
MATH 371 – Class notes/outline – November 5, 2013

Intro to Gröbner bases

We return to the study of polynomial rings with several variables over the fields Q, R and C,

and their relationship with the (algebraic) geometry of Qn, Rn and Cn. We’ll use the letter k to

denote one of these fields (many things we do here will be applicable to other fields as well).

Up to now, we know a lot about the ring krxs — owing mostly to the division algorithm, which

relies on the fact that krxs is a Euclidean domain. Unfortunately, although krx1, . . . , xns is a unique

factorization domain for n ¥ 2, it is not a Euclidean domain, and we have remarked on the apparent

difficulty of the following questions:

1. Ideal description: Not all ideals in krx1, . . . , xns are principal. But can every ideal I �

krx1, . . . , xns be written as xf1, . . . , fsy for a finite collection of polynomials f1, . . . , fs P

krx1, . . . , xns?

2. Ideal membership: Given an ideal I � krx1, . . . , xns of the form xf1, . . . , fsy and another

polynomial f P krx1, . . . , xns, determine whether f P I.

3. Solving polynomial equations: Find (all of the) solutions in kn of the system of polynomial

equations

fpx1, . . . , xnq � � � � � fspx1, . . . , xnq � 0.

Another way to say this is to determine the points on the affine variety Vpf1, . . . , fsq.

4. Implicitization (or de-parametrization): Suppose S � kn is given parametrically as

x1 � g1pt1, . . . , t`q

x2 � g2pt1, . . . , t`q

...
...

...

xn � gnpt1, . . . , t`q

where the gi are polynomials or rational functions. Then S is an affine variety (or at least part

of one). Find the system of polynomial equations that defines this variety.

Of course, we know the answers to questions 1 and 2 in the single-variable case — every ideal in

krxs is principal, and the division algorithm takes care of question 2: if I � xgy and we express f as

f � qg � r with degprq   degpgq, then f P I if and only if r � 0.

A situation where we can answer questions 3 and 4 satisfactorily is when all the polynomials in

question are linear. For instance, consider the system of linear equations:

2x1 � x2 � x3 � 1
x1 � 2x2 � x3 � �4
x1 � x2 � 2x3 � 5
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The row-reduced form of the matrix of the system is:
�
�

1 0 1 2
0 1 �1 �3
0 0 0 0

�
� .

The usual drill from linear algebra gives us a parametrization of the line (one-dimensional affine

variety) of solutions of the equations as follows:

x1 � 2 � t

x2 � �3 � t

x3 � t

We can also consider the ideal of this variety within krx1, x2, x3s, namely I � x2x2�x2�x3�1 , x1�

2x2�x3� 4 , x1� x2� 2x3� 5y. This ideal can also be expressed as I � xx1�x3� 2 , x2�x3� 3y.

This latter way of expressing the ideal will be much more convenient for determining whether a

polynomial f P krx1, . . . , xns is in I, since we would be able to consider “one variable at a time”,

i.e., first x1 and then x2. We’ll have much more to say about this later.

An example for question 4 would be to reverse the process for this example, i.e, to start with

the parametrization of the solutions and then work back to a set of equations in x1, x2 and x3 as

follows: Rewrite the parametrization equations by putting the t terms first on the left side:

t � x1 � 2
t � x2 � 3
t � x3 � 0

Now do row reduction and get the matrix
�
�

1 1 0 0 2
0 1 1 0 �1
0 0 1 �1 �3

�
� .

Neither of the last two rows has a non-zero entry in the t column, and the equations they represent,

namely
x1 � x2 � �1

x2 � x3 � �3

are equivalent to the original system.

Notice that in the single-variable case, we rely on the division algorithm, and in the linear multi-

variable case the row-reduction procedure relies on keeping careful track of the how the terms are

ordered (and we are careful to write the terms in the same order in every step as we solve a problem).

The method of Gröbner bases combines these two elements to handle general systems of polynomials

in several variables.

Order: In the one-variable polynomial ring krxs, there is a natural order to the terms that we use

for long division in algebra — namely, we order the terms from highest to lowest degree (in calculus,

we usually do it the other way around). To indicate this, we’ll use “¡” to mean “comes before” and

write � � � ¡ xm�1 ¡ xm ¡ � � � ¡ x2 ¡ x ¡ 1.

