at least two of the factors in xn� 1 �±d|n Φdpxq, namely Φn
and Φc for some c ¤ d   n, so α is a multiple root of xn � 1, a contradiction.

Using this lemma, we can prove an important result due to Gauss:

Theorem: Let F be a field and let G � F� be a finite subgroup of the group of units in F . Then

G is cyclic.

Proof. Let N � |G| and consider the polynomial xN � 1 �±d|N Φdpxq P F rxs. The roots of xN � 1

are precisely the elements of G, since every element of G is a root, and there are at most N , and

hence exactly N such roots. This tells us that none of the roots of xN � 1 are multiple roots. But

then ΦN must have degpΦN q � ϕpNq roots, which are primitive Nth roots of unity by the lemma

above, and hence are generators of G.

A corollary of this theorem is that F�p is a cyclic group. An integer a such that ras generates

F�p is called a primitive root mod p. For instance, 2 is a primitive root mod 13 (try it!). There

doesn’t seem to be any way to identify the ϕpp� 1q primitive roots among the elements of F�p (the

proportion of them can be arbitrarily small).

Another application of cyclotomic polynomials:

Theorem: There are infinitely many prime numbers � 1 pmod nq for any n ¥ 2.

Proof. It is enough to show that there exists a prime number � 1 pmod nq for every n ¥ 2 (why?).

From the definition of Φn, we have for n ¥ 2 that |Φnpnq| ¡ 1. So there is a prime p such that

p | Φnpnq. Now the constant term of Φn is �1 since |Φnp0q| � 1 and Φnp0q P Z, which shows that

p - n (since if p | n then p would divide every term of Φnpnq except the constant term 1, but we’re

assuming p | Φnpnq). Therefore rns is not a multiple root of xn � 1 P Fprxs (since p does not divide

the derivative of xn � 1 evaluated at x � n). Since Φnprnsq � 0 in Fp, this implies by the lemma

above that the order of rns is n in F�p . Therefore n divides |Fp| � p� 1 and so p � 1 pmod nq.

More on ideals in polynomial rings. We already know that if F is a field, then F rxs is a

Euclidean domain (the degree of a polynomial is the Euclidean function). Therefore F rxs is a

principal ideal domain and a unique factorization domain and the division algorithm works in F rxs

We illustrate this by finding gcdpx5 � x� 1 , x4 � x3 � x� 1q in F2rxs.
i �1 0 1 2 3
ri x5 � x� 1 x4 � x3 � x� 1 x3 � x2 � x x2 � x� 1 0
qi � � x� 1 x x
λi 1 0 1 x �
µi 0 1 x� 1 x2 � x� 1 �

So the gcd is x2 � x� 1 and x2 � x� 1 � xpx5 � x� 1q � px2 � x� 1qpx4 � x3 � x� 1q in F2rxs.
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Recall that the units in F rxs are the non-zero constants, and if p is not irreducible then there

are polynomials q1 and q2 such that p � q1q2 and 0   degpq1q,degpq2q   degppq. So the following

are direct consequences of things we already know:

Proposition: For p P F rxs,
(i) The ideal xpy is maximal if and only if p is irreducible, in which case F rxs{xpy is a field.

(ii) p is a unit if and only if degppq � 0.

(iii) If degppq � 1 then p is irreducible (and F rxs{xpy � F ).

(iv) If p is irreducible and degppq ¡ 1 then p does not have any roots.

(v) If degppq � 2 or 3 then p is irreducible if and only if it has no roots.

Examples: The polynomial p � x3 � x � 1 P F5rxs is irreducible since it is degree 3 and has no

roots:
x 0 1 2 3 4
ppxq 1 3 1 1 4

But q � x4�x2�1 P F2rxs has no roots since qp0q � 1 and qp1q � 1, but x4�x2�1 � px2�x�1q2
in F2rxs.

Gauss proved (and we might prove one of these days) that the cyclotomic polynomials are

irreducible in Qrxs. In the homework we’ll explore which cyclotomic polynomials Φn are irreducible

in Fprxs.

