As we discussed in class, you should work in groups of approximately six. Each group should hand in one set of solutions. You will be assigned a 20 -minute time slot between 9 and 11 am on December 17 for oral presentations.

1. Evaluate $\int_{0}^{\infty} \frac{x^{2}}{2 x^{4}+5 x^{2}+2} d x$.
2. Show that if $|\lambda|<1$,

$$
\int_{0}^{\infty} \frac{x^{\lambda}}{x^{2}+3 x+2} d x=\frac{\pi}{\sin \lambda \pi}\left(2^{\lambda}-1\right)
$$

3. Find the harmonic function $\varphi(x, y)$ on the upper half-plane $(y>0)$ that satisfies $\varphi(x, 0)=0$ if $x>2$ or if $x<-2$, and $\varphi(x, 0)=1$ if $-2<x<2$.
4. How many solutions of $e^{z}=5 z^{3}-1$ are inside the unit disk $|z| \leq 1$?
5. Show that

$$
\Gamma(5 z)=\frac{3125^{z} \sqrt{5}}{20 \pi^{2}} \Gamma(z) \Gamma\left(z+\frac{1}{5}\right) \Gamma\left(z+\frac{2}{5}\right) \Gamma\left(z+\frac{3}{5}\right) \Gamma\left(z+\frac{4}{5}\right)
$$

6. Find the infinite product formula for $\sinh \pi z$.