In the ring krx1, . . . , xns for n ¥ 2, there is no obvious notion of order for the terms, and indeed

it will turn out that there are many (in fact an infinite number of) possible orderings. To begin,



3

recall our multi-index notation for monomials in several variables: we write α � pα1, . . . , αnq for an

n-tuple of non-negative integers (so α P Zn¥0) and when we write xα we mean xα1
1 xα2

2 � � �xαn
n . We

want to define a “comes before” ordering ¡ on Zn¥0 that will help us concoct a useful long division

algorithm, and we’ll need it to have three basic properties:

1. ¡ should be a total or linear ordering on Zn¥0, that is, for every α, β P Zn¥0 exactly one of

α ¡ β, β ¡ α or α � β is true.

2. ¡ should respect multiplication, that is, if α ¡ β and γ P Zn¥0 then α� γ ¡ β � γ.

3. ¡ should be a well-ordering on Zn¥0, that is, every nonempty subset of Zn¥0 has a smallest

element.

A relation ¡ that satisfies these three properties will be called a monomial ordering.

Note that the condition that ¡ is a well-ordering is equivalent to the fact that any decreasing

sequence of multi-indices αp1q ¡ αp2q ¡ � � � must terminate (or stabilize).

Example: Perhaps the simplest example of a monomial ordering is the lexicographic ordering, or

lex for short. It is basically the “dictionary order”, or more precisely, if α, β P Zn¥0 then α ¡lex β

if, in the vector difference α� β, the leftmost nonzero entry is positive. We’ll also write xα ¡lex x
β

if α ¡lex β.

For instance p1, 2, 0q ¡lex p0, 3, 4q and p3, 2, 4q ¡lex p3, 2, 1q, so we also have x1x
2
2 ¡lex x

3
2x

4
3 and

x31x
2
2x

4
3 ¡lex x

3
1x

2
2x3. It is straightforward to show that ¡lex is a monomial ordering. Note that the

lexicographic ordering depends on an ordering of the variables, so we can create other (in fact n!)

different lexicographic orderings by deciding to write the variables in a different order.

One peculiarity of the lex ordering is that it doesn’t take the total degree of monomials into

account, so in the first example above we had a term of total degree 3 coming before a term of total

degree 7. For some purposes this is fine, but we frequently want to write our terms in decreasing

order of total degree. Doing this will give us the graded lexicographic order, or grlex. It is defined

as follows: If α, β P Zn¥0 then α ¡grlex β if |α| ¡ |β, or if |α| � |β| and α ¡lex β.

A few definitions: We need a little bit of jargon to describe the multivariable division algorithm

and some of its consequences, so here it is: Let f �
°
α aαx

α be a nonzero polynomial in krx1, . . . , xns

and let ¡ be a monomial order.

• The multidegree of f is multidegpfq � maxtα P Zn¥0 | aα � 0u where the maximum is taken

with respect to the monomial ordering ¡ – in other words multidegpfq is the multi-index which

gives the exponents in the “first term” of f (with respect to ¡).

• The leading coefficient of f is LCpfq � amultidegpfq P k.

• The leading monomial of f is LMpfq � xmultidegpfq.

• The leading term of f is LTpfq � LCpfq � LMpfq.
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It is easy to see that if f, g P krx1, . . . , xns are nonzero, then multidegpfgq � multidegpfq �

multidegpgq and if f � g � 0 then multidegpf � gq ¤ maxpmultidegpfq,multidegpgqq (and equality

occurs if multidegpfq � multidegpgq).

The division algorithm. The division algorithm in krx1, . . . , xns reflects the fact that not all

ideals in krx1, . . . , xns are principal, and the fact that an important use of the division algorithm in

one variable, where we were given f and d and expressed f as f � qd � r where degprq   degpdq,

was to provide standard representatives of elements of krxs{xdy, namely that rf s � r � xdy. Since

ideals in krx1, . . . , xns are generated by more than one polynomial, for instance xd1, d2, . . . , dsy, we’ll

try to express a general polynomial f P krx1, . . . , xns as

f � q1d1 � q2d2 � � � � � qsds � r

where something about r is “less” than the corresponding thing about any of the di’s. This will

require us to work with a fixed monomial ordering ¡.