In Galois theory, one studies the situation where there is a field F and a polynomial p P F rxs with

no roots in F , along with an extension field E � F containing an element α for which ppαq � 0 (we

view p also as an element of Erxs). The most familiar case of this is F � R, E � C, p � x2� 1 and

α � i. There is a natural construction of such an E, given F and p. For instance Rrxs{xx2�1y � C.

Because it’s really no harder, we’ll do this construction in the general case Rrxs where the

coefficients come from a ring that is not necessarily a field. First a remark: Suppose I is an ideal in

Rrxs such that RX I � x0y (where we consider R to be the subring of constant polynomials in Rrxs,
so the only constant polynomial in I is the zero polynomial). If r1, r2 P R and rr1s � rr2s P R{I,

then r1 � r2 P RX I and so r1 � r2. So if RX I � x0y we can simply write r to denote the element

rrs in Rrxs{I.

Proposition: Let R be a ring and

p � xn � an�1x
n�1 � � � � � a1x� a0 P Rrxs

be a monic polynomial of degree n. Then R X xpy � x0y. Each element rqs � q � xpy in the

quotient ring Rrxs{xpy can be expressed uniquely as a polynomial of degree less than n in rxs:
bn�1α

n�1 � � � � � b1α� b0 , where b0, . . . , bn�1 P R and α � rxs. In Rrxs{xpy we have the identity

αn � �an�1α
n�1 � � � � � a1α� a0 .

It is essential that p is a monic polynomial so that the considerations about degree on page 1 of

these notes apply. Note that the natural ring homomorphism ϕ : RÑ Rrxs{xpy given by ϕprq � rrs
is injective, so we can view R as a subring of Rrxs{xpy.

In the special case that R � F , a field and p is an irreducible polynomial, then xpy is a maximal

ideal and F rxs{xpy is an extension field E of F , and α � rxs P E is actually a root of p.
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Example. Let p � x2�x�1 P F2rxs, which is irreducible since it has no roots. By the proposition,

the quotient ring E � F2rxs{xx2 � x � 1y is a field, whose elements are of the form a � bα, where

a, b P F2 and α2 � �1� α � 1� α determines the multiplication rule:

pa� bαqpc� dαq � ac� pad� bcqα� bdα2 � pac� bdq � pad� bc� bdqα

(it doesn’t matter whether we use plus or minus signs since the characteristic of the field is 2). Note

that E is an extension field of F2 having 4 elements.

The law of quadratic reciprocity. Before the break, we were concerned with which in Fp are

quadratic residues, i.e., which half of the non-zero elements of Fp can be expressed as the squares

of elements of Fp. We introduced the Legendre symbol:

�
a

p



�
$&
%

0 if p | a
1 if a is a quadratic residue modulo p
�1 if a is a quadratic non-residue modulo p.

Recall that the Legendre symbol satisfies�
a

p



�
�
a� kp

p




for any k P Z, and if p is an odd prime and a is an integer not divisible by p, then we have Euler’s

formula �
a

p



� app�1q{2 pmod pq .

This allows us to conclude that if p is an odd prime, then the Legendre symbols satisfy:�
ab

p



�
�
a

p


�
b

p




and we noted that ��1

p



� p�1qpp�1q{2

tells us that if p is an odd prime, then �1 is a quadratic residue mod p if p � 1 pmod 4q and �1 is

a quadratic non-residue mod p if p � 3 pmod 4q.

We can get a little more information in an elementary way by following in Gauss’s footsteps. We

start as follows: For odd primes p, we’re used to writing the numbers in Fp as 0, 1, . . . , p � 1, but

we could just as easily write them as

�p� 1

2
,�p� 3

2
, . . . ,�2,�1, 0, 1, 2, . . . ,

p� 3

2
,
p� 1

2
.

For any integer a such that p - a, we consider the list of numbers

a, 2a, 3a, . . . ,
p� 1

2
a.

None of these numbers is divisible by p, and no pair of these are congruent to each other mod p.

We set µppaq (or just µpaq if p is clear from the context) equal to the number of elements of this

list that are congruent to negative numbers in the above listing of Fp (or to numbers bigger than

p{2 in the standard listing of Fp). For instance, if p � 11 then µp6q � 3, since 6, 12, 18, 24, 30 are
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congruent to �5, 1,�4, 2,�3 mod 11. Using the µ function, we can give another characterization of

Legendre symbols:

Lemma (Gauss): With the above notation, if p - a, then

�
a

p



� p�1qµppaq.