Proposition: Fix a monomial ordering ¡ on Zn¥0. Let f P krx1, . . . , xns with f � 0 and suppose that

pd1, d2, . . . , dsq is a sequence of non-zero polynomials in krx1, . . . , xns. Then there exist q1, . . . , qs, r P

krx1, . . . , xns such that

f � q1d1 � q2d2 � � � � � qsds � r

and either r � 0 or none of the terms in r is divisible by any of LTpd1q, LTpd2q,. . . ,LTpdsq. Further-

more, if qidi � 0 then multidegpfq ¥ multidegpqidiq.

Proof: Here is the algorithm: To begin, set q1, . . . , qs � 0, r � 0 and g � f , so that we have

f � q1d1 � q2d2 � � � � � qsds � pr � gq.

This expression will be invariant throughout the algorithm, even though the constituent parts will

change. Here is the iterative step of the algorithm: If g � 0 then we are done. Otherwise,

• If LTpgq is divisible by some LTpdiq then pick the smallest i with this property and let

g � g �
LTpgq

LTpdiq
gi and qi � qi �

LTpgq

LTpdiq
.

Note that the above equation for f still holds after these assignments since we have simply

added something to the qidi term and subtracted the same thing from the g term.

• On the other hand, if LTpgq is not divisible by any of the LTpdiq then we add the initial term

of g to r and subtract it from g:

r � r � LTpgq and g � g � LTpgq.

Clearly after these assignments r�g is unchanged and the above equality still holds. Now repeat —

if q � 0 we are done and otherwise, the multidegree of the initial term of g has strictly decreased.

Since ¡ is a well-ordering, we know the algorithm must terminate and all the other conclusions of

the proposition are satisfied.
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Examples: For our first example, we use the lex ordering and divide xy2 � 1 by the pair pxy �

1 , y � 1q

q1 : y
q2 : �1 r

xy � 1 |xy2 � 1
y � 1 |

xy2 � y

�y � 1
�y � 1

2

0 Ñ 2

This allows us to conclude that xy2 � 1 � ypxy � 1q � p�1qpy � 1q � 2.

A somewhat more complicated example, which illustrates how the remainder can be accumulated

over the course of several steps, is to divide x2y�xy2� y2 by the pair pxy� 1 , y2� 1q (we continue

to use the lex ordering):

q1 : x� y
q2 : 1 r

xy � 1 |x2y � xy2 � y2

y2 � 1 |
x2y � x

xy2 � x� y2

xy2 � y

x� y2 � y

y2 � y Ñ x
y2 � 1

y � 1

0 Ñ x� y � 1

This shows that x2y � xy2 � y2 � px� yqpxy � 1q � p1qpy2 � 1q � px� y � 1q.

Next, we repeat this example, but with the divisors reversed. So we’re dividing x2y � xy2 � y2
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by the pair py2 � 1 , xy � 1q

q1 : x� 1
q2 : x r

y2 � 1 |x2y � xy2 � y2

xy � 1 |
x2y � x

xy2 � x� y2

xy2 � x

2x� y2

y2 Ñ 2x
y2 � 1

1

0 Ñ 2x� 1

This shows that x2y � xy2 � y2 � px � 1qpy2 � 1q � pxqpxy � 1q � p2x � 1q. It is perhaps a little

disconcerting that the remainder in this example is different from the previous one.

This phenomenon of different remainders dependent on the order of the divisors can even result

in a zero remainder for one order and non-zero for another. For instance, if we divide xy2 � x by

the pair pxy � 1 , y2 � 1q, we get

q1 : y
q2 : r

xy � 1 |xy2 � x
y2 � 1 |

xy2 � y

�x� y

0 Ñ �x� y

and so xy2 � x � ypxy � 1q � 0py2 � 1q � p�x � yq. On the other hand, if we divide xy2 � x by

py2 � 1 , xy � 1q we get
q1 : x
q2 : r

y2 � 1 |xy2 � x
xy � 1 |

xy2 � x

0

and so xy2�x � xpy2� 1q� 0pxy� 1q� 0. This last division shows that xy2�x P xy2� 1 , xy� 1y,

where the previous division did not. This phenomenon of non-uniqueness of the remainder will go

away if we use Gröbner bases for our “divisor ideal”, as we shall see.
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Ideals generated by monomials: We call I � krx1, . . . , xns an ideal generated by monomials

(some authors call these “monomial ideals”, which is a bit shorter but also somewhat misleading) if

there is a subset A � Zn¥0 such that I consists of all polynomials which are finite sums of the form°
αPA pαx

α where pα P krx1, . . . , xns (and all but finitely many of the pα are zero in case the set A

is inifinite). We will write I � xxαyαPA.

Clearly, if I � xxαyαPA is an ideal generated by monomials, then a monomial xβ is in I if and

only if it is divisible by xα for some α P A. And xβ is divisible by xα if and only if β � α � γ

for some γ P Zn¥0. So the set of monomials divisible by a given xα is the set of points with integer

coordinates in the translated version of the positive orthant of Rn (translated so that the origin

moves to the point α).

More generally, if I � xxαyαPA is an ideal generated by monomials, then a polynomial p P

krx1, . . . , xns is in I if and only if each term of f is in I, so two ideals generated by monomials are

equal if and only if they contain the same monomials (this is not to say that their generating sets

are the same). The main result about these ideals, which is a precursor to Hilbert’s basis theorem,

is the following:

Dickson’s Lemma: Let I � xxαyαPA be an ideal generated by monomials. Then I has a finite

basis (generating set). In particular, I � xxα1 , xα2 , . . . , xαsy, where α1, . . . , αs P A.

Idea of proof. Induct on the number of variables n in krx1, . . . , xns. If n � 1 the result is obvious.

So assume the result for n� 1 and suppose I � xxαyαPA � krx1, . . . , xns. Define the projection map

π : Zn¥0 Ñ Zn�1
¥0 vis πpa1, a1, . . . , anq � pa2, a3, . . . , anq, and let J be the ideal in krx2, . . . , xns gener-

ated by the monomials xβ for which β � πα for some xα P I. By induction, J is generated by finitely

many monomials of the form xπpαq with α P A, so assume J is generated by xπpα1q, xπpα2q, . . . , xπpαsq.

For each i � 1, . . . , s, there is a non-negative integer ki such that αi � pki, πpαiqq — let K be the

largest of these (finitely many) integers.

Next, for each k � 0, . . . ,K let Jk be the ideal in krx2, . . . , xns generated by monomials xβ such

that xk1x
β P I. Again, Jk has a finite generating set, say Jk � xxβk,1 , . . . , xβk,sk y. It is now true that

I is generated by the totality of generators of J, J0, J1, . . . , JK . And by the observation above, each

monomial in this generating set is divisible by some monomial in A, which yields the desired finite

generating set coming from txα |α P Au.

One consequence of Dickson’s lemma is a simplification of the definition of monomial ordering

— rather than insisting on the relation ¡ being a well-ordering, it is enough to insist that α ¡ 0 for

all α � 0 in Zn¥0. This is because if we are given an ordering that satisfies the first two conditions of

the definition (total ordering, respects multiplication) for which α ¡ 0 for all α � 0 in Zn¥0, and any

subset A � Zn¥0, we can form the ideal I � xxαyαPA. By Dickson’s Lemma, I has a finite generating

set, and the multidegree of the smallest element in the generating set will be the smallest element

in A.

Ideals of leading terms and the Hilbert Basis Theorem: Let I � krx1, . . . , xns be an ideal.

Write LTpIq for the set of leading terms of elements of I, so cxα P LTpIq if and only if there exists

f P I with LTpfq � cxα. Then xLTpIqy is the ideal generated by the leading terms of elements of I

Note that if I � xp1, . . . , psy then necessarily xLTpp1q, . . . ,LTppsqy � xLTpIqy, but the opposite
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inclusion need not be true. For example (use ¡lex to order the terms) x2 P xx3 � y , x2y � y2 � xy

since x2 � xpx2y � y2 � xq � ypx3 � yq but x2 R xx2y, x3y.

Clearly, xLTpIqy is an ideal generated by monomials, so by Dickson’s Lemma it has a finite gener-

ating set. In particular, there are polynomials g1, . . . , gs P I such that xLTpIqy � xLTpg1q, . . . ,LTpgsqy.