Idea of proof: Each number ka for k � 1, . . . , pp� 1q{2 is congruent to �mk for 1 ¤ mk ¤ pp� 1q{2.

When 1 ¤ j, k ¤ pp � 1q{2 and j � k, we cannot have ja � �ka pmod pq (since Fp is a field), and

by the definition of µ we conclude that

app�1q{2

�
p� 1

2



! � p�1qµppaq

�
p� 1

2



! pmod pq

and so Gauss’s result follows from Euler’s after canceling off the ppp� 1q{2q!.

Using this, we can determine when 2 is a quadratic residue mod p for p an odd prime. Namely,

2 is a quadratic residue mod p of p � 1 pmod 8q or p � 7 pmod 8q, and 2 is a quadratic non-residue

mod p if p � 3, 5 pmod 8q. To see this, we need to compute µpp2q, i.e., how many of the numbers

2, 4, . . . , p � 1 are greater than p{2. And if p � 1 pmod 4q then this number is pp � 1q{4, where if

p � 3 pmod 4q it’s pp� 1q{4. Therefore

�
2

p



�

$''&
''%

1 if p � 1 pmod 8q
�1 if p � 3 pmod 8q
�1 if p � 5 pmod 8q
1 if p � 7 pmod 8q

To do much more, we need the powerful law of quadratic reciprocity, due to Gauss. It states

that if p and q are odd primes then�
p

q


�
q

p



� p�1qpp�1qpq�1q{4.

Another way to say this is

�
p

q



�

$'''&
'''%

�
�
q

p



if p � q � 3 pmod 4q

�
q

p



otherwise

It is remarkable that the two congruences

x2 � q pmod pq and x2 � p pmod qq
should have any connection. But here’s an example that shows the usefulness of the law of quadratic

reciprocity in computing Legendre symbols:�
19

43



� �

�
43

19



� �

�
5

19



� �

�
19

5



� �

�
4

5



� �

�
2

5


�
2

5



� �1

and so the congruence x2 � 19 pmod 43q has no solutions.

To prove Gauss’s law of quadratic reciprocity we will work in the ring

R � Fprxs{x1� x� � � � � xq�1y.
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From the proposition on page 5, an element in R can be written uniquely in terms of α � rxs as

c0 � c1α� � � � � cq�1α
q�2

where c0, . . . , cq�2 P Fp.

Lemma: The element α is a primitive qth root of unity in R. Moreover, if q - ` and β � α` then

1� β � � � � � βq�1 � 0

in R.

Proof. We know from the proposition that α, α2, . . . , αq�2 � 1 and αq�1 � �1�α� � � ��αq�2 � 1.

But αq � ααq�1 � 1, and so α is a primitive qth root of unity. If q - ` then gcdpq, `q � 1, and so

t1, α, . . . , αq�1u � t1, β, . . . , βq�1u, which gives the equation in the lemma.

Gauss sums. We define the Gauss sum in R to be

G �
q�1̧

k�1

�
k

q



αk.

Because we’re working in R (where αq � 1), the individual terms satisfy�
k

q



αk �

�
k � qm

q



αk�qm

for every m P Z. We’ll use this often to prove two important properties of G:

1. G2 � p�1qpq�1q{2q.

2. If q � p, then G is an invertible element in the ring R.

Proof. The invertibility of G follows from (1) since q P Fp � R is invertible in R since it is invertible

in Fp for q � p. To prove (1), we start calculating:

G2 �
�
q�1̧

k�1

�
k

q



αk

��
q�1̧

k�1

�
k

q



αk

�

�
�
q�1̧

j�1

�
j

q



αj

��
q�1̧

k�1

��k
q



α�k

�

(where we reversed the second sum and used that

�
q � k

q



αq�k �

��k
q



α�k). Next,

G2 �
q�1̧

j�1

q�1̧

k�1

�
j

q


��k
q



αj�k

�
��1

q


 q�1̧

j�1

q�1̧

k�1

�
jk

q



αj�k

� p�1qpq�1q{2
q�1̧

j�1

q�1̧

k�1

�
j2k

q



αjp1�kq
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where in the last equality we used the fact about