Armed with this observation and the division algorithm, we can prove that every ideal I � krx1, . . . , xns

has a finite basis:

Hilbert’s Basis Theorem: Every ideal I � krx1, . . . , xns has a finite generating set; in other

words, I � xg1, . . . , gsy for some choice of g1, . . . , gs P I.

Proof: Claim that a set g1, . . . , gs such that xLTpIqy � xLTpg1q, . . . ,LTpgsqy is a finite generating

set for I. To see this, choose f P I and divide f by pg1, . . . , gsq using the division algorithm (after

picking some monomial ordering ¡). The result is an expression of the form

f � q1g1 � � � � � qsgs � r

where no term of r is divisible by any of the LTpg1q, . . . ,LTpgsq. But it is clear that r P I so that if

r � 0 we would have to have LTprq P xLTpg1q, . . . ,LTpgsqy, which is impossible.

Definition: Given an ideal I � krx1, . . . , xns, a (finite) subset tg1, . . . , gsu � I which satisfies

xLTpIqy � xLTpg1q, . . . ,LTpgsqy

is called a Gröbner basis (or sometimes a standard basis) for I

Gröbner bases were invented (discovered?) in 1965 by Buchberger and named by him in honor of

his thesis adviser. Independently, Hironaka developed the idea of standard bases for ideals in power

series rings in 1964.

An immediate application of Gröbner bases (or of the Hilbert Basis Theorem) is to show that the

polynomial ring krx1, . . . , xns satisfies the ascending chain condition (ACC): if I1 � I2 � I3 � � � �

is an ascending chain of ideals in krx1, . . . , xns, then there exists an N ¥ 1 such that IN � IN�1 �

IN�2 � � � � . A ring that satisfies the ACC is called a Nötherian ring.

Another consequence is that even though we defined them as solutions of finite systems of

polynomial equations, affine varieties are naturally associated with ideals — we can define VpIq

to be the set of points x P kn such that ppxq � 0 for all p P I. But we know that I has a finite

generating set tg1, . . . , gsu so that VpIq � Vpg1, . . . , gsq is really an affine variety.

Properties of Gröbner bases: So far we have a non-constructive proof of the fact that every

ideal I � krx1, . . . , xns has a Gröbner basis (since the generating set obtained in the proof of the

Hilbert Basis Theorem is by definition a Gröbner basis). An important consequence of having a

Gröbner basis tg1, . . . , gsu for I is that for any f P krx1, . . . , xns we have that there is a unique

r P krx1, . . . , xns such that no term of r is divisible by any of LTpg1q, . . . ,LTpgsq and there is a g P I

such that f � g� r. In particular, g and r are obtained by using the division algorithm to divide f

by pg1, . . . , gsq, and g and r are independent of what order we write the gi’s in.

To prove this, start from f � q1g1�� � �� qsgs� r, which gives a g and an r where no term of r is

divisible by any of LTpg1q, . . . ,LTpgsq. To prove uniqueness, suppose that f � g� r � g1� r1 where
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both r and r1 satisfy this property. If r � r1, then LTpr � r1q P xLTpIqy � xLTpg1q, . . . ,LTpgsqy, so

that we would need LTpr � r1q to be divisible by some LTpgiq, which is impossible.

Proposition: Let G � pf1, . . . , fsq be a Gröbner basis with respect to some ordering and let

f P krx1, . . . , xns. Then f P I � xf1, . . . , fsy if and only if the remainder of f on division by G is

zero.

Proof. If the remainder is zero then clearly f P I. On the other hand, suppose f P I and that

f � a1f1 � � � � � asfs � r is the output of the division algorithm. Then r P I and no term of r is

divisible by any LTpfiq, so in particular LTprq is not divisible by any LTpfiq, which contradicts that

G was a Gröbner basis unless r � 0.

So a Gröbner basis gives us a way to avoid all our long division issues and solve the ideal

membership problem. There are two obstacles we need to overcome: the first is to find a more

workable criterion for knowing that a given basis for an ideal is in fact a Gröbner basis, and the

second more ambitious one is to find a Gröbner basis for an ideal. We turn to these next.

S-polynomials and Buchberger’s criterion: Fix a monomial ordering ¡ on krx1, . . . , xns.

Suppose we want to check whether a set of polynomials tf1, . . . , fru � krx1, . . . , xns (we assume

that none of the fi’s are the zero polynomial) is a Gröbner basis for the ideal generated by these

polynomials. According to the definition of Gröbner bases given above, for any polynomial f of the

form

f � a1f1 � � � � � arfr P xf1, . . . , fry

(where a1, . . . , ar P krx1, . . . , xns) we need to check whether LTpfiq divides LTpfq for at least one

value of i. Of course, this criterion is unworkable because we would have to check every f P I, and

there are infinitely many such polynomials f .

We begin by understanding further what can be challenging about testing the criterion. To do

this, we need some notation.

Let αi � multidegpaiq, let βi � multidegpfiq and let γ � multidegpfq. Also, let ci � LCpaiq, let

di � LCpfiq and let a � LCpfq. Finally, set δ � maxtαi�βiu with respect to the ordering ¡. Clearly,

we have δ ¥ γ, and if δ � γ then there are some terms in the sum for f , say m of them (which we

can assume are the first m terms without loss of generality) such that δ � α1� β1 � � � � � αm� βm
and for which aidi � 0 for i � 1, . . . ,m. Then we have

axγ � pc1d1 � � � � � cmdmqx
δ.

In this case d1x
β
1 � LTpf1q divides axγ � LTpfq and so the Gröbner basis criterion is clearly satisfied.

On the other hand, if γ   δ then there must be cancellation among the leading terms on the

right-hand side, in which case LTpfq is not necessarily divisible by pfiq for any i � 1, . . . , r. This is

what happened in the example on the midterm, and in the following:

Example: Using the lexicographic ordering, consider I � xx2 � y , x2y � 1y � krx, ys. Then

f � y2 � 1 � �ypx2 � yq � 1px2y � 1q P I, but neither LTpx2 � yq � x2 nor LTpx2y � 1q � x2y

divides y2 � LTpfq. Thus, tx2 � y , x2y � 1u is not a Gröbner basis for I.
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So now we’ve identified the phenomenon that prevents a given basis from being a Gröbner

basis, namely the kind of cancellation of leading terms that occurs in this example. So we need to

understand this better, and we still need to avoid the need to check every f P I. It turns out that

we can reduce the amount of work required to a finite amount by choosing a clever “representative

sample” of all the (problematic) f P I. To see how to do this, suppose

f � a1f1 � � � � � arfr P I

and, using the notation above (including the fact that the first m terms in the sum have αi�βi � δ),

we have

f � A� pa1 � LTpa1qqf1 � � � � � pam � LTpamqqfm � am�1fm�1 � � � � � arfr,

where A � LTpa1qf1 � � � � � LTpamqfm � c1x
α1f1 � � � � � cmx

αmfm. Thus f is the sum of A and

set of polynomials with leading terms which come strictly after xδ. As we have already seen, if

c1d1�� � �� cmdm � 0, then no cancelation among the leading terms occurs and we have that LTpfq

is divisible by LTpfiq for some i � 1, . . . , r. On the other hand, if c1d1 � � � � � cmdm � 0 then

cancellation does occur among the leading terms, so δ ¡ γ. In this case, we set gi � xαifi{di and

see that

A � c1x
α1f1 � � � � � cmx

αmfm

� c1d1g1 � � � � � cmdmgm

� c1d1pg1 � g2q � pc1d1 � c2d2qpg2 � g3q � pc1d1 � c2d2 � c3d3qpg3 � g4q

� � � � � pc1d1 � � � � � cm�1dm�1qpgm�1 � gmq � pc1d1 � � � � � cmdmqgm.

If c1d1�� � ��cmdm � 0, this shows that A is a k-linear combination of gi�gj � xα
i

fi{di�x
αjfj{dj

(because the ci’s and di’s are constants). From this observation we get Buchberger’s S-polynomials.

Definition: Let α � pa1, . . . , anq and β � pb1, . . . , bnq be elements of Zn¥0, and define γ �

pc1, . . . , cnq via ci � maxpai, biq. Then xγ is the least common multiple of xα and xβ . For

f, g P krx1, . . . , xns, let xγ be the least common multiple of LMpfq and LMpgq. The S-polynomial

of f, g is

Spf, gq �
xγ

LTpfq
f �

xγ

LT g
g.