��1

p



from near the bottom of page 6 and we

replaced k with jk, since as k runs through 1, . . . , q�1 the remainders of jk mod q also run through

1, . . . , q (though not necessarily in the same order). Since

�
j2

q



� 1 by definition, we get

G2 � p�1qpq�1q{2
q�1̧

k�1

�
k

q


 q�1̧

j�1

αjp1�kq

� p�1qpq�1q{2
q�1̧

k�1

�
k

q


 q�1̧

j�0

αjp1�kq

because
q�1̧

k�1

�
k

q



� 0 (half the numbers between 1 and q � 1 are quadratic residues mod q). From

the lemma above, we have that
q�1̧

j�0

αjp1�kq � 0 unless k � 1, in which case the sum is q. This gives

the formula for G2 in (1) above.

Proof of the law of quadratic reciprocity. Raise G to the pth power in R and get

Gp � pG2qpp�1q{2G � p�1qpp�1qpq�1q{4qpp�1q{2G

� p�1qpp�1qpq�1q{4

�
q

p



G

using Euler’s formula for the Legendre symbol. On the other hand, we can calculate Gp from the

definition and use the “freshman dream” in the ring R to get

Gp �
�
q�1̧

j�1

�
j

q



αj

�p
�
q�1̧

j�1

�
j

q



αpj

�
q�1̧

j�1

�
p

q


�
pj

q



αpj �

�
p

q



G

Since G is invertible, we can cancel G from the two expressions for Gp and get the law of quadratic

reciprocity: �
p

q



� p�1qpp�1qpq�1q{4

�
q

p



.

The above is one of the half-dozen or so proofs that Gauss gave of the law of quadratic reciprocity.

He was so taken with the theorem that he called it his “Theorema Aureum”.

Finite fields.

Next we turn to the remarkable fact that for every prime p and every n ¥ 1 there exists a unique

field with pn elements (we constructed a field with 22 elements above).

Lemma: Suppose F is a finite field, then |F | � pn, where p is a prime number, n ¥ 1, and there

exists an irreducible polynomial f P Fprxs of degree n such that F � Fprxs{xfy.
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Proof. Start with the unique ring homomorphism κ : ZÑ F , which is not injective since F is finite.

Therefore the characteristic (generator of the kernel of κ) of F is a prime number p and Fp, being

the image of κ, is a subring of F . By the first theorem on page 4, we have that F� is a cyclic group,

so let σ be a generator of F�. Thus, every element in F is either 0 or else some power σn of σ. Since

ϕσpxq � σ, and so ϕσpxnq � σn, the ring homomorphism ϕσ : F rxs Ñ F is surjective, and in fact,

since x P Fprxs � F rxs, we can restrict ϕσ to Fprxs and get a surjective homomorphism

ϕ : Fprxs Ñ F.

The kernel of ϕ is a principal ideal xfy � Fprxs, and Fprxs{xfy � F , so xfy is a maximal ideal.

Therefore f is an irreducible polynomial (by (i) of the Proposition on page 5). And |F | � pn, where

n � degpfq by the other proposition on page 5.

Our goal now is to prove the main result of this subsection:

Theorem: There exists a finite field with pn elements, where p is a prime number and n ¥ 1. More

precisely:

(i) There exists an irreducible polynomial in Fprxs of degree n.

(ii) If F and F 1 are finite fields with pn elements, then there is a ring isomorphism F Ñ F 1.

Proof. To prove (i), we are going to use cyclotomic polynomials — since the cyclotomic polynomial

Φk has integer coefficients, we can use the homomorphism κ : ZÑ Fp to consider Φk as an element

of Fprxs. We are going to show that if f is an irreducible polynomial dividing Φpn�1 in Fprxs, then

degpfq � n.