Note that we have a strict inequality γ ¡ multidegpSpf, gqq because of cancellation.

Example: With the lexicographic order (with x ¡ y) in krx, ys, we have lcmpx2, x2yq � x2y and so

Spx2 � y , x2y � 1q �
x2y

x2
px2 � yq �

x2y

x2y
px2 � 1q

� ypx2 � yq � px2y � 1q

� y2 � 1

Before we defined the S-polynomials, we showed that if cancellation occurs among the leading

terms in the sum a1f1 � � � � � arfr then c1d1 � � � � � cmdm � 0 and so

A � LTpa1qf1 � � � � � LTpamqfm

� b1x
ζ1Spf1, f2q � b2x

ζ2Spf2, f3q � � � � � bm�1x
ζm�1Spfm�1, fmq
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where the coefficients bi are constants (elements of k), and xζi � xαi�βi{ lcmpxβi , xβi�1q Because of

the nature of the S-polynomials, we know that δ ¡ multidegpxζiSpfi, fi�1qq and the inequality is

strict (because of the cancellation). This is the observation that makes the whole theory work:

Theorem (Buchberger’s criterion): Let I be an ideal in krx1, . . . , xns. Then a basis G �

tf1, . . . , fsu is a Gröbner basis for I we have Spfi, fjq P I for all i and j, i.e., if and only if for all

pairs i � j, the remainder on division of Spfi, fjq by G is zero.

Proof: If G is a Gröbner basis for I, then by the proposition at the top of page 9, since the S-

polynomials are in I, we will have the remainder of Spfi, fjq on division by G is zero.

Now let f P I be a non-zero polynomial. We must show that if the S-polynomials all have zero

remainders on division by G, then LTpfq P xLTpf1q, . . . ,LTpfsqy. We will go about this as follows:

since f P I, we can express f �
ş

i�1

aifi for some ai P krx1, . . . , xns, and we know that

δ � maxpmultidegpaifiqq ¥ γ � multidegpfq.

As we noted above, if δ � γ, then LTpfq is divisible by at least one of the LTpfiq, so we will

have LTpfq P xLTpf1q, . . . ,LTpfsqy. So our objective is to show that it is possible to find such an

expression for f so that δ � γ.

It’s important to realize that there are in fact many possible choices of the polynomials ai so

that f �
ş

i�1

aifi — for instance, given one such choice, you could replace a3 by a3 � f5 and replace

a5 by a5 � f3 and get another set of ai’s that work. So among all the possible ways of choosing

the ai’s there is (at least) one for which the resulting δ is minimal with respect to the monomial

ordering ¡. We claim that if G is a Gröbner basis for I, then for such a “minimal” choice of ai’s we

will have δ � γ.

We will prove this by contradiction, and show that if δ ¡ γ then we can find another choice of

ai’s for which δ is strictly smaller (i.e., comes strictly after) the one we had, which would contradict

the minimality of the δ we had. But this is the content of the observations made just before the

definition of the S-polynomials, and just before the statement of this theorem. Namely, if δ ¡ γ,

then we know there must be cancellation, and so that c1d1�� � �� cmdm � 0 in the notation we were

using before the definition. Therefore, we can express f as

f � A� pa1 � LTpa1qqf1 � � � � � pam � LTpamqqfm � am�1fm�1 � � � � � arfr,

where

A � LTpa1qf1 � � � � � LTpamqfm

� b1x
ζ1Spf1, f2q � b2x

ζ2Spf2, f3q � � � � � bm�1x
ζm�1Spfm�1, fmq

From the observation just before the statement of this theorem, we have that δ ¡ multidegpAq. And

we can use the fact that the remainder on division of Spfi, fjq by G is zero to get an expression for

Spfi, fjq of the form

Spfi, fjq �
ş

k�1

bijkfk
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where bijk P krx1, . . . , xns and (from the division algorithm) multidegpSpfi, fjqq ¥ multidegpbijkfkq

for all i, j and k. Therefore, we can rewrite A as a sum of the form A �
ş

i�1

hifi where the δ is

greater than the multidegree of each term. All the other terms in the expression for f above clearly

have multidegrees less than δ, so we have found a new expression for f with a reduced value of δ.

This contradiction proves the theorem.

Buchberger’s algorithm. Now we turn to the problem of constructing a Gröbner basis of an ideal.

From Buchberger’s criterion, if we start with a basis F � pf1, . . . , fsq for an ideal I � xf1, . . . , fsy,

we can check whether F is a Gröbner basis for I by calculating the remainders on division by F of

all the S-polynomials Spfi, fjq for i � j. If all the remainders are zero, then F is a Gröbner basis.

What do we do if some of the remainders are not zero? If we adjoin the non-zero remainders to

the basis F , we’ll get a (bigger and necessarily redundant) basis F 1 for the ideal I for which the

particular remainders Spfi, fjq will now be zero. However, in doing this we introduce some new

pairs and so some new remainders and there is no guarantee that the new remainders will be zero.

Buchberger’s fundamental observation was that iterating this process of adjoining the remainders to

the given basis will terminate in a finite number of steps with a basis for which all the remainders

are zero, i.e., with a Gröbner basis.

Theorem (Buchberger’s algorithm): Let I � xf1, . . . , fsy be a non-zero ideal in krx1, . . . , xns.

Then a Gröbner basis for I can be constructed in a finite number of steps by the following algorithm:

Input: F � pf1, . . . , fsq

Output: a Gröbner basis G � pg1, . . . , gtq for I, with F � G

Set G � F

REPEAT

Set G1 � G

For each pair p, q in G1 with p � q:

Calculate the remainder r on division of Spp, qq by G.

If r � 0 then let G � GY tru.

UNTIL G � G1

Proof. A bit of useful notation to get us started: if G � tg1, . . . , gsu, then xGy will denote the ideal

xg1, . . . , gsy and xLTpGqy will denote the ideal xLTpg1q, . . .LTpgsqy.

Clearly, since G contains F at every step of the algorithm, and since we only append elements of

I as we go, we always have that G is a basis for I. The algorithm can terminate only when G � G1,

which means that the remainder of Spp, qq on division by G is zero for all p, q P G, which means

that G is a Gröbner basis of I by Buchberger’s criterion. So it remains to show that the algorithm

terminates.

Each time through the loop, we adjoin the non-zero remainders of S-polynomials of pairs of

elements of G1 to the original set G1. So clearly, since G1 � G, we have xLTpG1qy � xLTpGqy. This

containment must be strict if G1 � G — to see this suppose r is a non-zero remainder from one of the

S-polynomials from G1. Since r is a remainder on division by G1, we have that LTprq is not divisible

by the leading terms of any element of G1, and hence LTprq R xLTpG1qy. But LTprq P xLTpGqy,

which proves the claim.
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So now we have that the ideals xLTpG1qy from successive iterations of the loop form an ascending

chain of ideals in krx1, . . . , xns. Since krx1, . . . , xns is a Noetherian ring, this chain of ideals must

stabilize, and so xLTpG1qy � xLTpGqy must happen eventually. But then we must have G1 � G, so

the algorithm must terminate after a finite number of steps.

Example: Work in the ring krx, ys with grlex order, and let f1 � x3� 2xy and f2 � x2y� 2y2� x.

Then tf1, f2u is not a Gröbner basis for I � xf1, f2y because LTpSpf1, f2q � �x2 R xLTpf1q,LTpf2qy.

The Gröbner basis produced by Buchberger’s algorithm is tf1, f2, f3, f4, f5u where f3 � �x2, f4 �

�2xy and f5 � �2y2 � x.

Theorem: Let f1, . . . , fs P krx1, . . . , xns. Then let I be the ideal I � xt1 � f1, . . . , ts � fsy in the

ring krx1, . . . , xn, t1, . . . , tss. Let G be a Gröbner basis of I with respect to the lex ordering with

x1 ¡ � � � ¡ xn ¡ t1 ¡ � � � ¡ ts. A polynomial f P krx1, . . . , xns can be written as a polynomial

in f1, . . . , fs if and only if the remainder r of f on division by G is in krt1, . . . , trs. In this case

f � rpf1, . . . , frq.

Example: Let f1 � x� y, f2 � xy in krx, ys (symmetric polynomials). Then a Gröbner basis of

xt1 � x� y , t2 � xyy is G � tt1 � x , t2 � t1y � y2u.