To do this, suppose degpfq � d, then we know that E � Fprxs{xfy is a field with pd elements

and α � rxs is a root of f P Fprxs � Erxs. Since f | Φpn�1 we have gf � Φpn�1 for some g P Fprxs
and we get that Φpn�1pαq � gpαqfpαq � 0. The derivative of xp

n�1�1 P Fprxs is �xpn�2, therefore

α is not a multiple root of xp
n � 1 and so α is a primitive ppn � 1qth root of unity. But αp

d�1 � 1

(that’s the order of the group E�), and so pn � 1 | pd � 1.

On the other hand, let R � tξ P E | ξpn � ξu, which is a subring of E (use the freshman dream to

get additivity). Since αp
n�1 � 1, we must have α P R, and since E � ta0�a1α�� � ��ad�1α

d�1 | ai P
Fpu, it follows that R � E (since R contains 1 and all powers of α and is a subring of E). Now we

know there is a primitive ppd � 1qth root of unity ζ in E, and since E � R we have ζ P R and so

ζp
n�1 � 1. But then pd � 1 | pn � 1 and combining this with the preceding paragraph tell us that

pd � 1 � pn � 1, or d � n. This completes the proof of (i).

To prove (ii), suppose F and F 1 are finite fields with pn elements. By the lemma above, F �
Fprxs{xfy for some irreducible polynomial f of degree n, and fpαq � 0, where α � rxs P F . The set

I � tg P Fprxs | gpαq � 0u ( Fprxs is an ideal in Fprxs, and f P I. Therefore xfy � I, but xfy is a

maximal ideal (because F is a field) and so I � xfy.

Now F� is a finite group with pn � 1 elements, therefore βp
n�1 � 1 � 0 for every β P F�, which

implies that xp
n � x P I and therefore f | xpn � x in Fprxs. On the other hand, in F 1rxs we have

that

xp
n � x �

¹
γPF 1

px� γq,
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since every γ P F 1 satisfies γp
n � γ � 0 as well. Therefore f P Fprxs � F 1rxs must have a root

α1 P F 1 since f divides xp
n � x. So consider the ring homomorphism

ϕα1 : Fprxs Ñ F 1.

Chearly xfy � kerpϕα1q, but since kerpϕα1q is a proper ideal and xfy is a maximal ideal in Fprxs, we

must have xfy � kerpϕα1q. Therefore there is an injective ring homomorphism

Fprxs{xfy Ñ F 1

which must also be surjective since F 1 has the same number of elements as Fprxs{xfy � F . Thus

F � F 1 and we are done.

We know that xp
n � x � xpxpn�1 � 1q � x

¹
d|pn�1

Φd in Fprxs. And by the theorem on the

preceding page, we know that xp
n � x is divisible by an irreducible polynomial of degree n. But we

can say a bit more about this, in particular we can calculate the complete irreducible factorization

of xp
n � x in Fprxs. For instance in F2rxs,

x2
2 � x � x4 � x � xpx� 1qpx2 � x� 1q

and in F3rxs,
x3

2 � x � x9 � x � xpx� 1qpx� 2qpx2 � 1qpx2 � x� 2qpx2 � 2x� 2q.
In general we have the following:

Theorem. The polynomial xp
n � x P Fprxs is the product xp

n � x � f1f2 � � � fk of all the monic

irreducible polynomials f1, . . . , fk in Fprxs of all degrees d for which 1 ¤ d ¤ n and d | n.

Proof. We can restate the theorem as follows: For d such that 1 ¤ d ¤ n and f P Fprxs an irreducible

monic polynomial of degree d, f | xpn � x if and only if d | n. Furthermore xp
n � x is not divisible

by the square of any irreducible polynomial.

So we suppose d satisfies 1 ¤ d ¤ n and f P Fprxs is an irreducible monic polynomial of

degree d. Then we have E � Fprxs{xfy is a field with pd elements, and α � rxs P E satisfies

αp
d � α (because E� is a cyclic group of order pd � 1). Now if d | n, then raising both sides of

αp
d � α to the pd power q times, where n � qd, gives us that αp

n � α in E. And this means that

αp
n�α � rxpn�xs � r0s P E � Fprxs{xfy, in other words, xp

n�x P xfy, in other words f | xpn�x.

Now let’s assume that the monic irreducible polynomial f P Fprxs of degree d divides xp
n�x and

we wish to show that d | n. Once again consider the field E � Fprxs{xfy, and let gpxq � xp
n � x P

Erxs. Clearly 1 P E satisfies gp1q � 0, and α � rxs P E satisfies gpαq � 0, since f | g and fpαq � 0

in E. Now use the “freshman’s dream” to conclude that the set of elements e of E which satisfy

gpeq � 0 is a subring of E, and hence it is all of E. But E has pd elements, so E� is a cyclic group

of order pd � 1. And if σ is a generator of E� then σp
d�1 � 1, and also σp

n�1 � 1 since this is true

for all elements of E�. Thus pd � 1 | pn � 1. We claim that this implies d | n and will prove this

below.

Up to this point, we’ve shown that the xp
n�x is the product of the monic irreducible polynomials

of degrees d which divide n. Now we have to show that none of these irreducible polynomials occur
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to a power higher than 1 in the factorization of xp
n � x. But if f is an irreducible factor of xp

n � x,

then f2 cannot divide evenly into xp
n � x, since the derivative of xp

n � x � pnxp
n�1 � 1 � �1 in

Fprxs (and use the first sentence on page 3).

So the last detail we have to take care of is a proof that if t, d and n are positive integers, with

t ¡ 1, then td � 1 | tn � 1 if and only if d | n. Start by writing n � dq � r with 0 ¤ r   d. Then

tn � 1

td � 1
� ptdqqtr � 1

td � 1
� ptdqqtr � tr � tr � 1

td � 1

� tr
ptdqq � 1

td � 1
� tr � 1

td � 1

� trp1� td � � � � � ptdqq�1q � tr � 1

td � 1

But 0 ¤ tr � 1   td � 1, so the division works if and only if r � 0. This completes the proof of the

theorem.

If we take the degree of both sides of the factorization xp
n � x � f1 � � � fk from the theorem, we

get the equation

pn �
¸
d|n

dNd

where Nd is the number of monic irreducible polynomials of degree d in Fprxs.

Since we know that there are p monic irreducible polynomials of degree 1 in Fprxs, namely

x, x� 1, x� 2, . . . , x� pp� 1q
we have N1 � p. So if q is a prime number, then

pq � qNq �N1 � qNq � p

and we can conclude that

Nq � ppq � pq{q.
More generally, we have

Nn � 1

n

�
�pn � ¸

d n,d|n

dNd

�
.

Another important consequence of the theorem above is the following lemma:

Lemma: Let f P Fprxs be an irreducible polynomial of degree d. Then f | xpd � x and f does not

divide xp
c � x if c   d.

Using this result we can find factors of a given polynomial f P Fprxs using the Euclidean

algorithm. Suppose that g P Fprxs, degpgq � d and g � g1g2 � � � gd where gi is the product of

all the irreducible polynomials of degree i that divide g. It then follows from the theorem that

gcdpxpi � x, gq is the product of all the gj for j | i. So we can find the gj by successively inserting

i � 1, 2, . . . into gcdpxpi � x, gq and using the Euiclidean algorithm to compute the gcd.

Factoring in Fprxs: We can use linear algebra to help decide whether a polynomial in Fprxs of

degree ¥ 4 is irreducible. To do this, we consider the Frobenius map F : Fp Ñ Fp where F pλq � λp
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(this is a ring homomorphism because of the “freshman’s dream”). Given a polynomial f P Fprxs
we extend F to the ring R � Fprxs{xfy, and we’ll still call this map F : RÑ R.

But we can view R as a vector space over Fp, and because λp � λ for λ P Fp, the map F

(extended to R) is a linear mapping of vector spaces. It might help to do an example of this.

Example: Let f � x5 � x � 1 P F2rxs. Then R � F2rxs{xfy is a vector space over F2 with

basis t1, α, α2, α3, α4u where α � rxs. Since fpαq � 0 in R, we have that α5 � α � 1. What

doe the Frobenius map F pλq � λ2 do to this basis? Well, F p1q � 1, F pαq � α2, F pα2q � α4,

F pα3q � α6 � αpα5q � αpα � 1q � α2 � α, and F pα4q � α8 � α3pα5q � α3pα � 1q � α4 � α3.

Therefore the matrix of the map F with respect to this basis is

MF �

�
�����

1 0 0 0 0
0 0 0 1 0
0 1 0 1 0
0 0 0 0 1
0 0 1 0 1

�
����� .

Note that this matrix is invertible, since if we apply the permutation p2453q to it, it becomes upper

triangular with 1s on the diagonal (so detMF � 1).

Now if MF were not invertible, then we could find a non-constant polynomial g P Fprxs such

that degpgq   degpfq and rgsp � 0. And if q were an irreducible polynomial such that q | f then we

would have q | g. Therefore gcdpf, gq is a non-trivial divisor of f (i.e., 0   degpgcdpf, gqq   degpfq).

Next, suppose g P Fprxs is a polynomial such that 0   degpgq   degpfq and rgsp � rgs � 0 in

R � Fp{xfy. In other words, rgs is in the kernel of the linear map F � I : R Ñ R (viewing R as a

vector space over Fp). Since

xp � x � xpx� 1q � � � px� p� 1q
in Fprxs, we also have the factorization

gp � g � gpg � 1q � � � pg � p� 1q

in Fprxs. If q is an irreducible factor of f , and since f | gp � g (because rgp � gs � 0 P R �
Fp{xfy), we obtain that q will divide one of g, g � 1,. . . ,g � p � 1. And so one of gcdpf, gq,
gcdpf, g � 1q,. . . ,gcdpf, g � p� 1q is a non-trivial factor of f (since degpgq   degpfq).

Example (continued): The matrix of F � I for the example above is

MF�I �

�
�����

0 0 0 0 0
0 1 0 1 0
0 1 1 1 0
0 0 0 1 1
0 0 1 0 0

�
����� .

Now r1, 0, 0, 0, 0sT P kerpMF�Iq, but we knew that would happen since ap�a � 0 for all a P Fp. But

there is a second, linearly independent element of kerpMF�Iq, namely r1, 1, 0, 1, 1sT . This means

that the polynomial g � 1� x� x3 � x4 satisfies f | g2 � g. Using the Euclidean algorithm, we can

compute that

gcdpx5 � x� 1, x4 � x3 � x� 1q � x2 � x� 1
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and so x2 � x� 1 is a nontrivial factor of x5 � x� 1.

So we have a way to find non-trivial factors of polynomials in Fprxs. It might be a bit surprising

to know that if the method given above doesn’t work to find a factor of f , then f is irreducible:

Theorem: Suppose f P Fprxs is a non-constant polynomial and let F : R Ñ R be the Frobenius

map, where R � Fprxs{xfy. Then f is irreducible if and only if kerpF q � 0 and kerpF � Iq � Fp.

Proof. We have seen above that kerpF q � 0 and kerpF � Iq � Fp if f is irreducible, since otherwise

we can use the method above to find a non-trivial factor of f . So conversely, assume that kerpF q � 0

and kerpF � Iq � Fp, and let r be a non-zero element of R. We’re going to show that r is invertible

in R, which will imply that R is a field, and thus that f is irreducible. Consider the Fp-linear map

A : RÑ R given by Apxq � rx, and suppose that x P kerpAq X impAq. Then x � ry for some y P R
and rx � 0. But then F pxq � F pryq � rpyp � rp�2yp�1rx � 0, and so x P kerpF q. Therefore x � 0

and so kerpAq X impAq � 0. But since dimpkerpAqq � dimpimpAqq � dimpRq (the dimensions are

taken as vector spaces over Fp), we have kerpAq � impAq � R

Now, if x P kerpAq then so is F pxq, since ApF pxqq � rxp � prxqxp�1 � 0. Likewise, if x P impAq
then so is F pxq, since if x � Apyq � ry then F pxq � xp � pryqp � rprp�1ypq P impAq. We can

express 1 P R uniquely as x� y where x P kerpAq and y P impAq. But then F p1q � 1 � F pxq�F pyq,
and so F pxq � x and F pyq � y. But since kerpF � Iq � Fp we have x P Fp and y P Fp. The only

way x can also be in kerpAq is for x � 0 (since x is a “scalar”), and so y � 1. But now 1 P imA so

there is a z P R such that rz � Apzq � 1, and we are done.


